Validity & Ethics

Total Page:16

File Type:pdf, Size:1020Kb

Validity & Ethics Experimenter Expectancy Effects Data Collection: Validity & Ethics A kind of “self-fulfilling prophesy” during which researchers unintentionally “produce the results they want”. Two kinds… Data Integrity Modifying Participants’ Behavior – Expectancy effects & their control • Experimenter expectancy effects – Subtle differences in treatment of participants in different • Participant Expectancy Effects conditions can change their behavior… • Single- and Double-blind designs – Inadvertently conveying response expectancies/research – Researcher and Participant Bias & their control hypotheses • Reactivity & Response Bias – Problems with participants – Difference in performance due to differential quality of • Observer Bias & Interviewer Bias – Problems w/ researchers instruction or friendliness of the interaction – Effects of attrition on initial equivalence Data Collection Bias (much like observer bias) • Ethical Considerations – Many types of observational and self-report data need to be – Informed Consent “coded” or “interpreted” before they can be analyzed – Researcher Honesty – Subjectivity and error can creep into these interpretations – usually leading to data that are biased toward expectations – Levels of Disclosure Participant Expectancy Effects A kind of “demand characteristic” during which participants modify their behavior to respond/conform to “how they should act”. Two kinds… Social Desirability – When participants intentionally or unintentionally modify their behavior to match “how they are expected to behave” – Well-known social psychological phenomenon that usually happens between individual’s and their “peer group” – Can also happen between researcher and participants Acquiescence/Rejection Response – If participant thinks they know the research hypothesis or know the behavior that is expected of them they can “try to play along” (acquiescence) or “try to mess things up” (rejection response) – Particularly important during within-groups designs – if participants think study is “trying to change their behavior” Single & Double-blind Procedures Reactivity & Response Bias One way to limit or minimize the various biasing effects we’ve • Both of these refer to getting “less than accurate” data from the participants discussed is to limit the information everybody involved has Reactivity is the term commonly used when talking about observational data In Single Blind Procedures the participant doesn’t know the collection – the participant may behave “not naturally” if they know they are being hypotheses, the other conditions in the study, and ideally, the observed or are part of a study particular condition they are in (i.e., we don’t tell how the task – Naturalistic & disguised participant observation methods are intended to or manipulation is designed to change their behavior) avoid this – Habituation and desensitization help when using undisguised participant In Double-blind Procedures neither the participant nor the observation data collector/data coder knows the hypotheses or other • Response Bias is the term commonly used when talking about self-report data collection and describes a situation in which the participant responds information that could bias the interaction/reporting/coding of how they think they “should” the researcher or the responses of the participants – The response might be a reaction to cues the researcher provides – Social Desirability is when participants describe their character, opinions Sometimes this simply can’t be done (especially the researcher- or behavior as they think they “should” or to present a certain impression blind part) because of the nature of the variables or the of themselves hypotheses involved (e.g., hard to hide the gender of a – Protecting participants’ anonymity and participant-researcher rapport are participant from the researcher who is coding the video tape) intended to increase the honesty of participant responses Observer Bias & Interviewer Bias Both of these are versions of “seeing what you want to see” Observer Bias is the term commonly used when talking about observational data collection – Both observational data collection and data coding need to be done objectively and accurately – Automation & instrumentation help – so does using multiple observers/coders and looking for consistency • Interviewer Bias is the term commonly used when talking about self-report data collection – How questions are asked by interviewers or the interviewers’ reactions to answers can drive response bias – More of a challenge with face-to-face interviews – Computerized and paper-based procedures help limit this Effects of participant-research gender, race, age, personality, etc. match/mismatch have been shown to influence the behavior of both !!! Data collection biases & inaccuracies -- summary Attrition – also known as drop-out, data loss, response refusal, & experimental mortality Type of Data Collection Attrition endangers initial equivalence of subject variables Observational Self-report • random assignment is intended to produce initial equivalence of Observer Bias Interviewer Bias subject variables – so that the groups (IV conditions) have equivalent means on all subject variables (e.g., age, gender, “inaccurate data “coaching” or motivation, prior experience, intelligence, topical knowledge, etc.) recording/coding” “inaccurate recording/coding” • attrition can disrupt the initial equivalence – producing inequalities • “differential attrition” – related to IV condition differences – is particularly likely to produce inequalities Reactivity Response Bias • e.g., If one condition is “harder” and so more participants “reacting” to “dishonest” drop out of that condition, there is likely to be a being observed responding “motivation” difference between the