hep-th/0212326 Classical Geometry of De Sitter Spacetime : An Introductory Review Yoonbai Kima,b,1, Chae Young Oha,2, and Namil Parka,3 aBK21 Physics Research Division and Institute of Basic Science, Sungkyunkwan University, Suwon 440-746, Korea bSchool of Physics, Korea Institute for Advanced Study, 207-43, Cheongryangri-Dong, Dongdaemun-Gu, Seoul 130-012, Korea Abstract Classical geometry of de Sitter spacetime is reviewed in arbitrary dimensions. Top- ics include coordinate systems, geodesic motions, and Penrose diagrams with detailed calculations. arXiv:hep-th/0212326v1 29 Dec 2002
[email protected] [email protected] [email protected] 1 Contents 1 Introduction 2 2 Setup 3 3 Useful Coordinates 5 3.1 Global (closed) coordinates (τ, θ ), i =1, 2, ,d 1 ............. 6 i ··· − 3.2 Conformal coordinates (T, θi) .......................... 9 3.3 Planar (inflationary) coordinates (t, xi) ..................... 11 3.4 Static coordinates (t, r, θ ), a =1, 2, ,d 2 ................. 15 a ··· − 4 Geodesics 17 4.1 Global (closed) coordinates ............................ 17 4.2 Conformal coordinates .............................. 19 4.3 Planar (inflationary) coordinates ........................ 21 4.4 Static coordinates ................................. 24 5 Penrose Diagram 28 5.1 Static coordinates ................................. 29 5.2 Conformal coordinates .............................. 31 5.3 Planar (inflationary) coordinates ........................ 32 6 Discussion 33 A Various Quantities 34 A.1 Global (closed) coordinates ............................ 34 A.2 Conformal coordinates .............................. 35 A.3 Planar (inflationary) coordinates ........................ 36 A.4 Static coordinates ................................. 37 1 Introduction Cosmological constant Λ was originally introduced in general relativity with the motiva- tion to allow static homogeneous universe to Einstein equations in the presence of matter.