<<

Recovery after Selective Logging in the Ipetí- Emberá Community

La Recuperación del Bosque después de la Tala Selectiva en la Comunidad de Ipetí-Emberá

Adrian Burrill1 and Stephanie Garbe2 McGill University ENVR 451

1Facutly of Science, Department of Biology, McGill University, Montreal, QC, Canada 2Faculty of Science, McGill School of Environment, McGill University, Montreal, QC, Canada

Submitted to Professor Rafael Samudio and Professor Roberto Ibanez In collaboration with OUDCIE and Ignacia Holmes

April 26, 2010

- 1 - TABLE OF CONTENTS

EXECUTIVE SUMMARY ______4

RESUMEN EXECUTIVA ______6

INTRODUCTION ______8

Study Site ______8

Host Institutions ______9

Host Insititutions‟ Contact Informtaion ______10

Reducing Emission from and in Developing Countries _ 10

Scope of Long Term Project ______11

Selective Logging ______12

OBJECTIVES ______14

METHODOLOGY ______15

Gaining Scope of the Project ______15

Ethical Considerations ______16

Gap// Inventory ______17

Disturbance Inventory ______19

Characterizing Gaps ______19

Collection Historical and Future Knowledge of Logging Projects ______20

Providing Recommendations for Future Research______21

- 2 - Limitations to Gaining Scope of the Project ______21

RESULTS ______22

Gap/Road/ ______22

Disturbance Inventory ______26

Characterizing Gaps ______26

Collecting Historical and Future Knowledgeof Logging Projects ______30

Providing Recommendations for Future Research______30

Limitations to Collecting and Analyzing Data ______37

Limitations to Recommendations and Considerations ______38

DISCUSSION ______39

Implications for the Community and REDD ______41

CONCLUSION ______42

ACKNOWLEDGEMENTS ______42

REFERENCES ______44

APPENDICES ______46

Appendix I – Gap Measurements Diagrams ______46

Appendix II – Gap Characterization Charts ______51

Appendix III – Table of Project Working Days ______84

Appendix IV – Product for OUDCIE ______84

- 3 - EXECUTIVE SUMMARY

Forest Recovery after Selective Logging in the Ipetí-Emberá Community Adrian Burrill and Stephanie Garbe of McGill University ENVR 451

Host Institution: OUDCIE Ipetí-Emberá, Provincia de Panama 333-0803 McGill University with Ignacia Holmes 845 Sherbrooke St West, Montreal, QC, Canada Smithsonian Tropical Research Institute Roosvelt Ave. Balboa, Ancón Panamá 507 212- 8000

Ipetí-Emberá is an indigenous community located west of Panama City in the Bayano watershed region. The communal land, a Tierra Colectiva, comprises 3145 ha, within which a small scale selective logging project took place in a 31.92 ha region called Ambroya 2 between February and April 2009.

Selective logging is the process of removing isolated, mature of preferred timber species for the purpose of selling. Its practice has increased in Latin America in recent years as a valuable source of income for small scale land holders, and it has been recognized as a more sustainable alternative to traditional clear cutting logging practices. However, concerns have arisen over the true impacts on the forest and its subsequent recovery following a selective logging event, and little is known on the regeneration of commercial timber species. Also, few studies have been conducted on the effect of this logging practice on different types of disturbances, for example gaps and logging left behind in the forest.

This project aims to set the foundation for a long term monitoring initiative investigating forest re-growth in forest canopy gaps and logging roads after selective logging in Ambroya 2. On a large scale, the goal of the study will be to create a model of the area before and after logging with respect to carbon levels, investigating the compatibility of small scale selective logging with the Reducing Emissions from Deforestation and Forest Degradation (REDD) program in the Ipetí-Emberá community. To initiate such a plan, solid baseline information is required for future reference and comparison. The goals of this particular venture are to compile an inventory of the forest gaps and roads, and to qualitatively collect ecological characteristics of each gap.

To complete an inventory of all disturbances, the total area of all gaps and roads was required to determine the overall disturbance level. For gaps, area was calculated from previously collected data and measurements taken in the field. For roads, ArcGIS data was analyzed to obtain area. Characterization of the gaps involved making standardized field observations on biotic and abiotic factors of each gap. This data will be used for comparison in the future and to look at the relationship between these environmental factors and a particular gap‟s regeneration of timber species, and to look at the differences in forest recovery between roads and gaps.

The obtained results showed a total disturbance level of 9.9% of the entire Ambroya 2 area, and a high level of re-growth in gaps after logging one year ago. Further study will

- 4 - be required to analyze in depth the recovery of this forest, including species composition over time, seedling and sapling recruitment and canopy cover, among others. This recommends methodologies for laying plots for future surveying. Results of this initiated project will be informative on many different levels, including the capacity of commercially and culturally important tree species to sufficiently recover from logging activity and the ability to adopt a REDD-compatible carbon stock program in the community. They will provide reference for environmental impacts of future selective logging projects, and could influence the decision making process for their plans. In conclusion, this study is the beginning of a long term monitoring scheme linking the community‟s necessary use of the forest and an attempt to promote sustainable practices.

- 5 - RESUMEN EJECUTIVO

La Recuperación del Bosque Después de la Tala Selectiva en la Comunidad de Ipetí- Emberá Adrian Burrill y Stephanie Garbe de la Universidad de McGill ENVR 451

Institución anfitriona: OUDCIE Ipetí-Emberá, Provincia de Panamá 333-0803 Universidad de McGill con Ignacia Holmes 845 Sherbrooke St West, Montreal, QC, Canadá Smithsonian Tropical Research Institute Roosvelt Ave. Balboa, Ancón Panamá 507 212- 8000

Ipetí-Emberá es una comunidad ubicada al este de la Ciudad de Panamá en la región de Bayano. La tierra comunal, una Tierra Colectiva, comprende 3145 ha, dentro de la cual un proyecto de tala de pequeña escala se llevó a cabo en una región que se llama Ambroya 2 entre febrero y abril 2009.

La tala selectiva es el proceso de retirar los árboles más grandes y aislados del bosque de las especies de madera preferidas para vender. Su uso se ha incrementado en Latinoamérica en los últimos años como una valiosa fuente de ingreso para los terratenientes de pequeña escala, y se ha reconocido como una alternativa más sostenible que las prácticas tradicionales de tala. Sin embargo, han surgido problemas sobre los impactos en el bosque y su recuperación después de un evento de tala selectiva, y poco es conocido sobre la recuperación de las especies de madera comerciales. Además, pocas investigaciones se han realizado sobre el impacto de este método de tala sobre los diferentes tipos de perturbaciones, por ejemplo los hoyos en el bosque creados por los árboles cortados y los caminos de tala.

Este proyecto tiene como objetivo hacer una fundación para una iniciativa de seguimiento de largo plazo para investigar el nuevo crecimiento en los hoyos del dosel del bosque y los caminos de tala después de la tala selectiva en Ambroya 2. A largo plazo, el objetivo de este estudio va a ser de crear un modelo del área antes y después de la tala con respeto a los niveles de carbono, investigando la compatibilidad de la tala selectiva a pequeña escala con el programa de Reducción de las Emisiones por Deforestación y Degradación de los bosques (REDD) en la comunidad de Ipetí-Emberá. Para iniciar este plan, se requiere una muy buena información de base como referencia y comparación en el futuro. Los objetivos de esta parte del proyecto son de recopilar un inventario de los hoyos del bosque y los caminos, y de cualitativamente recoger las características ecológicas de cada hoyo.

Para completar un inventario de todas las perturbaciones, fue requerida el área total de todos los hoyos y caminos para determinar el nivel de perturbación total. Para los hoyos, el área fue calculada de los datos anteriormente colectados y de las mediciones realizadas en el campo. Para los caminos, los datos de ArcGIS fueron analizados para obtener el área. La caracterización de los hoyos implicó hacer observaciones estandarizadas sobre los factores bióticos y abióticos de cada hoyo. Estos datos van a ser usados para la

- 6 - comparación en el futuro y para ver la relación entre estos factores ambientales y la regeneración de los especies de madera en los hoyos, y para ver las diferencias en la recuperación de los bosques entre los hoyos y los caminos.

Los resultados obtenidos mostraron un nivel de perturbación total de 9.9% de toda el área en Ambroya 2, y un nivel alto de nuevo crecimiento en los hoyos después de la tala, hace un año. Más estudio se requiere para analizar la recuperación del bosque en profundidad, incluyendo la composición de las especies con el tiempo, el reclutamiento de las plántulas y árboles jóvenes, la cubierta del dosel, y otros. Este trabajo recomienda una metodología para la colocación de las parcelas para la agrimensura en el futuro. Los resultados de este proyecto iniciado van a ser informados en muchos maneras diferentes, incluyendo la capacidad de las, comercialmente y culturalmente, importantes especies de árboles de recuperar suficientemente de la actividad maderera y la capacidad de adoptar un programa de reserva de carbono compatible con REDD en la comunidad. Van a proveer referencia sobre los impactos ambientales de los proyectos de tala en el futuro, y podrán influir en el proceso de toma de decisiones para los planes de tala. En conclusión, este estudio comenzó un esquema a largo plazo de seguimiento uniendo el uso necesario por la comunidad y un intento de promover las prácticas de silvicultura sostenibles.