participants Participant Researcher remaining in the two conditions (i.e., those remaining in the harder condition are more motivated). So, “attrition” works much like “self assignment” to trash initial equivalence Both involve a non-random determination of who provides data for what condition of the study! Imagine a study that involves a “standard treatment” and an “experimental treatment”… • random assignment would be used to ensure that the participants in the two groups are equivalent • self-assignment is likely to produce non-equivalence (different “kinds” of folks likely to elect the different treatments) • attrition (i.e., rejecting the randomly assigned condition) is similarly likely to produce non-equivalence (different “kinds” of folks likely to remain in the different treatments) How to combat attrition… Ethical Considerations -- participation • educate participants about the important role of random Research ethics are summarized in the “risk-benefit” trade-off assignment to the validity of the research model. • if there is differential “value” of the different treatments or What do participants risk when participating ? conditions (especially in a “treatment vs no-treatment” – social (embarrassment), psychological (learning uncomfortable comparison) – offer folks an opportunity to participate in the things about themselves), or even physical risk preferred condition after data collection – risk might be from manipulation, task, data collection or being “associated” with the research • replacement of participants who drop out of the study trades off with … •If there is a more aversive condition, then ask the participants What are the benefits of the research ? before assignment if they would still participate even if they were in the aversive condition. Then, only allow the people who say yes – to society (knowledge gained) or the participant (remuneration – pay or research credit or direct benefit of the treatment) to be in the study (note implications for external validity) Each university has an Institutional Review Board (IRB) that must approve the • collect data about possible confounding variables for statistical manipulations, procedures, data collection and data storage of all research involving comparison later human participants, under the review of the federal government. Individuals or universities that violate the relevant guidelines can/have been denied research support • replication & convergence of the study (grants), research/data collection privileges and are legally responsible to participants! Voluntary Informed Consent without Deception • Before participating each participant must read and sign a document that describes his/her participation (including random assignment) and all related activities, as well as the possible social, psychological or physical risks involved in that participation. • No information may be withheld from the participant the possession of which might alter her/his decision to give informed consent • “Deception” is withholding information from the participant that might possibly alter their decision whether or not to participate – Sometimes, the IRB approves research with deceptive elements as long as the risk/benefit ratio is ultimately positive • The participant is free to withdraw informed consent and stop participating in the research at any time with no consequences This guarantee is the cornerstone of Ethical Research !!! Ethical Considerations – reporting research Levels of disclosure Assuring participants that their responses are “safe” is important • When proposing and reporting research, researchers must be completely forthcoming concerning the procedures and when requesting their participation. resulting data. •Privacy • APA format & style is designed
Recommended publications
  • (HCW) Surveys in Humanitarian Contexts in Lmics
    Analytics for Operations working group GUIDANCE BRIEF Guidance for Health Care Worker (HCW) Surveys in humanitarian contexts in LMICs Developed by the Analytics for Operations Working Group to support those working with communities and healthcare workers in humanitarian and emergency contexts. This document has been developed for response actors working in humanitarian contexts who seek rapid approaches to gathering evidence about the experience of healthcare workers, and the communities of which they are a part. Understanding healthcare worker experience is critical to inform and guide humanitarian programming and effective strategies to promote IPC, identify psychosocial support needs. This evidence also informs humanitarian programming that interacts with HCWs and facilities such as nutrition, health reinforcement, communication, SGBV and gender. In low- and middle-income countries (LMIC), healthcare workers (HCW) are often faced with limited resources, equipment, performance support and even formal training to provide the life-saving work expected of them. In humanitarian contexts1, where human resources are also scarce, HCWs may comprise formally trained doctors, nurses, pharmacists, dentists, allied health professionals etc. as well as community members who perform formal health worker related duties with little or no trainingi. These HCWs frequently work in contexts of multiple public health crises, including COVID-19. Their work will be affected by availability of resources (limited supplies, materials), behaviour and emotion (fear), flows of (mis)information (e.g. understanding of expected infection prevention and control (IPC) measures) or services (healthcare policies, services and use). Multiple factors can therefore impact patients, HCWs and their families, not only in terms of risk of exposure to COVID-19, but secondary health, socio-economic and psycho-social risks, as well as constraints that interrupt or hinder healthcare provision such as physical distancing practices.
