Equatorial Ocean Currents
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
North America Other Continents
Arctic Ocean Europe North Asia America Atlantic Ocean Pacific Ocean Africa Pacific Ocean South Indian America Ocean Oceania Southern Ocean Antarctica LAND & WATER • The surface of the Earth is covered by approximately 71% water and 29% land. • It contains 7 continents and 5 oceans. Land Water EARTH’S HEMISPHERES • The planet Earth can be divided into four different sections or hemispheres. The Equator is an imaginary horizontal line (latitude) that divides the earth into the Northern and Southern hemispheres, while the Prime Meridian is the imaginary vertical line (longitude) that divides the earth into the Eastern and Western hemispheres. • North America, Earth’s 3rd largest continent, includes 23 countries. It contains Bermuda, Canada, Mexico, the United States of America, all Caribbean and Central America countries, as well as Greenland, which is the world’s largest island. North West East LOCATION South • The continent of North America is located in both the Northern and Western hemispheres. It is surrounded by the Arctic Ocean in the north, by the Atlantic Ocean in the east, and by the Pacific Ocean in the west. • It measures 24,256,000 sq. km and takes up a little more than 16% of the land on Earth. North America 16% Other Continents 84% • North America has an approximate population of almost 529 million people, which is about 8% of the World’s total population. 92% 8% North America Other Continents • The Atlantic Ocean is the second largest of Earth’s Oceans. It covers about 15% of the Earth’s total surface area and approximately 21% of its water surface area. -
Observations of the North Equatorial Current, Mindanao Current, and Kuroshio Current System During the 2006/ 07 El Niño and 2007/08 La Niña
Journal of Oceanography, Vol. 65, pp. 325 to 333, 2009 Observations of the North Equatorial Current, Mindanao Current, and Kuroshio Current System during the 2006/ 07 El Niño and 2007/08 La Niña 1 2 3 4 YUJI KASHINO *, NORIEVILL ESPAÑA , FADLI SYAMSUDIN , KELVIN J. RICHARDS , 4† 5 1 TOMMY JENSEN , PIERRE DUTRIEUX and AKIO ISHIDA 1Institute of Observational Research for Global Change, Japan Agency for Marine Earth Science and Technology, Natsushima, Yokosuka 237-0061, Japan 2The Marine Science Institute, University of the Philippines, Quezon 1101, Philippines 3Badan Pengkajian Dan Penerapan Teknologi, Jakarta 10340, Indonesia 4International Pacific Research Center, University of Hawaii, Honolulu, HI 96822, U.S.A. 5Department of Oceanography, University of Hawaii, Honolulu, HI 96822, U.S.A. (Received 19 September 2008; in revised form 17 December 2008; accepted 17 December 2008) Two onboard observation campaigns were carried out in the western boundary re- Keywords: gion of the Philippine Sea in December 2006 and January 2008 during the 2006/07 El ⋅ North Equatorial Niño and the 2007/08 La Niña to observe the North Equatorial Current (NEC), Current, ⋅ Mindanao Current (MC), and Kuroshio current system. The NEC and MC measured Mindanao Current, ⋅ in late 2006 under El Niño conditions were stronger than those measured during early Kuroshio, ⋅ 2006/07 El Niño, 2008 under La Niña conditions. The opposite was true for the current speed of the ⋅ 2007/08 La Niña. Kuroshio, which was stronger in early 2008 than in late 2006. The increase in dy- namic height around 8°N, 130°E from December 2006 to January 2008 resulted in a weakening of the NEC and MC. -
Impacts of Four Northern-Hemisphere Teleconnection Patterns on Atmospheric Circulations Over Eurasia and the Pacific
Theor Appl Climatol DOI 10.1007/s00704-016-1801-2 ORIGINAL PAPER Impacts of four northern-hemisphere teleconnection patterns on atmospheric circulations over Eurasia and the Pacific Tao Gao 1,2 & Jin-yi Yu2 & Houk Paek2 Received: 30 July 2015 /Accepted: 31 March 2016 # Springer-Verlag Wien 2016 Abstract The impacts of four teleconnection patterns on at- in summer could be driven, at least partly, by the Atlantic mospheric circulation components over Eurasia and the Multidecadal Oscillation, which to some degree might trans- Pacific region, from low to high latitudes in the Northern mit the influence of the Atlantic Ocean to Eurasia and the Hemisphere (NH), were investigated comprehensively in this Pacific region. study. The patterns, as identified by the Climate Prediction Center (USA), were the East Atlantic (EA), East Atlantic/ Western Russia (EAWR), Polar/Eurasia (POLEUR), and 1 Introduction Scandinavian (SCAND) teleconnections. Results indicate that the EA pattern is closely related to the intensity of the sub- As one of the major components of teleconnection patterns, tropical high over different sectors of the NH in all seasons, atmospheric extra-long waves influence climatic evolutionary especially boreal winter. The wave train associated with this processes. Abnormal oscillations of these extra-long waves pattern serves as an atmospheric bridge that transfers Atlantic generally result in regional or wider-scale irregular atmo- influence into the low-latitude region of the Pacific. In addi- spheric circulations that can lead to abnormal climatic tion, the amplitudes of the EAWR, SCAND, and POLEUR events elsewhere in the world. Therefore, because of their patterns were found to have considerable control on the importance in climate research, considerable attention is given “Vangengeim–Girs” circulation that forms over the Atlantic– to teleconnection patterns on various timescales. -
The Equatorial Current System
The Equatorial Current System C. Chen General Physical Oceanography MAR 555 School for Marine Sciences and Technology Umass-Dartmouth 1 Two subtropic gyres: Anticyclonic gyre in the northern subtropic region; Cyclonic gyre in the southern subtropic region Continuous components of these two gyres: • The North Equatorial Current (NEC) flowing westward around 20o N; • The South Equatorial Current (SEC) flowing westward around 0o to 5o S • Between these two equatorial currents is the Equatorial Counter Current (ECC) flowing eastward around 10o N. 2 Westerly wind zone 30o convergence o 20 N Equatorial Current EN Trade 10o divergence Equatorial Counter Current convergence o -10 S. Equatorial Current ES Trade divergence -20o convergence -30o Westerly wind zone 3 N.E.C N.E.C.C S.E.C 0 50 Mixed layer 100 150 Thermoclines 200 25oN 20o 15o 10o 5o 0 5o 10o 15o 20o 25oS 4 Equatorial Undercurrent Sea level East West Wind stress Rest sea level Mixed layer lines Thermoc • At equator, f =0, the current follows the wind direction, and the wind drives the water to move westward; • The water accumulates against the western boundary and cause the sea level rises over there; • The surface pressure gradient pushes the water eastward and cancels the wind-driven westward currents in the mixed layer. 5 Wind-induced Current Pressure-driven Current Equatorial Undercurrent Mixed layer Thermoclines 6 Observational Evidence 7 Urbano et al. (2008), JGR-Ocean, 113, C04041, doi: 10.1029/2007/JC004215 8 Observed Seasonal Variability of the EUC (Urbano et al. 2008) 9 Equatorial Undercurrent in the Pacific Ocean Isotherms in an equatorial plane in the Pacific Ocean (from Philander, 1980) In the Pacific Ocean, it is called “the Cormwell Current}; In the Atlantic Ocean, it is called “the Lomonosov Current” 10 Kessler, W, Progress in Oceanography, 69 (2006) 11 In the equatorial Pacific, when the South-East Trade relaxes or turns to the east, the sea surface slope will “collapse”, causing a flat mixed layer and thermocline. -
Chapter 8 the Pacific Ocean After These Two Lengthy Excursions Into
Chapter 8 The Pacific Ocean After these two lengthy excursions into polar oceanography we are now ready to test our understanding of ocean dynamics by looking at one of the three major ocean basins. The Pacific Ocean is not everyone's first choice for such an undertaking, mainly because the traditional industrialized nations border the Atlantic Ocean; and as science always follows economics and politics (Tomczak, 1980), the Atlantic Ocean has been investigated in far more detail than any other. However, if we want to take the summary of ocean dynamics and water mass structure developed in our first five chapters as a starting point, the Pacific Ocean is a much more logical candidate, since it comes closest to our hypothetical ocean which formed the basis of Figures 3.1 and 5.5. We therefore accept the lack of observational knowledge, particularly in the South Pacific Ocean, and see how our ideas of ocean dynamics can help us in interpreting what we know. Bottom topography The Pacific Ocean is the largest of all oceans. In the tropics it spans a zonal distance of 20,000 km from Malacca Strait to Panama. Its meridional extent between Bering Strait and Antarctica is over 15,000 km. With all its adjacent seas it covers an area of 178.106 km2 and represents 40% of the surface area of the world ocean, equivalent to the area of all continents. Without its Southern Ocean part the Pacific Ocean still covers 147.106 km2, about twice the area of the Indian Ocean. Fig. 8.1. The inter-oceanic ridge system of the world ocean (heavy line) and major secondary ridges. -