- 7 - INTRODUCTION

Study Site

This study was conducted entirely within the indigenous community of Ipetí-Emberá, a

Tierra Colectiva situated about 120km east of Panama City. It, along with Ipetí-Kuna to the north and Ipetí-Colono to the east, comprises the Bayano watershed region in the district of Chepo in the eastern part of the province of Panama (Figure 1). This region was created in 1970 by the Panamanian government to relocate families whose original land was to be flooded by the Bayano hydroelectric project (Kirby and Potvin, 2007). The

Emberá Tierra Colectiva comprises 3145 ha of land, and is contained by the Ipetí river to the east, the Curti river to the west, and the Pan American highway to the north (Kirby and Potvin, 2007). Since its creation, the community‟s population has grown to about 71 households presently (Tschakert et al., 2007).

Source: Tschakert 2007

- 8 - Field work was carried out during the months of January to April 2010 in a recently logged area of the Tierra Colectiva known as Ambroya 2. Logging occured between

February and April 2009 in this area, which encompasses 31.92 ha of land, where trees were logged, creating 36 forest gaps. It should be noted that an individual gap refers to the area in the forest affected by a single tree , and multiple gaps refer to the area affected by the felling of two or more trees.

Host Institutions

La Organizacion de Unidad de la Communidad Ipetí-Emberá (OUDCIE) is a local non governmental organization (NGO) consisting of local community members from Ipetí-

Emberá. Founded in 1998, the organization has an aim to promote conservation and sustainable development, and also to preserve the culture and traditions of the Emberá people. Primarily, it carries out developmental projects, oversees policy and politics in the community and ensures that all projects carried out within the Tierra Colectiva respects Emberá culture and will be of benefit to the community at large (Barrios et al.,

2002). All field work and logistical aspects within the Ipetí-Emberá community related to our project were assisted and overseen by OUDCIE members.

The Smithsonian Tropical Research Institute (STRI) is a bureau of the Smithsonian

Institution of the United States based in Panama, dedicated to understanding tropical biological diversity. Founded in 1923, STRI is now a leading research institution in the world, and it aims to facilitate research to better understand tropical through the training and funding of tropical biologists (STRI 2010). This project, contributing to the

- 9 - doctorate project of Ignacia Holmes with McGill University, is a joint venture between

STRI, McGill University and OUDCIE, investigating the recovery of a selectively logged forest in the Ipetí-Emberá community.

Contact Information:

OUDCIE- Organización para la Unidad y el Desarrollo de la Comunidad de Ipetí-

Emberá

Ipetí-Emberá, Provincia de Panama, 333-0803

STRI- Smithsonian Tropical Research Institute

Roosvelt Ave., Tupper Building – 401, Balboa, Ancón, Panamá, República de Panamá,

507 212-8000

McGill University with Ignacia Holmes

845 Sherbrooke St. West, Montreal, QC, Canada, H3A 2T5, 514-398-4455

Reducing Emissions from Deforestation and Forest Degradation in Developing

Countries

Initiated in December 2005 during negotiations of the United Nations Framework

Convention on Climate Change (UNFCCC) in Montreal, Canada, Reducing Emissions from Deforestation and Forest Degradation (REDD) became an international endeavour to implement monetary value for the carbon stored in . Created in response to political pressure arising from concerns over the depletion of the world‟s forests, the

REDD program offers incentives for developing countries to reduce their emissions from forested land. Demand for agricultural expansion in tropical regions of the developing

- 10 - world has led to large scale forest clearance and land conversion to pastures and for road development (Putz, 2008). The REDD program realizes the large contribution of deforestation and forest degradation to global carbon emissions, seeing that they account for almost 20% of global greenhouse gas emissions (UN-REDD, 2009). Therefore,

REDD is working towards mitigating climate change by coupling the maintenance of forest with providing financial support to developing countries (UN-REDD,

2009). Panama has played an active role in REDD negotiations, and has included it as an integral part of their environmental strategy (ANAM 2009). On a long term scale, this project will investigate the compatibility of small scale selective logging with REDD in the Ipetí-Emberá community.

Scope of the Long Term Project

The goal of this large scale study is to not only determine forest response following a logging event, but also to create a model of the area before and after with respect to carbon levels. With time, carbon stocks will be compared between the pre-logged forest and the projected recovered forest, which will aid in designing different management scenarios in the future. The entire scope of the project is outlined in Figure 2, demonstrating that there are multiple stages involved. Hence, it is a long term study involving monitoring of the forest over time.

- 11 - 2. Description of small-scale selective logging initiative

1. Description of 3. Description 4. Analysis 5. Projection 6. Model Forest composition of post-logging of forest of forest different and carbon stock of forest response recovery in management pre-logged forest disturbances post-logging time scenarios

Compare carbon stocks

Figure 2: Outline of long term study (source: Ignacia Holmes)

This project is concerned with parts three and four: description of post-logging forest disturbances and the analysis of forest response post-logging. It is important to note that this internship is laying the foundation for a larger project, collecting baseline data for future reference and comparisons. While forest recovery information is the desired goal, due to time constraints and the nature of these studies, this project will only compile an inventory of the forest gaps and qualitatively characterize them.

Selective Logging

Selective logging can be defined as the practice of removing isolated mature trees for the purpose of selling timber (Whitman et al., 1997). This has become an increasingly practiced technique in Latin America as an important livelihood strategy for small landholders (Nepstad et al., 1999). It has also been shown to play a large role in providing for the timber (Cerutti and Tacconi, 2008). Selective logging

- 12 - may be an alternative land use strategy that moves away from the practice of clear cutting; however it still causes damage to the surrounding area, such as the residual stand and remaining trees (Whitman et al., 1997). Extraction of a felled tree, which involves a large quantity of logging equipment, also affects the area by compacting soils and therefore reducing seedling recruitment and growth (Whitman et al., 1997). Studies have suggested that selective logging practices have lower impacts than traditional logging, but nevertheless they do not provide sufficient disturbance for regeneration to occur

(Whitman et al., 1997). This discrepancy is suggested to be a result of colonization of competing species when small gaps are formed due to the felling of a single tree. It was found that tree seedlings and saplings in multiple tree gaps grew at three times the rate of those in single tree gaps (Frederickson, 2000). The disturbance caused by single tree selective logging was found to be inadequate to support sufficient forest regeneration

(Toledo-Aceves, 2009). It has been shown that stem recruitment in a disturbed area is the main factor in recovering from the disturbance (Luyssaert et al., 2008). While logging impacts and subsequent forest recovery has been studied extensively in forest gaps, most research has neglected to include other types of disturbances caused by logging activities for comparison, such as logging roads and trails. Certain studies, however, have shown differing levels of forest regeneration between logging disturbances such as single and multiple gaps, and logging trails (Frederickson, 2000, Dickinson et al., 2000).

This study aims to compare forest re-growth among different disturbance types, namely gaps and roads, with the long term goal of using this information for preparing carbon stock management strategies to increase carbon recovery in similar logging projects.

- 13 - Ultimately, this information could be used in the planning of small scale selective logging practices in the future. The questions this study will eventually aim to answer are as follows: Are the disturbances created by selective logging sufficient to promote sustained regeneration of commercial timber, high carbon local use species? Are there any differences between the different types of disturbances? How do the disturbance characteristics affect forest growth?

This part of the overall study will look into gap characteristics and disturbance levels of gaps and roads. These characteristics will be used to determine the relationship between seedling and sapling abundance, canopy cover and disturbance type. The following hypotheses will be tested with future analysis: Seedling and sapling densities of commercial, high carbon and local use tree species will respond more favourably to disturbances that exceed those provided by roads. Roads are more likely to be colonized by competing vegetation thus changing forest composition.

OBJECTIVES

This project‟s main objective is to obtain a full understanding of the logged area in the

Ambroya 2 region of Ipetí-Emberá. Baseline data will be collected to lay a foundation for a long term monitoring survey on forest recovery. A continuation of this study, through sampling, will provide understanding of seedling and sapling recovery of high carbon, commercial and local use species. The specific objectives of this portion of the project can be broken up into two separate categories, one for each task performed:

1) Disturbance inventory:

- 14 - The disturbance inventory comprises a full comprehension of the gaps and roads, with respect to area affected by logging. Areas were to be determined using field methods described below and GPS points taken for GIS mapping later on. Most importantly, this information will be used to evaluate the relative importance level per disturbance. With all the area data from roads and gaps, a percentage should be determined for the amount of disturbed land in all of Ambroya 2.

2) Gap characterization:

The objective for this section is to obtain a complete understanding of what each gap looks like at this time, approximately one year after the logging project, to get an idea of the growth that occurred, what types of plants are present, the species of the cut trees, and the presence of ecological characteristics such as rocks and slope. Another important goal is to obtain a complete inventory of logged trees, including their species names.

METHODOLOGY

Gaining Scope of the Project

The initial and most important task of this project was obtaining an understanding of objectives that are attainable and feasible with the time constraints. Working with Ignacia

Holmes and meeting with specialists in forestry research and the Ipetí-Emberá community and culture, Jefferson Hall and Catherine Potvin, knowledge was gained about the expanse of this long term study and an understanding of the required baseline information. This project was then designed to obtain the baseline data of the logged areas. Therefore, the achievable objectives of this study were altered to be feasible in the time frame. The project goals are necessary to set the stage for future research into the

- 15 - recovery of the Ambroya forest after selective logging in the Ipetí-Emberá community.