    [Show full text]
  • Nonresponse Bias and Trip Generation Models
    64 TRANSPORTATION RESEARCH RECORD 1412 Nonresponse Bias and Trip Generation Models PIYUSHIMITA THAKURIAH, As:H1sH SEN, SnM S66T, AND EDWARD CHRISTOPHER There is serious concern over the fact that travel surveys often On the other hand, if the model does not satisfy these con­ overrepresent smaller households with higher incomes and better ditions, bias will occur even if there is a 100 percent response education levels and, in general, that nonresponse is nonrandom. rate. These conditions are satisfied by the model if the func­ However, when the data are used to build linear models, such as trip generation models, and the model is correctly specified, tional form of the model is correct and all important explan­ estimates of parameters are unbiased regardless of the nature of atory variables are included. the respondents, and the issues of how response rates and non­ Because categorical models do not have any problems with response bias are ameliorated. The more important task then is their functional form, and weighting and related issues are the complete specification of the model, without leaving out var­ taken care of, the authors prefer categorical trip generation iables that have some effect on the variable to be predicted. The models. This preference is discussed in a later section. There­ theoretical basis for this reasoning is given along with an example fore, the issue that remains when assessing bias in estimates of how bias may be assessed in estimates of trip generation model parameters. Some of the methods used are quite standard, but from categorical trip generation models is whether the model the manner in which these and other more nonstandard methods includes all the relevant independent variables or at least all have been systematically put together to assess bias in estimates important predictors.
    [Show full text]
  • Equally Flexible and Optimal Response Bias in Older Compared to Younger Adults
    AGING AND RESPONSE BIAS Equally Flexible and Optimal Response Bias in Older Compared to Younger Adults Roderick Garton, Angus Reynolds, Mark R. Hinder, Andrew Heathcote Department of Psychology, University of Tasmania Accepted for publication in Psychology and Aging, 8 February 2019 © 2019, American Psychological Association. This paper is not the copy of record and may not exactly replicate the final, authoritative version of the article. Please do not copy or cite without authors’ permission. The final article will be available, upon publication, via its DOI: 10.1037/pag0000339 Author Note Roderick Garton, Department of Psychology, University of Tasmania, Sandy Bay, Tasmania, Australia; Angus Reynolds, Department of Psychology, University of Tasmania, Sandy Bay, Tasmania, Australia; Mark R. Hinder, Department of Psychology, University of Tasmania, Sandy Bay, Tasmania, Australia; Andrew Heathcote, Department of Psychology, University of Tasmania, Sandy Bay, Tasmania, Australia. Correspondence concerning this article should be addressed to Roderick Garton, University of Tasmania Private Bag 30, Hobart, Tasmania, Australia, 7001. Email: [email protected] This study was supported by Australian Research Council Discovery Project DP160101891 (Andrew Heathcote) and Future Fellowship FT150100406 (Mark R. Hinder), and by Australian Government Research Training Program Scholarships (Angus Reynolds and Roderick Garton). The authors would like to thank Matthew Gretton for help with data acquisition, Luke Strickland and Yi-Shin Lin for help with data analysis, and Claire Byrne for help with study administration. The trial-level data for the experiment reported in this manuscript are available on the Open Science Framework (https://osf.io/9hwu2/). 1 AGING AND RESPONSE BIAS Abstract Base-rate neglect is a failure to sufficiently bias decisions toward a priori more likely options.