EBSA Template 1 Costa Rica Dome-En
Appendix Template for Submission of Scientific Information to Describe Ecologically or Biologically Significant Marine Areas Note: Please DO NOT embed tables, graphs, figures, photos, or other artwork within the text manuscript, but please send these as separate files. Captions for figures should be included at the end of the text file, however . Title/Name of the area: Costa Rica Dome Presented by (names, affiliations, title, contact details) Abstract (in less than 150 words) The Costa Rica Dome is an area of high primary productivity in the northeastern tropical Pacific, which supports marine predators such as tuna, dolphins, and cetaceans. The endangered leatherback turtle (Dermochelys coriacea ), which nests on the beaches of Costa Rica, migrates through the area. The Costa Rica Dome provides year-round habitat that is important for the survival and recovery of the endangered blue whale (Balaenoptera musculus ). The area is of special importance to the life history of a population of the blue whales, which migrate south from Baja California during the winter for breeding, calving, raising calves and feeding. Introduction (To include: feature type(s) presented, geographic description, depth range, oceanography, general information data reported, availability of models) Biological hot spots in the ocean are often created by physical processes and have distinct oceanographic signatures. Marine predators, including large pelagic fish, marine mammals, seabirds, and fishing vessels, recognize that prey organisms congregate at ocean fronts, eddies, and other physical features (Palacios et al, 2006). One such hot spot occurs in the northeastern tropical Pacific at the Costa Rica Dome. The Costa Rica Dome was first observed in 1948 (Wyrtki, 1964) and first described by Cromwell (1958). -
Coriolis Effect
Project ATMOSPHERE This guide is one of a series produced by Project ATMOSPHERE, an initiative of the American Meteorological Society. Project ATMOSPHERE has created and trained a network of resource agents who provide nationwide leadership in precollege atmospheric environment education. To support these agents in their teacher training, Project ATMOSPHERE develops and produces teacher’s guides and other educational materials. For further information, and additional background on the American Meteorological Society’s Education Program, please contact: American Meteorological Society Education Program 1200 New York Ave., NW, Ste. 500 Washington, DC 20005-3928 www.ametsoc.org/amsedu This material is based upon work initially supported by the National Science Foundation under Grant No. TPE-9340055. Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the National Science Foundation. © 2012 American Meteorological Society (Permission is hereby granted for the reproduction of materials contained in this publication for non-commercial use in schools on the condition their source is acknowledged.) 2 Foreword This guide has been prepared to introduce fundamental understandings about the guide topic. This guide is organized as follows: Introduction This is a narrative summary of background information to introduce the topic. Basic Understandings Basic understandings are statements of principles, concepts, and information. The basic understandings represent material to be mastered by the learner, and can be especially helpful in devising learning activities in writing learning objectives and test items. They are numbered so they can be keyed with activities, objectives and test items. Activities These are related investigations. -
Poleward Shift of the Pacific North Equatorial Current Bifurcation