Due to the time constraints and barriers encountered, our research only focuses on

Ambroya 2 in the Ambroya region. However, our methodology can be repeated to obtain baseline data for Ambroya 1 in order to monitor and study both areas in the future.

Ethical Considerations

This study follows the ethical protocol of McGill University. A previous agreement has been made between Ignacia Holmes with supervision from Dr. Catherine Potvin and the

Ipetí-Emberá community. This agreement states that all participants of the research of

Ignacia Holmes will do the following:

To receive consent, each component of the project is presented to the community

authorities

All participants in the study are provided with information on the study and our

intentions with the research and consent was asked for before proceeding with

discussions and/or interviews

Permission is obtained to take photographs in the community and in the field

Observations and interviews are made upon consent to provide a more detailed

analysis of the status, timeline, and changes in the Ambroya area

Research assistants for the project are suggested by OUDCIE and presented with

the work plan objectives before research begins

- 16 -

Figure 3: ArcGIS map of Ambroya 2 with primary, secondary, tertiary roads, tree stumps and gaps and our sampled gaps

Gap/Road/Tree Inventory

The goal of the gap inventory was to obtain location and area of all gaps through mapping and measuring. The majority of the gaps had already been measured by José

Quintero in August 2009. To complete the gap inventory, the remaining gaps were identified, mapped and measured in February 2010 using a GPS unit and a Vertex III and

Transport T31 ultrasound distance recorder. GPS points were taken of each logged area at the centre of each gap; for individual gaps this was at the and for multiple gaps it was an estimated centre. GPS points were also taken at the nearest tree that was

1 Haglöf Sweden AB- Vertex III and Transporter T3 2002

- 17 - not affected by logging nor is a newly grown tree in each cardinal direction of a compass,

N, NE, E, SE, S, SW, W and NW. These GPS points were imported into ArcGIS and added to previously created maps (Figure 3). Using the vertex ultrasound distance recorder, distances were measured between the centers of each gap and the eight cardinal points, and then the distances between each cardinal point (Figure 4). These measurements provided an understanding of the area affected when the tree(s) was felled.

Figure 4: a) method for measuring distances in individual gaps where the tree stump is the center of the gap b) method for measuring distances in multiple gaps where the center of the gaps is an estimation

A complete inventory of the roads in Ambroya 2 was previously collected by José

Quintero in 2009. The roads were classified into three classes: primary (camino de mula), secondary (switch principal) and tertiary (switch de hala) according to their purpose. The primary road was constructed for trucks to the logs, secondary roads are the main skid trails in the area that have been constructed to reach the forest and tertiary roads are the small roads into the gaps to reach the felled tree(s). Previous data collected

- 18 - measurements of road width as well as GPS points along all roads. GPS points were imported into ArcGIS. Using the ArcGIS maps, an estimate of the length of each road was obtained. This information, along with the average road widths, provided an understanding of the area affected by the roads.

For the tree inventory, we want an idea of the specific species of trees logged. With the help of a local OUDCIE research assistant we were able to identify the species and number of logged trees in each gap.

Disturbance Inventory

To complete the disturbance inventory, data was compiled on the gap areas, the road areas. This information determined the total area of disturbances as well as the relative importance of these disturbances in the logged area.

Characterizing Gaps

The gaps were characterized to obtain information that will be used as baseline data for comparisons in the future. To characterize the gaps we used a similar rapid assessment methodology which is used in sampling plots in STRI‟s Barro Colorado Island (BCI) research station. A log sheet similar to the one used in the 50 ha plot in BCI was created in both English and Spanish to facilitate the research assistant‟s knowledge (Table 1)

This field log sheet allowed us to qualitatively characterize the gaps based on the presences of plants, rocks, density of nearby trees, direction of slope, and other attributes.

The classification of these attributes was subjective; therefore we worked together with

- 19 - the research assistant to standardize the observations. We recorded the number of trees cut and the species and took photographs of each gap in the 4 cardinal directions (N, E, S and W) for future comparisons.

Table 1: Example of Characteristics Log Sheet

Collecting Historical and Future Knowledge of Logging Projects

To complete our understanding of the area and for additional baseline knowledge we interviewed the vice president of OUDCIE, Bonarge Pacheco. The purpose of this interview was to obtain further information on logging projects in the community now

- 20 - and plans for logging projects in the future. Also the interview will provide insight on where these projects would happen and when/if there are plans to expand the practice of selective logging in the Ipetí-Emberá Tierra Colectiva.

Providing Recommendations for Future Research

Using our knowledge of the Ambroya and the disturbed area, as well as the collected and compiled data we formulated recommendations for choosing which gaps and roads to sample. We included recommendations for the placement and securement of permanent plots and naming the plots and surveying the plots.

Limitations to Gaining Scope of Project

Our first limitation was gaining a full scope of the project. In the first few weeks our methodology changed daily, sometimes with slight alterations and other times quite abruptly. Nevertheless, this was a limitation that was overcome with the help from our supervisors, specialists and field assistants. We realized the work that needed to be done to meet the overall project goal. This goal was not feasible for us to accomplish, therefore limiting the objective for our project. The troubles that we encountered, during our initial phase of gaining understanding of the project and planning our methodology, taught us important lessons. This lesson being that we have limitations to our ideas and it is important as scientists to criticize your own work, and willingly accept criticism from your peers and superiors.

- 21 - RESULTS

The results of the methodology provide important information for setting the foundation of a long term study. This baseline information will be used for comparisons in the future to determine the status of the forest‟s recovery.

Gap/Road/Tree Inventory

The map produced from the GPS points taken in the field and the previously collected points from José Quintero (Figure 3) does not give much insight into the location and distribution of the gaps in Ambroya 2. Due to our inexperience with the GPS unit, these points could be inaccurate and not correct portrayals of the true location of the gaps.

Therefore, GPS points at the center of all gaps were retaken to compare to our first set of points. Unfortunately we have not been able to produce a map with these points, due to time constraints.

The distance measurements taken using the Vertex III ultrasound distance recorder of the remaining gaps are presented in gap diagrams (Appendix I). These measurements, along with the previously collected measurement from August 2009, were used to calculate the areas of all gaps in Ambroya 2. To find the area of the gaps Heron‟s formula was used

(Figure 5). This formula calculates the area of triangles with side lengths known but angles unknown (Kahan 2000). Each gap is split up into eight triangles and this formula is used because the angles between cardinal points are unknown; however the angle from the center of the gap to the cardinal points at the edge of the gap is estimated to be 45°.

The triangle area calculation is comprised of the distance from the center of the gap to the

- 22 - two adjacent cardinal points and the distance between these points (Figure 6). The areas of the eight triangles were summed to obtain the total area of each gap (Table 2). This calculation was done for all 36 gaps in Ambroya 2.

Figure 5: Heron’s formula. a, b and c are the three sides of this triangle, s is the semiperimeter. The semiperimeter is half the perimeter

Figure 6: Example of a gap diagram divided into eight triangles. Each triangle has sides a, b and c in order to apply Heron’s formula.

- 23 - Table 2: Complete inventory of gaps with each area of gap and sum area for all gaps

Gap AREA Gap AREA (m2) (m2)

A2I I 206.67 A2HI1 240.1 A2I II 62.22 A2HI2 337.73 A2I1 150.92 A2HI3 138.82 A2I III 103.58 A2HI4 276.36 A2I2 133.77 A2HI5 192.31 A2I3 135.14 A2HI6 155.93 A2I IV 91.76 A2G9 855.15 A2I6 46.83 A2G1 1080.18 A2I V 70.79 A2G2 1686.88 A2I8 80.46 A2G3 1610.06 A2I VI 117.54 A2G7 286.33 A2I VII 585.17 A2G8 512.81 A2I VIII 138.61 A2G10 100.83 A2I IX 160.65 A2G4 1197.11 A2I5 122.07 A2G6 936.45 A2I4 198.77 A2HG1 403.37 A2I X 30.52 A2HG2 242.62 A2I XI 47.78 A2I XII 60.89 Total 12797.16

To calculate the total area of all roads in Ambroya 2, the formula for area of rectangles was used (length multiplied by width). Width for each road was obtained from previous data and length for each road was supplied by ArcGIS. The areas of all roads were summed to obtain the total area of disturbance for all roads in Ambroya 2 (Table 3).

- 24 - Table 3: Complete inventory of roads with tertiary, secondary and primary individual area and sum area for all roads

Roads Area (m2) Switch Hala /Tertiary 4540.6 Roads Switch Principal 10058.29 /Secondary Roads Camino Mula /Primary 4157.83 Roads Total 18756.72

The results from identifying the trees logged in the area are outlined in Table 4. There are

36 gaps in Ambroya 2; however upon sampling in the field only 33 gaps were located.

Therefore only the number of trees and species where identified for these gaps. In the 33 sampled gaps, 54 trees where logged, 46 were espave, 3 were amargo amargo, 3 were cedro macho and 2 were zapotillo. The gaps that were missed during the tree inventory are known: A2I IV, A2I VII and A2I XII. Therefore since all are individual gaps containing one tree each, it can be inferred that three more trees were logged than the total we obtained from our sampling. For this reason, it can be stated that 57 trees where logged in Ambroya 2. Nevertheless, the species of these three trees are unknown.

