2017 Valparaíso Earthquake Sequence and the Megathrust Patchwork of Central Chile
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
VOCALS Site Survey Report
VOCALS Site Survey 30 September – 12 October 2007 Arica, Iquique, Santiago, Chile Brigitte Baeuerle, Henry Boynton, Bob Hannigan, José Meitín, Vidal Salazar, Rob Wood, Pete Daum, Juan Aravena GENERAL INFORMATION: Area 756,950 sq. km Population: 16,284,741 (2007 estimate) Government Type Republic President Michelle Bachelet Jeria Capital City Santiago GDP per capita $12,600 Unemployment Rate 7.8% Life expectancy 77 years Infant Mortality Rate 8.36 death / 1000 life births Currency unit Peso Highest point 22,572 ft (Nevado Ojos del Salado) Main cities Concepción, Viña del Mar, Valparaiso National Holiday Independence Day, 18 September OVERVIEW Chile is unique for its very long (2,650 miles) and comparatively narrow (maximum 250 miles) shape and for its great variety of natural features. It extends from latitudes 18 to 56 degrees south and contains one of the driest regions in the world and one of the wettest areas in South America. It is bound on the north by Peru, on the northeast by Bolivia, on its long eastern border (3,200 miles) by Argentina and on the west by the Pacific Ocean. In its economy and public services, Chile is one of the most developed countries in the Andean region. Climate: Extending over 38 degrees of latitude, from the tropics to the vicinity of Antarctica, and from sea level to altitudes of over 20,000 feet, Chile has a wide variety of climatic conditions. Extreme aridity prevails over the northern part of the country; the average annual rainfall in this region is 0.04 inches. Temperatures are moderate along the coast throughout the year and more extreme inland, especially in the central basin. -
Geotechnical Reconnaissance of the 2015 Mw8.3 Illapel, Chile Earthquake
GEOTECHNICAL EXTREME EVENTS RECONNAISSANCE (GEER) ASSOCIATION Turning Disaster into Knowledge Geotechnical Reconnaissance of the 2015 Mw8.3 Illapel, Chile Earthquake Editors: Gregory P. De Pascale, Gonzalo Montalva, Gabriel Candia, and Christian Ledezma Lead Authors: Gabriel Candia, Universidad del Desarrollo-CIGIDEN; Gregory P. De Pascale, Universidad de Chile; Christian Ledezma, Pontificia Universidad Católica de Chile; Felipe Leyton, Centro Sismológico Nacional; Gonzalo Montalva, Universidad de Concepción; Esteban Sáez, Pontificia Universidad Católica de Chile; Gabriel Vargas Easton, Universidad de Chile. Contributing Authors: Juan Carlos Báez, Centro Sismológico Nacional; Christian Barrueto, Pontificia Universidad Católica de Chile; Cristián Benítez, Pontificia Universidad Católica de Chile; Jonathan Bray, UC Berkeley; Alondra Chamorro, Pontificia Universidad Católica de Chile; Tania Cisterna, Universidad de Concepción; Fernando Estéfan Thibodeaux Garcia, UC Berkeley; José González, Universidad de Chile; Diego Inzunza, Universidad de Concepción; Rosita Jünemann, Pontificia Universidad Católica de Chile; Benjamín Ledesma, Universidad de Concepción; Álvaro Muñoz, Pontificia Universidad Católica de Chile; Antonio Andrés Muñoz, Universidad de Chile; José Quiroz, Universidad de Concepción; Francesca Sandoval, Universidad de Chile; Pedro Troncoso, Universidad de Concepción; Carlos Videla, Pontificia Universidad Católica de Chile; Angelo Villalobos, Universidad de Chile. GEER Association Report No. GEER-043 Version 1: December 10, 2015 FUNDING -
Estimation of a Source Model and Strong Motion Simulation for Tacna City, South Peru
Estimation of a Source Model and Strong Motion Simulation for Tacna City, South Peru Paper: Estimation of a Source Model and Strong Motion Simulation forTacnaCity,SouthPeru Nelson Pulido∗1, Shoichi Nakai∗2, Hiroaki Yamanaka∗3, Diana Calderon∗4, Zenon Aguilar∗4, and Toru Sekiguchi∗2 ∗1National Research Institute for Earth Science and Disaster Prevention 3-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan E-mail: [email protected] ∗2Chiba University, Chiba, Japan ∗3Tokyo Institute of Technology, Kanagawa, Japan ∗4Universidad Nacional de Ingenier´ıa, Per´u, Lima, Per´u [Received August 18, 2014; accepted September 8, 2014] We estimate several scenarios for source models of megathrust earthquakes likely to occur on the Nazca- South American plates interface in southern Peru. To do so, we use a methodology for estimating the slip