    [Show full text]
  • Guidance for Health Care Worker (HCW) Surveys in Humanitarian
    Analytics for Operations & COVID-19 Research Roadmap Social Science working groups GUIDANCE BRIEF Guidance for Health Care Worker (HCW) Surveys in humanitarian contexts in LMICs Developed by the Analytics for Operations & COVID-19 Research Roadmap Social Science working groups to support those working with communities and healthcare workers in humanitarian and emergency contexts. This document has been developed for response actors working in humanitarian contexts who seek rapid approaches to gathering evidence about the experience of healthcare workers, and the communities of which they are a part. Understanding healthcare worker experience is critical to inform and guide humanitarian programming and effective strategies to promote IPC, identify psychosocial support needs. This evidence also informs humanitarian programming that interacts with HCWs and facilities such as nutrition, health reinforcement, communication, SGBV and gender. In low- and middle-income countries (LMIC), healthcare workers (HCW) are often faced with limited resources, equipment, performance support and even formal training to provide the life-saving work expected of them. In humanitarian contexts1, where human resources are also scarce, HCWs may comprise formally trained doctors, nurses, pharmacists, dentists, allied health professionals etc. as well as community members who perform formal health worker related duties with little or no trainingi. These HCWs frequently work in contexts of multiple public health crises, including COVID-19. Their work will be affected
    [Show full text]
  • Straight Until Proven Gay: a Systematic Bias Toward Straight Categorizations in Sexual Orientation Judgments
    ATTITUDES AND SOCIAL COGNITION Straight Until Proven Gay: A Systematic Bias Toward Straight Categorizations in Sexual Orientation Judgments David J. Lick Kerri L. Johnson New York University University of California, Los Angeles Perceivers achieve above chance accuracy judging others’ sexual orientations, but they also exhibit a notable response bias by categorizing most targets as straight rather than gay. Although a straight categorization bias is evident in many published reports, it has never been the focus of systematic inquiry. The current studies therefore document this bias and test the mechanisms that produce it. Studies 1–3 revealed the straight categorization bias cannot be explained entirely by perceivers’ attempts to match categorizations to the number of gay targets in a stimulus set. Although perceivers were somewhat sensitive to base rate information, their tendency to categorize targets as straight persisted when they believed each target had a 50% chance of being gay (Study 1), received explicit information about the base rate of gay targets in a stimulus set (Study 2), and encountered stimulus sets with varying base rates of gay targets (Study 3). The remaining studies tested an alternate mechanism for the bias based upon perceivers’ use of gender heuristics when judging sexual orientation. Specifically, Study 4 revealed the range of gendered cues compelling gay judgments is smaller than the range of gendered cues compelling straight judgments despite participants’ acknowledgment of equal base rates for gay and straight targets. Study 5 highlighted perceptual experience as a cause of this imbalance: Exposing perceivers to hyper-gendered faces (e.g., masculine men) expanded the range of gendered cues compelling gay categorizations.
    [Show full text]
  • Running Head: EXTRAVERSION PREDICTS REWARD SENSITIVITY
    Running head: EXTRAVERSION PREDICTS REWARD SENSITIVITY Extraversion but not Depression Predicts Reward Sensitivity: Revisiting the Measurement of Anhedonic Phenotypes Submitted: 6/xx/2020 EXTRAVERSION PREDICTS REWARD SENSITIVITY 2 Abstract RecentLy, increasing efforts have been made to define and measure dimensionaL phenotypes associated with psychiatric disorders. One example is a probabiListic reward task deveLoped by PizzagaLLi et aL. (2005) to assess anhedonia, by measuring participants’ responses to a differentiaL reinforcement schedule. This task has been used in many studies, which have connected blunted reward response in the task to depressive symptoms, across cLinicaL groups and in the generaL population. The current study attempted to replicate these findings in a large community sample and aLso investigated possible associations with Extraversion, a personaLity trait Linked theoreticaLLy and empiricaLLy to reward sensitivity. Participants (N = 299) completed the probabiListic reward task, as weLL as the Beck Depression Inventory, PersonaLity Inventory for the DSM-5, Big Five Inventory, and Big Five Aspect ScaLes. Our direct replication attempts used bivariate anaLyses of observed variables and ANOVA modeLs. FolLow-up and extension anaLyses used structuraL equation modeLs to assess reLations among Latent reward sensitivity, depression, Extraversion, and Neuroticism. No significant associations were found between reward sensitivity (i.e., response bias) and depression, thus faiLing to replicate previous findings. Reward sensitivity (both modeLed as response bias aggregated across blocks and as response bias controlLing for baseLine) showed positive associations with Extraversion, but not Neuroticism. Findings suggest reward sensitivity as measured by this probabiListic reward task may be reLated primariLy to Extraversion and its pathologicaL manifestations, rather than to depression per se, consistent with existing modeLs that conceptuaLize depressive symptoms as combining features of Neuroticism and low Extraversion.