Table 4: Tree inventory of 33 out of 36 gaps

Number of Total Trees Species Trees Logged Espave 46 54 Amargo amargo 3 Cedro macho 3 Zapotillo 2

- 25 - Disturbance Inventory

To complete the disturbance inventory, the total area of all disturbances including individual and multiple gaps, primary, secondary and tertiary roads was summed (Table

5). The total area of disturbances in Ambroya 2 is 31,553.88 meters2 (3.15 hectares). The total area of Ambroya 2 is known to be 319,200 m2 (31.92 ha). The total area disturbed is divided by the total area of Ambroya 2 to give the relative importance of these disturbances in the area. Therefore, the total disturbed area in Ambroya 2 is 9.9% of the total area.

Table 5: Total disturbance inventory

Disturbance type Area (m2 ) Mean area (m2)

Multiple Gap 8911.78 810.16 Individual Gap 3885.38 155.41 Switch Hala/Tertiary Roads 4540.6 349.28

Switch Principal/Secondary 10058.29 3352.76 Roads

Camino Mula/Primary 4157.83 4157.83 Roads Total Disturbed Area 31553.88 Total Ambroya 2 Area 319200

Relative Importance of 9.90% Disturbance

Characterizing Gaps

Information collected on the characteristics of the 33 sampled gaps is presented in

Appendix II along with the four cardinal direction photographs for each gap. The results from the log sheets are also outlined in Table 6. Table 6a summarizes all gap characteristic attributes such as the presence of woody debris, canopy openness and

- 26 - understory cover. Table 6b summarizes the broad ecological characteristics of the area surrounding each gap. The attributes listed under broad ecological characteristics are intensity and orientation of slope, colour and texture of soil, presence of rocks, plants, density and presence of large trees near the gap. The results from Table 5 indicate that 22 of the 33 gaps characterized are individual gaps, with a single tree logged. The rest, 11 gaps, are multiple with two of more trees logged. The multiple gaps have an average of 4 trees with the majority having two trees. Most gaps exhibit a sparse presence of herbs and medium to high presence of shrubs. Most gaps have a dense understory and relatively high openness of their canopy. Most gaps exhibit a low presence of rocks and very high presence of trees and tree seedlings. There is no noticeable difference between the growth patterns between individual and multiple gaps. Only three of the 33 gaps have any remaining trunk all exhibiting medium degradation. All gaps have a presence of branch debris, tree top debris and liana debris. However, the presence is mostly medium to sparse and all with medium degradation. Espave trees were logged from all multiple gaps and all but three individual gaps. It is also notable that Ambroya 2 is a mountainous region, as most gaps are situated on steep inclines. Soil colour is consistently brown throughout the entire region and texture is most commonly organic matter; only two gaps have evidence of clay material.

- 27 - Table 6: a) Complete inventory of gap characteristics

Gap Characteristics

Amount Presence Amount of Amount of Amount of Number of woody woody Presence of woody Presence of of woody Presence of woody Presence Presnece of Canopy Understory of trees Direction Species of debris debris woody debris debris woody debris debris woody debris debris of herbs shrubs openness cover cut of fall tree(s)

Date Gap Type of Gap Trunk Branch Tree Top Liana

4/13/2010 A2I5 Individual N/A N/A med. Degradation medium med. Degradation low med. Degradation medium medium sparse 1/2 3/4 1 NW Espave

4/13/2010 A2I X Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation medium sparse sparse 1/2 3/4 1 E Espave Espave, Amargo 4/13/2010 A2G7 Multiple N/A N/A med. Degradation low med. Degradation low med. Degradation low medium medium 1/2 1/2 2 SW amargo

4/13/2010 A2I4 Individual N/A N/A med. Degradation low med. Degradation low med. Degradation low sparse sparse fully opened 1/2 1 SE Espave

4/13/2010 A2I3 Individual N/A N/A med. Degradation low med. Degradation low med. Degradation low thick sparse fully opened fully covered 1 E Espave med. 4/13/2010 A2I2 Individual Degradation medium med. Degradation low med. Degradation low med. Degradation medium thick medium 1/2 fully covered 1 NE Amargo amargo

4/13/2010 A2I6 Individual N/A N/A med. Degradation medium med. Degradation low med. Degradation medium sparse medium 1/2 3/4 1 SE Espave

4/13/2010 A2I V Individual N/A N/A med. Degradation low med. Degradation low med. Degradation high sparse medium fully opened fully covered 1 SE Espave Espave, 4/13/2010 A2G8 Multiple N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse thick 3/4 3/4 2 NE Zapotillo med. 4/13/2010 A2 HI1 Individual Degradation medium med. Degradation medium med. Degradation low med. Degradation medium sparse medium fully opened 1/2 1 SW Espave

4/13/2010 A2I II Individual N/A N/A med. Degradation low med. Degradation medium med. Degradation medium sparse medium 1/4 fully covered 1 SW Cedro macho

4/13/2010 A2I I Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse sparse 1/2 fully covered 1 SW Espave

4/13/2010 A2G9 Multiple N/A N/A med. Degradation medium med. Degradation high med. Degradation medium sparse thick fully opened fully covered 3 SW Espave Espave, Cedro 4/13/2010 A2 HG1 Multiple N/A N/A med. Degradation medium med. Degradation low med. Degradation low sparse medium 1/2 3/4 2 S macho

4/13/2010 A2I VIII Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse thick 3/4 3/4 1 N Espave Espave, Cedro 4/13/2010 A2G10 Multiple N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse medium fully opened 1/2 2 W macho med. 4/13/2010 A2I8 Individual Degradation medium med. Degradation low med. Degradation medium med. Degradation low sparse sparse 3/4 1/2 1 S Espave

4/14/2010 A2I IX Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse medium 3/4 fully covered 1 SE Zapotillo

4/14/2010 A2G6 Multiple N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse thick 1/2 fully covered 3 SE Espave

4/14/2010 A2 HG2 Multiple N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse thick 3/4 3/4 2 NE Espave

4/14/2010 A2G4 Multiple N/A N/A med. Degradation high med. Degradation high med. Degradation medium sparse thick 3/4 fully covered 4 SE Espave

4/14/2010 A2I1 Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation medium sparse thick 1/2 3/4 1 SW Espave

4/14/2010 A2G3 Multiple N/A N/A med. Degradation medium med. Degradation medium med. Degradation low medium thick fully opened fully covered 5 S Espave

4/14/2010 A2 HI2 Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse thick 3/4 fully covered 1 E Espave

4/14/2010 A2I III Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse thick 3/4 fully covered 1 SW Espave

4/14/2010 A2 HI4 Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse thick 1/4 fully covered 1 E Espave

4/14/2010 A2 HI3 Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse thick 1/2 3/4 1 SE Espave

4/14/2010 A2 HI5 Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse thick 1/2 3/4 1 SE Espave

4/14/2010 A2 HI6 Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation low sparse thick 1/4 fully covered 1 S Espave

4/14/2010 A2G2 Multiple N/A N/A med. Degradation high med. Degradation high med. Degradation medium sparse thick 3/4 fully covered 3 SW Espave Espave x3, 4/14/2010 A2G1 Multiple N/A N/A med. Degradation high med. Degradation medium med. Degradation low sparse thick 3/4 fully covered 4 All directions Amargo amargo

4/14/2010 A2I XI Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation medium sparse thick 1/4 fully covered 1 S Espave

4/14/2010 A2I VI Individual N/A N/A med. Degradation medium med. Degradation medium med. Degradation medium sparse medium 1/2 3/4 1 NW Espave - 28 - Table 6: b) Complete inventory of gap characteristics and broad ecological characteristics of the area surrounding each gap

Broad Ecological Characteristics

Presence of Presence of Presence Presence Orientation Colour of Texture of Presence Density of big trees Presence palm of tree of Liana Slope of slope soil soil of rocks trees (close to gap) of lianas seedlings seedlings seedings

Date Gap Type of Gap

4/13/2010 A2I5 Individual steep W brown organic matter low high 10 high medium medium low

4/13/2010 A2I X Individual steep E brown organic matter low high 10 low high medium low

4/13/2010 A2G7 Multiple steep S brown organic matter low high 8 low medium medium low

4/13/2010 A2I4 Individual steep E brown organic matter low low 4 very high high high low

4/13/2010 A2I3 Individual steep SE brown organic matter low medium 2 low medium medium low

4/13/2010 A2I2 Individual steep SE brown organic matter low high 4 low low high medium

4/13/2010 A2I6 Individual slight W brown organic matter low high 8 low low medium low

4/13/2010 A2I V Individual slight SE brown organic matter low high 6 high low high low

4/13/2010 A2G8 Multiple steep SW brown organic matter low high 12 high high high low

4/13/2010 A2 HI1 Individual slight SW brown clay low low 4 high low high low

4/13/2010 A2I II Individual medium SW brown organic matter low high 4 medium medium high low

4/13/2010 A2I I Individual flat brown organic matter low medium 3 low medium high low