distribution of megathrust earthquakes based on an interseismic coupling (ISC) distribution model in subduction margins and on information about his- torical earthquakes. The slip model obtained from geodetic data represents large-scale features of asper- ities within the megathrust that are appropriate for simulating long-period waves and tsunami modelling. To simulate broadband frequency strong ground mo- tions, we add small scale heterogeneities to the geode- tic slip by using spatially correlated random noise dis- tributions. Using these slip models and assuming sev- eral hypocenter locations, we calculate a set of strong ground motions for southern Peru and incorporate site effects obtained from microtremors array surveys in Tacna, the southernmost city in Peru. Keywords: strong motion, source process, 1868 earth- quake, seismic hazard, South Peru Fig. 1. Slip deficit in southern Peru and northern Chile 1. -
Chile Doing As the “Gateway”? Can It Strengthen This Function? How? 2
11 DISTRIBUTION AND LOGISTICS This chapter will focus on two main subjects: 1. “Gateway”—How is Chile doing as the “gateway”? Can it strengthen this function? How? 2. Logistics for export and import—How are goods transported and distributed in Chile? What are remaining problems? The first subject will place Chile in the international perspectives. The second subject will concentrate on Chile’s domestic systems. 11.1 Chile as the “Gateway”: International Distribution 11.1.1 International Cargo Movements through the “Gateway” Chile’s function as the “gateway” is already a real one though it is still limited in terms of cargo volume. Figure 11.1.1 is reproduced here (originally Figure 10.2.6, Chapter 10) to indicate the extent of that function. As is seen, transit cargos as a whole only account for a fraction of total international movements.1 It is also evident that most of the transit cargos go through the North Zone, to and from Bolivia primarily. The annual total volume of transit cargos (880,000 tons westbound and 510,000 tons eastbound) may be still insignificant compared with Chile’s total handling volumes. Nonetheless, this present picture clearly illustrates a promising possibility that Chile should pursue: its “gateway” function can expand further. To demonstrate this, Chile’s current position in the international distribution and transportation networks particularly with neighboring countries will be reviewed in following sections. 11.1.2 Macro-Region Andina “Macro-region Andina” is a notion proposed and pursued by authorities concerned in Region I. Without any definite boundaries, it roughly covers an area encompassing the southern part of Peru, most of Bolivia, northern part of Argentina, part of Paraguay, and the states of Mato Grosso and Mato Grosso do Sul of Brazil. -
Damage Assessment of the 2015 Mw 8.3 Illapel Earthquake in the North‑Central Chile
Natural Hazards https://doi.org/10.1007/s11069-018-3541-3 ORIGINAL PAPER Damage assessment of the 2015 Mw 8.3 Illapel earthquake in the North‑Central Chile José Fernández1 · César Pastén1 · Sergio Ruiz2 · Felipe Leyton3 Received: 27 May 2018 / Accepted: 19 November 2018 © Springer Nature B.V. 2018 Abstract Destructive megathrust earthquakes, such as the 2015 Mw 8.3 Illapel event, frequently afect Chile. In this study, we assess the damage of the 2015 Illapel Earthquake in the Coquimbo Region (North-Central Chile) using the MSK-64 macroseismic intensity scale, adapted to Chilean civil structures. We complement these observations with the analysis of strong motion records and geophysical data of 29 seismic stations, including average shear wave velocities in the upper 30 m, Vs30, and horizontal-to-vertical spectral ratios. The calculated MSK intensities indicate that the damage was lower than expected for such megathrust earthquake, which can be attributable to the high Vs30 and the low predominant vibration periods of the sites. Nevertheless, few sites have shown systematic high intensi- ties during comparable earthquakes most likely due to local site efects. The intensities of the 2015 Illapel earthquake are lower than the reported for the 1997 Mw 7.1 Punitaqui intraplate intermediate-depth earthquake, despite the larger magnitude of the recent event. Keywords Subduction earthquake · H/V spectral ratio · Earthquake intensity 1 Introduction On September 16, 2015, at 22:54:31 (UTC), the Mw 8.3 Illapel earthquake occurred in the Coquimbo Region, North-Central Chile. The epicenter was located at 71.74°W, 31.64°S and 23.3 km depth and the rupture reached an extent of 200 km × 100 km, with a near trench rupture that caused a local tsunami in the Chilean coast (Heidarzadeh et al. -