RESEARCH ARTICLE Poleward Shift of the Pacific North Equatorial 10.1029/2019JC015019 Current Bifurcation Key Points: Haihong Guo1,2 , Zhaohui Chen1,2 , and Haiyuan Yang1,2 • In the North Pacific, the North Equatorial Current bifurcation in 1Physical Oceanography Laboratory/Institute for Advanced Ocean Study, Ocean University of China, Qingdao, China, the upper ocean shifts poleward 2 with increasing depth Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, China • The poleward shift of the bifurcation is associated with the asymmetric wind stress curl input to Abstract The dynamics of the poleward shift of the Pacific North Equatorial Current bifurcation latitude tropical/subtropical gyre ‐ • (NBL) is studied using a 5.5 layer reduced gravity model. It is found that the poleward shift of the NBL is The equatorial currents bifurcations fi in other basins share the same associated with the asymmetric intensity of the wind stress curl input to the Paci c tropical and subtropical vertical structure gyres. Stronger wind stress curl in the subtropical gyre leads to equatorward transport in the interior upper ocean across the boundary between the two gyres, causing a poleward transport compensation at the western boundary. In the lower layer ocean, in turn, there is poleward (equatorward) transport at the Correspondence to: interior (western boundary) due to Sverdrup balance which requires zero transport at the gyre boundary Z. Chen, where zonally integrated wind stress curl is zero. Therefore, the NBL exhibits a titling feature, with its [email protected] position being more equatorward in the upper layer and more poleward in the lower layer. -
Future Changes to the Upper Ocean Western Boundary Currents Across Two Generations of Climate Models Alex Sen Gupta1,2,3*, Annette Stellema1,2,3, Gabriel M
www.nature.com/scientificreports OPEN Future changes to the upper ocean Western Boundary Currents across two generations of climate models Alex Sen Gupta1,2,3*, Annette Stellema1,2,3, Gabriel M. Pontes4, Andréa S. Taschetto1,2, Adriana Vergés3,5 & Vincent Rossi6 Western Boundary Currents (WBCs) are important for the oceanic transport of heat, dissolved gases and nutrients. They can afect regional climate and strongly infuence the dispersion and distribution of marine species. Using state-of-the-art climate models from the latest and previous Climate Model Intercomparison Projects, we evaluate upper ocean circulation and examine future projections, focusing on subtropical and low-latitude WBCs. Despite their coarse resolution, climate models successfully reproduce most large-scale circulation features with ensemble mean transports typically within the range of observational uncertainty, although there is often a large spread across the models and some currents are systematically too strong or weak. Despite considerable diferences in model structure, resolution and parameterisations, many currents show highly consistent projected changes across the models. For example, the East Australian Current, Brazil Current and Agulhas Current extensions are projected to intensify, while the Gulf Stream, Indonesian Throughfow and Agulhas Current are projected to weaken. Intermodel diferences in most future circulation changes can be explained in part by projected changes in the large-scale surface winds. In moving to the latest model generation, despite structural model advancements, we fnd little systematic improvement in the simulation of ocean transports nor major diferences in the projected changes. Anthropogenic climate change manifests as increases in surface temperature and sea level, rainfall distribution changes and increasing frequency and intensity of certain extreme events1. -
Arctic Report Card 2018 Effects of Persistent Arctic Warming Continue to Mount
Arctic Report Card 2018 Effects of persistent Arctic warming continue to mount 2018 Headlines 2018 Headlines Video Executive Summary Effects of persistent Arctic warming continue Contacts to mount Vital Signs Surface Air Temperature Continued warming of the Arctic atmosphere Terrestrial Snow Cover and ocean are driving broad change in the Greenland Ice Sheet environmental system in predicted and, also, Sea Ice unexpected ways. New emerging threats Sea Surface Temperature are taking form and highlighting the level of Arctic Ocean Primary uncertainty in the breadth of environmental Productivity change that is to come. Tundra Greenness Other Indicators River Discharge Highlights Lake Ice • Surface air temperatures in the Arctic continued to warm at twice the rate relative to the rest of the globe. Arc- Migratory Tundra Caribou tic air temperatures for the past five years (2014-18) have exceeded all previous records since 1900. and Wild Reindeer • In the terrestrial system, atmospheric warming continued to drive broad, long-term trends in declining Frostbites terrestrial snow cover, melting of theGreenland Ice Sheet and lake ice, increasing summertime Arcticriver discharge, and the expansion and greening of