4/13/2010 A2G9 Multiple steep SW brown organic matter low high 6 medium medium high low

4/13/2010 A2 HG1 Multiple steep S brown organic matter low high 10 low high high low

4/13/2010 A2I VIII Individual flat brown organic matter low medium 4 low high high low

4/13/2010 A2G10 Multiple slight NE brown clay medium medium 1 low low medium low

4/13/2010 A2I8 Individual steep SW brown organic matter high medium 7 low low high low

4/14/2010 A2I IX Individual medium E brown organic matter low high 8 medium medium high medium

4/14/2010 A2G6 Multiple steep E brown organic matter low high 3 low low high low

4/14/2010 A2 HG2 Multiple medium NE brown organic matter low high 7 low high high low

4/14/2010 A2G4 Multiple steep E brown organic matter low high 6 medium high high medium E & W (top of 4/14/2010 A2I1 Individual steep hill) brown organic matter low high 10 low low high low

4/14/2010 A2G3 Multiple steep E brown organic matter low high 1 low low high low

4/14/2010 A2 HI2 Individual steep SE brown organic matter low high 5 low medium high low

4/14/2010 A2I III Individual steep SE brown organic matter low high 7 low medium high low

4/14/2010 A2 HI4 Individual steep S brown organic matter low high 7 low medium high low

4/14/2010 A2 HI3 Individual steep SE brown organic matter low high 7 low high medium low

4/14/2010 A2 HI5 Individual steep E brown organic matter low high 10 low medium high low

4/14/2010 A2 HI6 Individual steep S brown organic matter low high 6 low medium medium medium

4/14/2010 A2G2 Multiple slight W brown organic matter low medium 6 medium medium high low

4/14/2010 A2G1 Multiple slight SE brown organic matter low high 8 low high high low

4/14/2010 A2I XI Individual slight S brown organic matter low high 3 medium low high low

4/14/2010 A2I VI Individual steep NW brown organic matter low high 6 medium high high low - 29 - Collecting Historical and Future Knowledge of Logging Projects

The information collected from the interview with the vice-president of OUDCIE,

Bonarge Pacheco, provided us with greater understanding of the community‟s plans for logging now and in the future. There are no plans at present for selective logging projects. The most recent plans have been for the past year, 2009. There are no plans for future logging at the moment, and plans to log are only constructed a year before logging takes place. Future plans will most likely be of similar size because there are contracts required to log trees in the area and each family involved can only fell four trees during a logging period. If there are future plans for logging projects, they will presumably be in the Ambroya region. This is because the region is well known and an appropriate distance from the community. Bonarge Pacheco states that the Ambroya region will be used for logging in the future for many years; however the region, due to the trees‟ growth, needs 15 years to fully recover after being logged.

Providing Recommendation for Future Research

With our results for the gap area data, we have been able to compile recommendations for laying plots that will be used in future studies. These plots will survey seedlings and saplings to determine tree recovery in these gaps. In order to achieve a sampling intensity of 1%, it is required that 1% of the disturbed area be sampled. This equals 315 m2 of disturbed area. We recommend using 2 x 2 m plots; therefore to achieve this sampling intensity 79 plots (each 4 m2) must be laid out. To choose which gaps to sample and locations of these plots, random stratified sampling is suggested. We suggest that the permanent plots be laid 4 m apart from each other in both the N-S and E-W directions,

- 30 - intersecting at the gap center. Performing a trial run of this method, we would be sampling 10 random gaps, with 72 plots in the total area. For materials, we recommend using PVC tubing and nylon cords for the plots and 1 x 1 m subplots within each 2 x 2 m plot for seedling sampling purposes.

Recommendations for selecting gaps to sample (modification of Hayek et al., 1997)

z22 1. Depending on chosen k value in the equation N , the number of gaps k 2

required to sample will vary. To keep workload to a minimum we choose k=0.75

as the correlation estimation of the mean; z is the value of the confidence level

which is 95% and therefore z =1.96; σ is the standard deviation. Example

calculation for the gaps is

(1.9622 )(434.35 ) N (0.75 355.48)2 N 10

Therefore 10 gaps will be selected to sample.

2. All gap IDs are listed and a random number generator selects 10 from the list.

When we performed this we selected the gaps which are highlighted in Table 7.

3. N-S and E-W lengths of each gap are known so it is possible to calculate how

many plots are needed for each gap and how many plots will be set out in total.

4. N-S and E-W lengths are divided by 6 (2 m length and 4 m space) to determine

number of plots per N-S and E-W lines.

5. Total number of plots is required to know how much material is needed (Table 8).

In our example, 72 plots will require 576 m of cord for 2 x 2 m plot and 288 m of

- 31 - cord for the 1 x 1 m subplot, therefore 864 m of cord is needed. The plot and

subplot requires eight 1.5 m PVC tubing making a total of 576 stakes required.

Table 7: Data of gaps and selected gaps for sampling (yellow highlight)

Gap N-S length E-W AREA (m2) (m) length (m)

A2I I 12.91 23.35 206.67 A2I II 9.68 10.12 62.22 A2G9 35.76 32.99 855.15 A2G1 47.17 25.24 1080.18 A2G2 45.91 49.73 1686.88 A2G3 44.98 51.68 1610.06 A2I1 16.43 8.63 150.92 A2I III 12.29 10.97 103.58 A2I2 10.42 17.26 133.77 A2I3 14.57 12.63 135.14 A2G7 17.17 20.81 286.33 A2I IV 9.49 10.22 91.76 A2I6 8.25 6.96 46.83 A2G8 27.62 23.25 512.81 A2I V 10 11.23 70.79 A2G10 9.49 14.42 100.83 A2I8 8.11 10.37 80.46 A2I VI 12.21 8.39 117.54 A2I VII 28.02 27.43 585.17 A2G4 29.3 28.78 1197.11 A2I VIII 11.83 13.93 138.61 A2I IX 16.42 12.1 160.65 A2G6 29.02 40.19 936.45 A2I5 13.98 12.88 122.07 A2I4 21.41 12.91 198.77 A2I X 8.69 4.14 30.52 A2I XI 7.92 7.02 47.78 A2I XII 8.48 8.5 60.89 A2HI1 13.81 28.67 240.10 A2HG1 24.43 17.8 403.37 A2HI2 20.89 22.92 337.73 A2HI3 19.59 11.07 138.82 A2HI4 11.56 23.19 276.36 A2HI5 13.9 18.97 192.31 A2HI6 14.65 10.15 155.93 A2HG2 14.06 18.54 242.62

- 32 - Table 8: Chosen gaps to be sampled and number of plots in each gap

Number of Number of Total Gaps chosen to plots N-S plots E-W Number of be sampled length length plots A2G9 6 5 72 A2G1 8 4 A2G3 7 9 A2I2 2 3 A2I3 2 2 A2I6 1 1 A2G8 5 4 A2I8 1 2 A2I VI 2 1 A2I4 4 2

Recommendations for placing permanent plots in gaps

1. The number of permanent plots in each gap will vary depending on the length of

the N-S and E-W lines. This will already be calculated (Table 7).

2. 2 m x 2 m permanent plots will be 4 m spaced apart along the N-S and E-W

lengths of the gaps. N-S and E-W lengths of each gap are known, and how many

plots should be along each line. For example gap A2G9 has an N-S length of

35.76 m and an E-W length of 32.99 m; therefore we would lay 6 and 5 plots

respectively. See Figure 7 for an example of the layout.

- 33 -

Figure 7: Example of permanent plots placed within a gap

Recommendations for establishing permanent plots

1. Use PVC piping to make stakes 1.5 m in length. Eight stakes will be required for

each plot, four in the corners of the 2 x 2 m plot and four in the corners of the 1 x

1 m subplot.

2. Hammer stakes in parallel to either the N-S line or the E-W line, depending on

which plot is being setup.

3. On the N-S line the four stakes will be at the corner points, NE, SE, SW, NW, one

meter from the N-S line. NW & NE will be two meters from each other as will

SW & SE, NE & SE and NW & SW.

- 34 - 4. The remaining four PVC stakes will be placed within the 2 x 2 meter plot forming

the 1 x 1 meter subplot. Follow steps 2-3, except corner points will be 50 cm from

line and NW & NE will be one meter from each other as will SW & SE, NE & SE

and NW & SW.

5. Follow steps 2-4 for the other length of the gap: i.e. N-S or E-W.

6. Nylon cord will be wrapped around the four stakes forming the 2 x 2 m plot, and

another nylon cord will be wrapped around the 1 x 1 m subplot. This will form the

perimeter of the permanent plots.

7. Top of PVC stake will be spray painted and marked with a black permanent

marker for easier identification in the future.

Recommendations for naming plots in gaps

1. Plots will be named for easy identification during future sampling

2. Each PVC stake will be marked with gap name, plot number and coordinate.

3. Ex: A2G9-1-NW; A2G9-1-NE; A2G9 -1-SE; A2G9-1-SW; A2G9-2-NW…etc.

4. For subplot stakes, names should vary slightly. Ex: A2G9-s1-NW; A2G9-s2-NW

Recommendations for surveying plots

1. For sampling the plots 24 tree species will be studied a list compiled from the

2007 study by Kirby and Potvin (2007). These species are considered to be high

carbon, economically important timber species, and species that are important for

local use i.e. housing (Table 9). All others will be classified as either „palm‟ or

„tree‟. To identify species in the field, help of local research assistants will be

- 35 - necessary, and also preparing vouchers to be identified with the help of botanists

associated with the Smithsonian Tropical Research Institute.