Climatic Characteristics of the Semi-Arid Coquimbo Region in Chile
Journal of Arid Environments 126 (2016) 7e11 Contents lists available at ScienceDirect Journal of Arid Environments journal homepage: www.elsevier.com/locate/jaridenv Climatic characteristics of the semi-arid Coquimbo Region in Chile * S. Montecinos a, b, , J.R. Gutierrez c, d, e,F.Lopez-Cort es c,D.Lopez d a Departamento de Física y Astronomía, Universidad de La Serena, Avenida Juan Cisternas 1200, La Serena, Chile b Centro Estudio Recursos de Energía, Universidad Arturo Prat (CERE-UNAP), Avda. Arturo Prat 2120, Iquique, Chile c Departamento de Biología, Universidad de La Serena, Raúl Bitran 1305, La Serena, Chile d Centro de Estudios Avanzados en Zonas Aridas (CEAZA), Raúl Bitran 1305, La Serena, Chile e Instituto de Ecología y Biodiversidad (IEB), Casilla 653, Santiago, Chile article info abstract Article history: The climate of the Coquimbo Region, north-central Chile is driven by atmospheric, oceanic and Received 17 December 2014 orographic factors. The southeast Pacific anticyclone, the cold Humboldt Current and the rugged Received in revised form topography that characterize the zone, determine thermally induced wind regimes and the formation of 5 May 2015 low stratocumulus along the coastline. Low precipitation and high solar radiation cause important cli- Accepted 30 September 2015 matic altitudinal gradients, especially on temperature and humidity, thus different climatic areas can be Available online 17 October 2015 identified in the region. We summarized the general climatic characteristics of the study area and analyzed meteorological data to understand the behavior of the environmental variables. We used Keywords:: Atmospheric modeling mesoscale modeling to evaluate the spatial characteristics of the mean air temperature, humidity and Semi-arid zones wind. -
Lista Publicaciones Periódicas Chilenas
BIBLIOTECA NACIONAL Lista de las Publicaciones Periódicas Chilenas 1924 m Santiago de Chile IMPRENTA CERVANTES Moneda 1170 1924 Revistas, Diarios y Periódicos Chilenos QUE RECIBE ACTUALMENTE LA BIBLIOTECA NACIONAL Y QUE ESTÁN A DISPOSICIÓN DEL PÚBLICO Revistas OBRAS GENERALES Chispa Comunista (La). Talcahuano. Quincenal. Abejita Chilena (La). Santiago. Men- Efemérides Marianas. Santiago. Men- sual. sual. Ahorro. Santiago. Mensual. Elevación. Talcahuano. Mensual. Alborada. Antofagasta. Mensual. Entreacto (El). Iquique. Semanal. Alborada (La). Talcahuano. Semanal. Escuela Moderna (La). Iquique. Quin- Albores. Viña del Mar. Quincenal. cenal. Alma Juvenil. Temuco. Eventual. España y Chile. Santiago. Eventual. Amigo de la Juventud (El). Santiago. Estrella del Mar (La). Talcahuano. Mensual. Familia. Santiago. Santiago. Arlequín. Santiago. Semanal. Fénix. La Serena. Mensual. Artes y Letras. La Serena. Mensual. Ferroviario (El). Santiago. Mensual. Aurora (La). Santiago. Mensual. Mensual. Auto Chileno (El). Santiago. Quin- Film Magazine. Santiago. Mensual. cenal. Floración. Santiago. Eventual. Bandera (La). Santiago. Eventual. Germania. Valparaíso. Mensual. Boletín Oficial de "Los Previsores de Germinal. Santiago. Eventual. Magallanes". Punta Arenas. Men- Hacia el Ideal. Santiago. Mensual. sual. Heraldo Escolar (El). Victoria. Se- Bombero (El). Santiago. Mensual. manal. Brisas (Las). La Granja. Mensual. Hispania. Santiago. Eventual. Cabeza y Corazón. Tomé. Eventual. Hoja Teatral (La). Antofagasta. Dia- Carabinero (El). Santiago. Mensual. rio. Carabinero Ilustrado. Santiago. Quin- Horizontes. Curicó. Mensual. cenal. Ibis. La Serena. Mensual. Colegio y Hogar. Santiago. Mensual. Ideales. Chillan. Mensual. Corazón. Santiago. Quincenal. Ideales. Santiago. Eventual. Corre Vuela. Santiago. Semanal. Ideales. Talca. Mensual. Cultura. Valparaíso. Eventual. Ilustración (La). Antofagasta. Sema- Chile Magazine. Santiago. Mensual. nal. Chilenito (El). Santiago. Semanal. Iquique Magazine. Iquique. Semanal. Chilex. Chuquicamatá. Semanal. Iris. Copiapó. Eventual. -