    [Show full text]
  • Prior Belief Innuences on Reasoning and Judgment: a Multivariate Investigation of Individual Differences in Belief Bias
    Prior Belief Innuences on Reasoning and Judgment: A Multivariate Investigation of Individual Differences in Belief Bias Walter Cabral Sa A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Education University of Toronto O Copyright by Walter C.Si5 1999 National Library Bibliothèque nationaIe of Canada du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques 395 Wellington Street 395, rue WePington Ottawa ON K1A ON4 Ottawa ON KtA ON4 Canada Canada Your file Votre rëfërence Our fi& Notre réterence The author has granted a non- L'auteur a accordé une licence non exclusive Licence allowing the exclusive permettant à la National Libraq of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microforni, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor subçtantial extracts fi-om it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Prior Belief Influences on Reasoning and Judgment: A Multivariate Investigation of Individual Differences in Belief Bias Doctor of Philosophy, 1999 Walter Cabral Sa Graduate Department of Education University of Toronto Belief bias occurs when reasoning or judgments are found to be overly infiuenced by prior belief at the expense of a normatively prescribed accommodation of dl the relevant data.
    [Show full text]
  • Thinking and Reasoning
    Thinking and Reasoning Thinking and Reasoning ■ An introduction to the psychology of reason, judgment and decision making Ken Manktelow First published 2012 British Library Cataloguing in Publication by Psychology Press Data 27 Church Road, Hove, East Sussex BN3 2FA A catalogue record for this book is available from the British Library Simultaneously published in the USA and Canada Library of Congress Cataloging in Publication by Psychology Press Data 711 Third Avenue, New York, NY 10017 Manktelow, K. I., 1952– Thinking and reasoning : an introduction [www.psypress.com] to the psychology of reason, Psychology Press is an imprint of the Taylor & judgment and decision making / Ken Francis Group, an informa business Manktelow. p. cm. © 2012 Psychology Press Includes bibliographical references and Typeset in Century Old Style and Futura by index. Refi neCatch Ltd, Bungay, Suffolk 1. Reasoning (Psychology) Cover design by Andrew Ward 2. Thought and thinking. 3. Cognition. 4. Decision making. All rights reserved. No part of this book may I. Title. be reprinted or reproduced or utilised in any BF442.M354 2012 form or by any electronic, mechanical, or 153.4'2--dc23 other means, now known or hereafter invented, including photocopying and 2011031284 recording, or in any information storage or retrieval system, without permission in writing ISBN: 978-1-84169-740-6 (hbk) from the publishers. ISBN: 978-1-84169-741-3 (pbk) Trademark notice : Product or corporate ISBN: 978-0-203-11546-6 (ebk) names may be trademarks or registered trademarks, and are used
    [Show full text]
  • Why Do Humans Reason? Arguments for an Argumentative Theory
    University of Pennsylvania ScholarlyCommons Goldstone Research Unit Philosophy, Politics and Economics 4-2011 Why Do Humans Reason? Arguments for an Argumentative Theory Hugo Mercier University of Pennsylvania, [email protected] Dan Sperber Follow this and additional works at: https://repository.upenn.edu/goldstone Part of the Epistemology Commons, and the Psychology Commons Recommended Citation Mercier, H., & Sperber, D. (2011). Why Do Humans Reason? Arguments for an Argumentative Theory. Behavioral and Brain Sciences, 34 (2), 57-74. http://dx.doi.org/10.1017/S0140525X10000968 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/goldstone/15 For more information, please contact [email protected]. Why Do Humans Reason? Arguments for an Argumentative Theory Abstract Reasoning is generally seen as a means to improve knowledge and make better decisions. However, much evidence shows that reasoning often leads to epistemic distortions and poor decisions. This suggests that the function of reasoning should be rethought. Our hypothesis is that the function of reasoning is argumentative. It is to devise and evaluate arguments intended to persuade. Reasoning so conceived is adaptive given the exceptional dependence of humans on communication and their vulnerability to misinformation. A wide range of evidence in the psychology of reasoning and decision making can be reinterpreted and better explained in the light of this hypothesis. Poor performance in standard reasoning tasks is explained by the lack of argumentative context. When the same problems are placed in a proper argumentative setting, people turn out to be skilled arguers. Skilled arguers, however, are not after the truth but after arguments supporting their views.