2. Large sapling survey: All woody species within the 2 x 2 m plots that are > 1 m

height and > 5 and ≤ 10 cm diameter at breast height (dbh) will be identified;

species and dbh will be recorded.

3. Seedling and small sapling survey: Within the 1 x 1 m subplot all woody species

will be identified to one of two categories; seedlings ≥ 50 cm and ≤ 1 m height or

small saplings >1 m height and ≤ 5 cm diameter. Species, number of species and

dbh will be recorded.

4. Re-sprouts from stump and the five largest trees in all plots within a gap are also

identified and recorded for species and dbh.

- 36 - Table 9: 24 studied high carbon timber species (Source Kirby and Potvin, 2007, Cordero and Boshier, 2003)

Common Name Scientific Name Use Espave Anacardium excelsum Preferred Timber Cuipo Cavanillesia platanifolia Sacred Caucho / Cauchillo Castilla elastica Rubber Punula Quararibea asterolepis Timber Zapotillo Dyospiros sp. Firewood amarillo pepita Lafoensia punicifolia Timber Berba Brosimum alicastrum Timber Tamarindo / zorro macho Dialium guianense Timber Cedro macho Guarea grandifolia Preferred Timber Guácimo Guazuma ulmifolia None Aguacatillo Phoebe cinnomomifolia Timber Zapatero Hyeronima alchorneoides Preferred Timber Quiebra hacha Matayba glaberrima Firewood Níspero Manilkara zapota Timber Carekidave Guarea sp. Firewood Bongo Ceiba pentandra Firewood Guagára Sabal mauritiiformis Banbito Symphonia globulifera Timber Amargo Amargo Vatairea erythrocarpa Timber Sangrillo Pterocarpus officinalis Timber Sapotillo Pouteria sapota Timber Tachuelo Zanthoxylum sp. Timber Amarillo Terminalia amazonia Timber Cedro espino Bombacopsis quinata Timber

Limitations to Collecting and Analyzing Data

While in the field we encountered many difficulties gaining data and/or accurate data.

Initially locating the gaps in the Ambroya area was difficult. We had no knowledge of where the gaps where and we fully relied on the OUDCIE research assistant‟s help.

Secondly, once a gap was located it was very difficult to move through. In the one year since logging the forest has re-grown with saplings twice the height of us. This makes moving through to the eight cardinal points difficult and tedious. It also results in less accurate distance measurement and GPS points, because the cardinal point at the edge of

- 37 - the gap is not necessarily at the exact compass point. A large portion of our GPS points were taken as approximations to the correct cardinal coordinate.

Limitations to the analysis of our data were due to our inexperience with the GPS unit and ArcGIS. The first set of GPS points imported into ArcGIS resulted in areas that were not in the region we wished to study and cardinal points that did not exhibit the correct path (Figure 3). Our second time in the field we re-took all required GPS points, in order to re-import them into ArcGIS. However, due to time constraints we have been unable to do so.

Since we wish to track the growth of the forest, cutting through all growth to make measuring the gap easier is not an option. It is therefore a limitation that will always need to be taken into account. As for inaccurate GPS and ArcGIS data, more experience with these programs is required along with GPS units that have stronger signals for tracking under forest cover.

Limitations to Recommendations and Considerations

There are many limitations to the recommendations that we have proposed. Primarily, the area will change in a year due to the fact that it has changed drastically since last year.

There will be a lot of understory cover which will make laying permanent plots rather difficult. The accuracy of location of permanent plots within the gaps may suffer due to the steep slope of most gaps and the inability to accurately follow the N-S and E-W directions from the gap center. It should be considered that a serious limitation to laying

- 38 - and securing plots is the work load that would be required. Carrying such large quantities of material will require many hours and human resources. It is also important to note while considering our recommendations that some roads are still in use and are frequented by people, horses, dogs and wildlife.

DISCUSSION

As a strategy, the practice of selective logging may seem like an attractive alternative to conventional clear cutting operations (Whitman et al., 1997).

However, this method of logging still has the potential to severely impact the surrounding forest. Even though only a few trees are cut and extracted from the area, it still causes damage to the surrounding area, such as the residual stand and remaining trees. Previous investigations have shown that selective logging can cause damage to 20-80% of the remaining trees (Huth and Ditzer, 2001). Indirect impacts of selective logging may still be rather high in comparison to direct impacts, such as gaps and roads, which only account for a small proportion of the total logging area (Whitman et al., 1997). The results from the conducted study show that only a small portion (9.9%) of the total

Ambroya 2 area was affected directly by the logging activities. This low impact level has been suggested to not provide sufficient disturbance for regeneration to occur (Whitman et al., 1997). This discrepancy is due to the idea that greater disturbances have been shown to have better re-growth and recruitment (Frederickson, 2000; Toledo-Aceves,

2009).

- 39 - Due to the different capacities of forest re-growth, previous studies have suggested that there are two paths which a forest can regenerate after being disturbed. In some cases, impacts from logging have included large scale ground disturbance which, in combination with canopy removal, can result in severe soil compaction and high ground surface temperatures that can limit the extent of suitable regeneration and obstruct long term tree growth (Jackson et al., 2002). However, other studies suggest that disturbance from logging may promote growth through increased sunlight, increased mineral soil exposure, reduction of competing vegetation and the promotion of seedling germination

(Fredericksen and Mostacedo, 2000). The results from our study concur with the latter of these two theories, due to the high presence of tree seedling and sapling and high level of understory cover in each gap a year after logging (Table 5).

It has been previously studied that tree seedlings and saplings in multiple tree gaps grow at three times the rate of those in single tree gaps (Frederickson, 2000). In specific studies it was shown that disturbances caused by single tree selective logging were found to be inadequate to support sufficient forest regeneration (Toledo-Aceves, 2009). In this study, one year after logging, no noticeable differences were observed between gap growth characteristics of individual and multiple gaps such as those suggested by Frederickson

(2000) and Toledo-Aveces (2009). However, it is important to note once again the time scale of this overall project. Perhaps these observations will change with time in the coming years, as abiotic and biotic conditions of the gaps change. Such a study as this one cannot come to broad conclusions, due to the lack of complete comparable

- 40 - information; we are only able to make conclusions from our narrowly scoped observations.

An important point of interest when discussing forest recovery is the types of species present in various re-growth stages. The quickest species to obtain a spot in a newly formed forest gap are often shade intolerant, fast growing pioneer species, and not necessarily species of high timber value or species important for

(Hall et al., 2003). Therefore it is important to monitor the forest over a long time to observe the changes in species composition, since pioneer species may eventually be outlived by slower growing, more resilient species. This study looked only at the species of logged trees, but had no role in identifying species of re-growing seedlings. Therefore species composition must be an important aspect of future investigations.

Implications for the Community and REDD

Lastly, the long term implications of this study for the community and its ability to adopt a strategy compatible with REDD must be addressed. In the interests of Ipetí-Emberá community members, logging projects are a source of income for families, and therefore are highly desired. Forest recovery then is a vital aspect to the livelihood of the community members, and the outcome of future logging projects will depend on the re- growth of important timber species (Table 9), if they wish to log in similar areas. For

REDD, which is concerned with conserving forests for the purpose of storing carbon, the regeneration of high carbon species will clearly be of utmost importance. Therefore, results of this monitoring project will be very informative on many levels, and will

- 41 - provide valuable knowledge that could help in the management of a carbon stock program, and to increase carbon recovery in future selective logging projects.

CONCLUSION

Future studies will provide knowledge of this forest‟s recovery after this selective logging event, and it will provide key insight into the impacts of selective logging operation as an alternative method to conventional logging. Future studies will also answer our question: if selective logging is sufficient for the sustainable recovery of the key tree species (Table

9). The results of this study will provide reference for impacts of future logging projects in the area, and has the potential to influence decision making of future plans for selective logging projects in the Ipetí-Emberá Tierra Colectiva. This project was the initial step in a long term monitoring initiative, linking the community‟s necessary use of the forest, and an attempt to promote sustainable forestry projects along with the initiatives of

REDD.

ACKNOWLEDGEMENTS2

We would like to sincerely thank all those who have contributed their time, knowledge, and expertise to the outcome of this project. Firstly, thanks go to Blue Moon for providing financial support for many aspects of the project. In the community of Ipetí-

Emberá, to OUDCIE and community members, namely Vice President Bonarge Pacheco,

Angel Ruiz, and Cristián Pacheco for their guidance in field work and helping with data collection. Also thanks go to our host families in Ipetí-Emberá, Gloria and Reinedio

Casama, and Norfelina and family for their hospitality, kindness, and accommodation.