The 2014 Earthquake in Iquique, Chile: Comparison Between Local Soil Conditions and Observed Damage in the Cities of Iquique and Alto Hospicio
The 2014 Earthquake in Iquique, Chile: Comparison between Local Soil Conditions and Observed Damage in the Cities of Iquique and Alto Hospicio Alix Becerra,a) Esteban Sáez,a),b) Luis Podestá,a),b) and Felipe Leytonc) In this study, we present comparisons between the local soil conditions and the observed damage for the 1 April 2014 Iquique earthquake. Four cases in which site effects may have played a predominant role are analyzed: (1) the ZOFRI area, with damage in numerous structures; (2) the port of Iquique, in which one pier suffered large displacements; (3) the Dunas I building complex, where soil-structure interaction may have caused important structural damage; and (4) the city of Alto Hospicio, disturbed by the effects of saline soils. Geophysical characterization of the soils was in agreement with the observed damage in the first three cases, while in Alto Hospicio the earthquake damage cannot be directly related to geophysical characterization. [DOI: 10.1193/ 111014EQS188M] INTRODUCTION On 1 April 2014, a MW 8.2 earthquake occurred in northern Chile, northwest of the town of Iquique; the main shock was followed by a MW 7.7 aftershock two days later (Figure 1). The 2014 Iquique earthquake was caused by the thrust faulting between the Nazca and South America plates. The rupture area had a length of about 200 km and a hypocenter depth of 38.9 km, according to the Chilean Seismological Center earthquake report. Prior to this event, northern Chile was characterized by a seismic quiescence of 136 years (known as the “Iquique seismic gap”; Comte and Pardo 1991). -
Forming a Mogi Doughnut in the Years Prior to and Immediately
RESEARCH LETTER Forming a Mogi Doughnut in the Years Prior to and 10.1029/2020GL088351 Immediately Before the 2014 M8.1 Iquique, Key Points: • Seismicity in the years prior to and Northern Chile, Earthquake immediately before the mainshock B. Schurr1 , M. Moreno2 , A. M. Tréhu3 , J. Bedford1 , J. Kummerow4,S.Li5 , form two halves of a “Mogi 1 Doughnut” surrounding the main and O. Oncken slip patch 1 2 • Mechanical asperity model predicts Deutsches GeoForschungsZentrum‐GFZ, Section Lithosphere Dynamics, Potsdam, Germany, Departamento de stress increase where earthquakes Geofísica, Universidad de Concepción, Concepción, Chile, 3College of Earth, Ocean, and Atmospheric Sciences, Oregon are observed State University, Corvallis, OR, USA, 4Department of Earth Sciences, Freie Universität Berlin, Berlin, Germany, • Slip region correlates with high 5Earthquake Research Institute, The University of Tokyo, Tokyo, Japan interseismic locking and a circular gravity low, suggesting that the asperity is controlled by geologic structure Abstract Asperities are patches where the fault surfaces stick until they break in earthquakes. Locating asperities and understanding their causes in subduction zones is challenging because they are generally Supporting Information: located offshore. We use seismicity, interseismic and coseismic slip, and the residual gravity field to map the • Supporting Information S1 asperity responsible for the 2014 M8.1 Iquique, Chile, earthquake. For several years prior to the mainshock, seismicity occurred exclusively downdip of the asperity. Two weeks before the mainshock, a series of foreshocks first broke the upper plate then the updip rim of the asperity. This seismicity formed a ring Correspondence to: B. Schurr, around the slip patch (asperity) that later ruptured in the mainshock. -
The Chiloé Mw 7.6 Earthquake of 25 December 2016 in Southern Chile and Its Relation to the Mw 9.5 1960 Valdivia Earthquake
2016 Chiloé Earthquake, Southern Chile submitted to Geophysical Journal International The Chiloé Mw 7.6 earthquake of 25 December 2016 in Southern Chile and its relation to the Mw 9.5 1960 Valdivia earthquake 1 2 3 3 Dietrich Lange , Javier Ruiz , Sebastián Carrasco , Paula Manríquez (1) GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany (2) Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile (3) National Seismological Centre, University of Chile, Santiago, Chile Keywords: 2016 Chiloé earthquake, Subduction Zone, Southern Chile, 1960 Valdivia Earthquake Corresponding author: Dietrich Lange (email: [email protected]) Abstract On 25 December 2016, a Mw 7.6 earthquake broke a portion