Arctic tundravegetation . Clarity and Clouds • Despite increase of vegetation available for grazing, herd populations of caribou and wild reindeer across the Harmful Algal Blooms in the Arctic tundra have declined by nearly 50% over the last two decades. Arctic • In 2018 Arcticsea ice remained younger, thinner, and covered less area than in the past. The 12 lowest extents in Microplastics in the Marine the satellite record have occurred in the last 12 years. Realms of the Arctic • Pan-Arctic observations suggest a long-term decline in coastal landfast sea ice since measurements began in the Landfast Sea Ice in a 1970s, affecting this important platform for hunting, traveling, and coastal protection for local communities. -
An Introduction to Mid-Latitude Ecotone: Sustainability and Environmental Challenges J
СИБИРСКИЙ ЛЕСНОЙ ЖУРНАЛ. 2017. № 6. С. 41–53 UDC 630*181 AN INTRODUCTION TO MID-LATITUDE ECOTONE: SUSTAINABILITy AND ENVIRONMENTAL CHALLENGES J. Moon1, w. K. Lee1, C. Song1, S. G. Lee1, S. B. Heo1, A. Shvidenko2, 3, F. Kraxner2, M. Lamchin1, E. J. Lee4, y. Zhu1, D. Kim5, G. Cui6 1 Korea University, College of Life Sciences and Biotechnology East Building, 322, Anamro Seungbukgu, 145, Seoul, 02841 Republic of Korea 2 International Institute for Applied Systems Analysis (IIASA) Schlossplatz, 1, Laxenburg, 2361 Austria 3 Federal Research Center Krasnoyarsk Scientific Center, Russian Academy of Sciences, Siberian Branch V. N. Sukachev Institute of Forest, Russian Academy of Sciences, Siberian Branch Akademgorodok, 50/28, Krasnoyarsk, 660036 Russian Federation 4 Korea Environment Institute Bldg B, Sicheong-daero, 370, Sejong-si, 30147 Republic of Korea 5 National Research Foundation of Korea Heonreung-ro, 25, Seocho-gu, Seoul, 06792 Republic of Korea 6 Yanbian University Gongyuan Road, 977, Yanji, Jilin Province, China E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Received 18.07.2016 The mid-latitude zone can be broadly defined as part of the hemisphere between 30°–60° latitude. This zone is home to over 50 % of the world population and encompasses about 36 countries throughout the principal region, which host most of the world’s development and poverty related problems. In reviewing some of the past and current major environmental challenges that parts of mid-latitudes are facing, this study sets the context by limiting the scope of mid- latitude region to that of Northern hemisphere, specifically between 30°–45° latitudes which is related to the warm temperate zone comprising the Mid-Latitude ecotone – a transition belt between the forest zone and southern dry land territories. -
Physical Oceanography - UNAM, Mexico Lecture 3: the Wind-Driven Oceanic Circulation
Physical Oceanography - UNAM, Mexico Lecture 3: The Wind-Driven Oceanic Circulation Robin Waldman October 17th 2018 A first taste... Many large-scale circulation features are wind-forced ! Outline The Ekman currents and Sverdrup balance The western intensification of gyres The Southern Ocean circulation The Tropical circulation Outline The Ekman currents and Sverdrup balance The western intensification of gyres The Southern Ocean circulation The Tropical circulation Ekman currents Introduction : I First quantitative theory relating the winds and ocean circulation. I Can be deduced by applying a dimensional analysis to the horizontal momentum equations within the surface layer. The resulting balance is geostrophic plus Ekman : I geostrophic : Coriolis and pressure force I Ekman : Coriolis and vertical turbulent momentum fluxes modelled as diffusivities. Ekman currents Ekman’s hypotheses : I The ocean is infinitely large and wide, so that interactions with topography can be neglected ; ¶uh I It has reached a steady state, so that the Eulerian derivative ¶t = 0 ; I It is homogeneous horizontally, so that (uh:r)uh = 0, ¶uh rh:(khurh)uh = 0 and by continuity w = 0 hence w ¶z = 0 ; I Its density is constant, which has the same consequence as the Boussinesq hypotheses for the horizontal momentum equations ; I The vertical eddy diffusivity kzu is constant. ¶ 2u f k × u = k E E zu ¶z2 that is : k ¶ 2v u = zu E E f ¶z2 k ¶ 2u v = − zu E E f ¶z2 Ekman currents Ekman balance : k ¶ 2v u = zu E E f ¶z2 k ¶ 2u v = − zu E E f ¶z2 Ekman currents Ekman balance : ¶ 2u f k × u = k E E zu ¶z2 that is : Ekman currents Ekman balance : ¶ 2u f k × u = k E E zu ¶z2 that is : k ¶ 2v u = zu E E f ¶z2 k ¶ 2u v = − zu E E f ¶z2 ¶uh τ = r0kzu ¶z 0 with τ the surface wind stress.