2 To whom it may concern at McGill University please send thank you notes to these presented contributors

- 42 - We would also like to thank José Monteza for his guidance and aid in getting accommodated to the community, and to José Quintero, for the use of data he previously collected. At the Smithsonian Tropical Research Institute, to Jefferson Hall for his help in recommending methodologies for laying permanent plots. At CATHALAC (Centro del

Agua del Trópico Humedo para America Latina y el Caribe), thanks to Eric Anderson for his help in using ArcGIS mapping and for the use of the facility‟s computer lab. Thanks to McGill University and Catherine Potvin for guidance, support and help in planning the work needed to be done, and most importantly to Ignacia Holmes for being a wonderful supervisor and constantly providing assistance and information in all aspects of the project. Lastly, we wish to thank professors Rafael Samudio and Roberto Ibanez for their guidance and support throughout the internship period.

- 43 - REFERENCES

ANAM. Autoridad Nacional del Ambiente. “Estrategia de Reduccion de Emisiones por Deforestacion y Degradacion del Bosque de Panama 2008-2012”. Gobierno Nacional, Republica de Panama. 19 May 2009. . 19 April 2010.

Barrios, H., Potvin, C., and Tschakert, P. Fondo Canada-Panamá de la Embajada de Canadá: Documento de Aprobación de Proyecto “MDL para atraer y manejar inversiones en forma de bonos verdes” in Canadian Embassy in Panama, editor. 2002.

Cerutti, P. O. and Tacconi, L. “Forests, illegality, and livelihoods: the case of Cameroon”. Society and Natural Resources 21 (2008): 845-853.

Cordero, Jesús, and David H. Boshier. Árboles de Centro America. United Kingdom: Oxford Forestry Institute, 2003.

Dickinson, M. B., D. F. Whigham, S. M. Herman. “Tree regeneration in felling and natural treefall disturbances in a semideciduous tropical forest in Mexico”. and Management 134 (2000): 137-151.

Fredericksen, Todd and Bonifacio Mostacedo. “Regeneration of timber species following selection logging in a Bolivian tropical dry forest.” Forest Ecology and Management 131 (2000): 47-55.

Hall, Jefferson et al. “The effects of selective logging on forest structure and tree species composition in a Central African forest: implication for management of conservation areas.” Forest Ecology and Management 183 (2003): 249-264.

Hayek, L.C., and M. A. Buzas. Surveying Natural Populations. New York: Columbia University Press. 1997. 66-83.

Huth, A., Ditzer, T. “Long-term impacts of logging in a tropical : a simulation ”. Forest Ecology and Management 142 (2001):33-51.

Jackson, S.M., Fredericksen, T.S., Malcolm, J.R. “Area disturbed and residual stand damage following logging in a Bolivian Tropical Forest”. Forest Ecology and Management 166 (2002):271-283.

Kahan, W. “Miscalculating Area and Angles of a Needle-like Triangle”. Lecture notes, Math Department, University of California, Berkeley. 24 March 2000. . 20 April 2010.

- 44 - Kirby, Kathyrn, and Catherine Potvin. “Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project.” Forest Ecology and Management 246 (2007): 208-221.

Luyssaert, S. et al. “Old-growth forests as global carbon sinks”. Nature 455 (2008): 213- 215.

Nepstad, D. C., et al. “Large-scale impoverishment of Amazonian forest by logging and fire”. Nature 398 (1999): 505-508.

Putz, F. E., P. Sist, et al. (2008). "Reduced-impact logging: Challenges and opportunities." Forest Ecology and Management 256(7): 1427-1433.

Runkle, J.R. “Guidelines and sample protocol for sampling forest gaps”. U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland Oregan. 1992 STRI. Smithsonian Tropical Research Institute. “About STRI”. . 19 April 2010.

Toledo-Aceves, Tarin, Silvia Purata-Velarde and Charles Peters. “Pegeneration of commercial tree species in a loggest forest in the Selva Maya.” Forest Ecology and Management 258 (2009): 2481-2489.

Tschakert, P., Coomes, O., and Potvin, C. 2007. Indigenous livelihoods, slash-and-burn agriculture, and carbon stocks in Eastern Panama. Ecological Economics 60:807- 820.

UN-REDD Programme. “About REDD+”. The United Nations Collaborative Programme on Reducing Emissions from Deforestation and Forest Degradation in Developing Countries. 2009. . 19 April 2010.

Whitman, A., N. Brokaw and J. Hagan. “Forest damage caused by selection logging of (Swietenia macrophylla) in northern Belize.” Forest Ecology and Management 92 (1997): 87-96.

- 45 - APPENDICES

Appendix I: Gap Measurement Diagrams

A2HI1 – Ambroya 2 Hoyo Individual 1 Species: Espave Tree fell: Southwest

- 46 -

A2HG1 Species: Espave and Cedro macho Trees fell: South

- 47 - A2HI2 Species: Espave Tree fell: East

A2HI3 Species: Espave Tree Fell: Southeast

- 48 - A2HI4 Species: Espave Tree fell: East

A2HI5 Species: Espave Tree fell: Southeast

- 49 - A2HI6 Species: Espave Tree fell: South

A2HG2 Species: Espave x2 Tree fell: Northeast

- 50 - Appendix II: Gap Characterization Charts

- 51 -

- 52 -

- 53 -

- 54 -

- 55 -

- 56 -

- 57 -

- 58 -

- 59 -

- 60 -

- 61 -

- 62 -

- 63 -

- 64 -

- 65 -

- 66 -

- 67 -

- 68 -

- 69 -

- 70 -

- 71 -

- 72 -

- 73 -

- 74 -

- 75 -

- 76 -

- 77 -

- 78 -

- 79 -

- 80 -

- 81 -

- 82 - - 83 - Appendix III: Table of Project Working Days

Project Working Days in Panama City 35 Project Working Days in the Ipetí-Emberá 6 Ambroya Total Project Days 41

Appendix IV: Product for OUDCIE

La Recuperación del Bosque después de la Tala Selectiva en la Comunidad de Ipetí-Emberá

De: Adrian Burrill y Stephanie Garbe Universidad de McGill

Por: OUDCIE

En colaboración con Ignacia Holmes

26 de abril de 2010

- 84 - La Recuperación del Bosque Después de la Tala Selectiva en la Comunidad de Ipetí- Emberá

Adrian Burrill y Stephanie Garbe de la Universidad de McGill ENVR 451

Institución anfitriona: OUDCIE Ipetí-Emberá, Provincia de Panamá 333-0803 Universidad de McGill con Ignacia Holmes 845 Sherbrooke St West, Montreal, QC, Canadá Smithsonian Tropical Research Institute Roosvelt Ave. Balboa, Ancón Panamá 507 212- 8000

Ipetí-Emberá es una comunidad ubicada al este de la Ciudad de Panamá en la región de Bayano. La tierra comunal, una Tierra Colectiva, comprende 3145 ha, dentro de la cual un proyecto de tala de pequeña escala se llevó a cabo en una región que se llama Ambroya 2 entre febrero y abril 2009.

La tala selectiva es el proceso de retirar los árboles más grandes y aislados del bosque de las especies de madera preferidas para vender. Su uso se ha incrementado en Latinoamérica en los últimos años como una valiosa fuente de ingreso para los terratenientes de pequeña escala, y se ha reconocido como una alternativa más sostenible que las prácticas tradicionales de tala. Sin embargo, han surgido problemas sobre los impactos en el bosque y su recuperación después de un evento de tala selectiva, y poco es conocido sobre la recuperación de las especies de madera comerciales. Además, pocas investigaciones se han realizado sobre el impacto de este método de tala sobre los diferentes tipos de perturbaciones, por ejemplo los hoyos en el bosque creados por los árboles cortados y los caminos de tala.

Este proyecto tiene como objetivo hacer una fundación para una iniciativa de seguimiento de largo plazo para investigar el nuevo crecimiento en los hoyos del dosel del bosque y los caminos de tala después de la tala selectiva en Ambroya 2. A largo plazo, el objetivo de este estudio va a ser de crear un modelo del área antes y después de la tala con respeto a los niveles de carbono, investigando la compatibilidad de la tala selectiva a pequeña escala con el programa de Reducción de las Emisiones por Deforestación y Degradación de los bosques (REDD) en la comunidad de Ipetí-Emberá. Para iniciar este plan, se requiere una muy buena información de base como referencia y comparación en el futuro. Los objetivos de esta parte del proyecto son de recopilar un inventario de los hoyos del bosque y los caminos, y de cualitativamente recoger las características ecológicas de cada hoyo.

Para completar un inventario de todas las perturbaciones, fue requerida el área total de todos los hoyos y caminos para determinar el nivel de perturbación total. Para los hoyos, el área fue calculada de los datos anteriormente colectados y de las mediciones realizadas en el campo. Para los caminos, los datos de ArcGIS fueron analizados para obtener el área. La caracterización de los hoyos implicó hacer observaciones estandarizadas sobre los factores bióticos y abióticos de cada hoyo. Estos datos van a ser usados para la comparación en el futuro y para ver la relación entre estos factores ambientales y la

- 85 - regeneración de los especies de madera en los hoyos, y para ver las diferencias en la recuperación de los bosques entre los hoyos y los caminos.