of the Southern Chilean subduction zone south of Chiloé Island, located in the central part of the Mw 9.5 1960 Valdivia earthquake. This region is characterized by repeated earthquakes in 1960 and historical times with very sparse interseismic activity due to the subduction of a young (~15 Ma), and therefore hot, oceanic plate. We estimate the co-seismic slip distribution based on a kinematic finite fault source model, and through joint inversion of teleseismic body waves and strong motion data. The coseismic slip model yields a total seismic moment of 3.94×1020 Nm that occurred over ~30 s, with the rupture propagating mainly downdip, reaching a peak-slip of ~4.2 m. Regional moment tensor inversion of stronger aftershocks reveals thrust type faulting at depths of the plate interface. The fore- and aftershock seismicity is mostly related to the subduction interface with sparse seismicity in the overriding crust. -
Seismic Performance of Tailings Sand Dams in Chile
16th World Conference on Earthquake, 16WCEE 2017 Santiago Chile, January 9th to 13th 2017 Paper N° 4230 Registration Code: S-V1461865061 Seismic performance of tailings sand dams in Chile J. H. Troncoso (1), R. Verdugo (2), L. Valenzuela (3) (1) Senior Geotechnical Consultant, MWH Chile, (2) Senior geotechnical Consultant, CMGI Consultants (3) Geotechnical Consultant, formerly at Arcadis Abstract An extremely high and frequent seismic activity coincides in Chile with the existence of numerous tailings dams associated to the copper industry. In the country there is a history of tailings dam failures since the early XX century and up to today. Nevertheless since the decade of 1960 there have been a growing number of new large tailings dams that have had a very good performance even when subjected to very strong earthquakes. The paper summarizes the instructive history of failures as well as of successes of the newly designed tailings dams and particularly of the sand tailings dams. Different aspects of the main new sand tailings dams such as the design criteria, tailings sand characteristics under high confining stresses are discussed. These aspects are complemented with information on major earthquakes occurred in Chile in the last years, especially of El Maule Earthquake of Magnitude 8.8 of February 27, 2010 and the location of main tailings dams in the zones impacted by this earthquake. Finally, discussions are included with regard general seismic performance of tailings sand dams, seismic deformations, and seismic instrumentation including dams in operation and dams already inactive. Keywords: Tailings dams, Seismic behavior, Sand dams, Tailings sands, Dynamic properties of sands. -
The Delayed Aftershocks of the Illapel Earthquake Mw 8.3, 2015, Chile
EGU21-6978 https://doi.org/10.5194/egusphere-egu21-6978 EGU General Assembly 2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The delayed aftershocks of the Illapel Earthquake Mw 8.3, 2015, Chile Franco Lema1 and Mahesh Shrivastava1,2 1Departamento de Ciencias Geológicas, Universidad Católica del Norte, Antofagasta, Chile ([email protected]) 2National Research Center for Integrated Natural Disaster Management, Santiago, Chile ([email protected]) The delayed aftershocks 2018 Mw 6.2 on April 10 and Mw 5.8 on Sept 1 and 2019 Mw 6.7 on January 20, Mw 6.4 on June 14, and Mw 6.2 on November 4, associated with the Mw 8.3 2015 Illapel Earthquake occurred in the central Chile. The seismic source of this earthquake has been studied with the GPS, InSAR and tide gauge network. Although there are several studies performed to characterize the robust aftershocks and the variations in the field of deformation induced by the megathrust, but there are still aspects to be elucidated of the relationship between the transfer of stresses from the interface between plates towards delayed aftershocks with the crustal structures with seismogenic potential. Therefore, the principal objective of this study is to understand how the stress transfer induced by the 2015 Illapel earthquake of the heterogeneous rupture mechanism to intermediate-deep or crustal earthquakes. For this, coulomb stress changes from finite fault model of the Illapel earthquake and with the biggest aftershocks in year 2015 are used. These cumulative stress pattern provides substantial evidences for the delayed aftershocks in this region.