    [Show full text]
  • Better but Still Biased: Analytic Cognitive Style and Belief Bias
    Thinking & Reasoning ISSN: 1354-6783 (Print) 1464-0708 (Online) Journal homepage: http://www.tandfonline.com/loi/ptar20 Better but still biased: Analytic cognitive style and belief bias Dries Trippas, Gordon Pennycook, Michael F. Verde & Simon J. Handley To cite this article: Dries Trippas, Gordon Pennycook, Michael F. Verde & Simon J. Handley (2015) Better but still biased: Analytic cognitive style and belief bias, Thinking & Reasoning, 21:4, 431-445, DOI: 10.1080/13546783.2015.1016450 To link to this article: http://dx.doi.org/10.1080/13546783.2015.1016450 View supplementary material Published online: 19 Mar 2015. Submit your article to this journal Article views: 474 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=ptar20 Download by: [University of Plymouth] Date: 06 January 2016, At: 05:50 Thinking & Reasoning, 2015 Vol. 21, No. 4, 431À445, http://dx.doi.org/10.1080/13546783.2015.1016450 Better but still biased: Analytic cognitive style and belief bias Dries Trippas1, Gordon Pennycook2, Michael F. Verde3, and Simon J. Handley3 1Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany 2Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada 3Cognition Institute, Plymouth University, Devon, UK Belief bias is the tendency for prior beliefs to influence people’s deductive reasoning in two ways: through the application of a simple belief-heuristic (response bias) and through the application of more effortful reasoning for unbelievable conclusions (accuracy effect or motivated reasoning). Previous research indicates that cognitive ability is the primary determinant of the effect of beliefs on accuracy.
    [Show full text]
  • Tilburg University Response Styles in Rating Scales Van Herk, H
    Tilburg University Response styles in rating scales van Herk, H.; Poortinga, Y.H.; Verhallen, T.M.M. Published in: Journal of Cross-Cultural Psychology Publication date: 2004 Link to publication in Tilburg University Research Portal Citation for published version (APA): van Herk, H., Poortinga, Y. H., & Verhallen, T. M. M. (2004). Response styles in rating scales: Evidence of method bias in data from 6 EU countries. Journal of Cross-Cultural Psychology, 35(3), 346-360. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Download date: 26. sep. 2021 RESPONSE STYLES IN EU COUNTRIES 1 Version: November 27, 2003 Response Styles In Rating Scales: Evidence of Method Bias in Data from 6 EU Countries Hester van Herk Ype H. Poortinga Theo M.M. Verhallen Hester van Herk is Assistant Professor of Marketing, Vrije Universiteit Amsterdam, Ype H. Poortinga is Professor of Psychology at Tilburg University and at Leuven University Belgium, Theo M.
    [Show full text]
  • Self-Report Response Bias: Learning How to Live with Its Diagnosis in Chaplaincy Research
    Self-report Response Bias: Learning How to Live with Its Diagnosis in Chaplaincy Research Diane Dodd-McCue • Alexander Tartaglia BCC Chaplaincy research is dominated by self-report data collected directly from research subjects or participants. Self-report response bias is the research measurement inaccuracy that originates with the respondent. A review of research published in The Journal of Pastoral Care & Counseling (1998-2008) found that all but one of thirty-eight research articles used self-report data. Of this total, less than half acknowledged methodological limitations, and only two acknowledged the potential impact of self-report response bias. This article focuses on seven categories of self-report response bias that may Diane Dodd-McCue is impact chaplaincy research: social desirability, acquiescence, leniency or associate professor, harshness, critical event or recency, halo effect, extreme response style and Program in Patient Counseling at Virginia midpoint response style. Although these biases have the potential to impact Commonwealth self-report data, the data themselves are not inherently flawed. This University (VCU), discussion offers recommendations for addressing self-report response bias Richmond, VA. She holds during the research process. It also suggests that acknowledging and a doctorate in business administration (DBA). understanding the impact of self-report response bias may result in more rigorous research as well as more creative and informed interpretation of [email protected] results. Alexander Tartaglia DMin BCC is associate professor, patient counseling and associate dean, School of Allied ALL HOSPITAL EMPLOYEES—including hospital chaplains—are asked to Health Professions at complete a survey about their institution’s organizational culture. The survey VCU.
    [Show full text]