Los resultados obtenidos mostraron un nivel de perturbación total de 9.9% de toda el área en Ambroya 2, y un nivel alto de nuevo crecimiento en los hoyos después de la tala, hace un año. Más estudio se requiere para analizar la recuperación del bosque en profundidad, incluyendo la composición de las especies con el tiempo, el reclutamiento de las plántulas y árboles jóvenes, la cubierta del dosel, y otros. Este trabajo recomienda una metodología para la colocación de las parcelas para la agrimensura en el futuro. Los resultados de este proyecto iniciado van a ser informados en muchos maneras diferentes, incluyendo la capacidad de las, comercialmente y culturalmente, importantes especies de árboles de recuperar suficientemente de la actividad maderera y la capacidad de adoptar un programa de reserva de carbono compatible con REDD en la comunidad. Van a proveer referencia sobre los impactos ambientales de los proyectos de tala en el futuro, y podrán influir en el proceso de toma de decisiones para los planes de tala. En conclusión, este estudio comenzó un esquema a largo plazo de seguimiento uniendo el uso necesario por la comunidad y un intento de promover las prácticas de silvicultura sostenibles.

Tablas siguientes: Tabla 1 es el inventario completo de los 33 hoyos muestreados en Ambroya 2. En esta tabla se enumeran los atributos que representan el estado de recuperación del bosque. Estos atributos proporcionan una base y las condiciones de referencia para comparar con los niveles futuros. Tabla 2 es también un inventario completo de los 33 hoyos muestreadas en Ambroya 2. En esta tabla se enumeran los atributos que representan el área que rodea el hoyo dejado por el árbol talado. Similar a la tabla 1, esta tabla también puede facilitar datos de referencia para comparar con los futuros niveles de las lagunas del bosque en recuperación Ambroya 2. Tabla 3 contiene las longitudes y la área total para todos los hoyos en Ambroya 2, incluidos los 3 huecos que se perdieron durante el periodo de muestreo en abril de 2010. Tabla 4 es el producto final de todos los tipos de las perturbaciones diferentes con sus áreas totales. Esta incluye, hoyos individuales, hoyos grupales, switch hala, switch principal y camino mula. El área total de todas las perturbaciones es requerida para obtener el área dañada total dentro Ambroya 2. El área total dañada se divide entre el área total de Ambroya para obtener el porcentaje del área perturbada, que es del 9,9%.

- 86 - Hoyos Tabla 1: Inventario completo de las características de los hoyos

Presencia de Cantidad de Presencia Cantidad de Presencia de Cantidad de Presencia de Cantidad de Número de residuos de residuos de de residuos residuos de residuos de residuos de residuos de residuos de Presencia Presencia Apertura Cobertura del árboles Dirección Especie(s) madera madera de madera madera madera madera madera madera de hierbas de arbustos del dosel sotobosque cortados de la caída de árbol(es) Tipo de Fecha Hoyo Hoyo Tronco Rama Copa del árbol Liana Degradación Degradación 4/13/2010 A2I5 Individual N/A N/A medio medio medio bajo Degradación medio medio medio bajo 1/2 3/4 1 NO Espave Degradación Degradación 4/13/2010 A2I X Individual N/A N/A medio medio medio medio Degradación medio medio bajo bajo 1/2 3/4 1 E Espave Espave, Degradación Degradación Amargo 4/13/2010 A2G7 Grupo N/A N/A medio bajo medio bajo Degradación medio bajo medio medio 1/2 1/2 2 SO amargo Degradación Degradación completamente 4/13/2010 A2I4 Individual N/A N/A medio bajo medio bajo Degradación medio bajo bajo bajo abiertas 1/2 1 SE Espave Degradación Degradación completamente completamente 4/13/2010 A2I3 Individual N/A N/A medio bajo medio bajo Degradación medio bajo alto bajo abiertas cubiertos 1 E Espave Degradación Degradación Degradación completamente Amargo 4/13/2010 A2I2 Individual medio medium medio bajo medio bajo Degradación medio medio alto medio 1/2 cubiertos 1 NE amargo Degradación Degradación 4/13/2010 A2I6 Individual N/A N/A medio medio medio bajo Degradación medio medio bajo medio 1/2 3/4 1 SE Espave Degradación Degradación completamente completamente 4/13/2010 A2I V Individual N/A N/A medio bajo medio bajo Degradación medio alto bajo medio abiertas cubiertos 1 SE Espave Degradación Degradación Espave, 4/13/2010 A2G8 Grupo N/A N/A medio medio medio medio Degradación medio bajo bajo alto 3/4 3/4 2 NE Zapotillo Degradación Degradación Degradación completamente 4/13/2010 A2 HI1 Individual medio medium medio medio medio bajo Degradación medio medio bajo medio abiertas 1/2 1 SO Espave Degradación Degradación completamente 4/13/2010 A2I II Individual N/A N/A medio bajo medio medio Degradación medio medio bajo medio 1/4 cubiertos 1 SO Cedro macho Degradación Degradación completamente 4/13/2010 A2I I Individual N/A N/A medio medio medio medio Degradación medio bajo bajo bajo 1/2 cubiertos 1 SO Espave Degradación Degradación completamente completamente 4/13/2010 A2G9 Grupo N/A N/A medio medio medio alto Degradación medio medio bajo alto abiertas cubiertos 3 SO Espave Degradación Degradación Espave, Cedro 4/13/2010 A2 HG1 Grupo N/A N/A medio medio medio bajo Degradación medio bajo bajo medio 1/2 3/4 2 S macho Degradación Degradación 4/13/2010 A2I VIII Individual N/A N/A medio medio medio medio Degradación medio bajo bajo alto 3/4 3/4 1 N Espave Degradación Degradación completamente Espave, Cedro 4/13/2010 A2G10 Grupo N/A N/A medio medio medio medio Degradación medio bajo bajo medio abiertas 1/2 2 O macho Degradación Degradación Degradación 4/13/2010 A2I8 Individual medio medium medio bajo medio medio Degradación medio bajo bajo bajo 3/4 1/2 1 S Espave Degradación Degradación completamente 4/14/2010 A2I IX Individual N/A N/A medio medio medio medio Degradación medio bajo bajo medio 3/4 cubiertos 1 SE Zapotillo Degradación Degradación completamente 4/14/2010 A2G6 Grupo N/A N/A medio medio medio medio Degradación medio bajo bajo alto 1/2 cubiertos 3 SE Espave Degradación Degradación 4/14/2010 A2 HG2 Grupo N/A N/A medio medio medio medio Degradación medio bajo bajo alto 3/4 3/4 2 NE Espave - 87 - Degradación Degradación completamente 4/14/2010 A2G4 Grupo N/A N/A medio alto medio alto Degradación medio medio bajo alto 3/4 cubiertos 4 SE Espave Degradación Degradación 4/14/2010 A2I1 Individual N/A N/A medio medio medio medio Degradación medio medio bajo alto 1/2 3/4 1 SO Espave Degradación Degradación completamente completamente 4/14/2010 A2G3 Grupo N/A N/A medio medio medio medio Degradación medio bajo medio alto abiertas cubiertos 5 S Espave Degradación Degradación completamente 4/14/2010 A2 HI2 Individual N/A N/A medio medio medio medio Degradación medio bajo bajo alto 3/4 cubiertos 1 E Espave Degradación Degradación completamente 4/14/2010 A2I III Individual N/A N/A medio medio medio medio Degradación medio bajo bajo alto 3/4 cubiertos 1 SO Espave Degradación Degradación completamente 4/14/2010 A2 HI4 Individual N/A N/A medio medio medio medio Degradación medio bajo bajo alto 1/4 cubiertos 1 E Espave Degradación Degradación 4/14/2010 A2 HI3 Individual N/A N/A medio medio medio medio Degradación medio bajo bajo alto 1/2 3/4 1 SE Espave Degradación Degradación 4/14/2010 A2 HI5 Individual N/A N/A medio medio medio medio Degradación medio bajo bajo alto 1/2 3/4 1 SE Espave Degradación Degradación completamente 4/14/2010 A2 HI6 Individual N/A N/A medio medio medio medio Degradación medio bajo bajo alto 1/4 cubiertos 1 S Espave Degradación Degradación completamente 4/14/2010 A2G2 Grupo N/A N/A medio alto medio alto Degradación medio medio bajo alto 3/4 cubiertos 3 SO Espave Espave x3, Degradación Degradación completamente Amargo 4/14/2010 A2G1 Grupo N/A N/A medio alto medio medio Degradación medio bajo bajo alto 3/4 cubiertos 4 All directions amargo Degradación Degradación completamente 4/14/2010 A2I XI Individual N/A N/A medio medio medio medio Degradación medio medio bajo alto 1/4 cubiertos 1 S Espave Degradación Degradación 4/14/2010 A2I VI Individual N/A N/A medio medio medio medio Degradación medio medio bajo medio 1/2 3/4 1 NO Espave

- 88 - Tabla 2: Inventario completo de las características ecológicas del entorno para cada hoyo

Características Ecológicas Presencia de árboles Densidad grandes Presencia Presencia de Presencia de Dirección de la Color del Textura Presencia de los (cerca del Presencia de plantulas planulas de plantulas de Ladera ladera suelo del suelo de rocas árboles hoyo) de lianas de palmas árboles bejucos

Fecha Hoyo Tipo de Hoyo materia 4/13/2010 A2I5 Individual empinado O marrón orgánica bajo alto 10 alto medio medio bajo materia 4/13/2010 A2I X Individual empinado E marrón orgánica bajo alto 10 bajo alto medio bajo materia 4/13/2010 A2G7 Grupo empinado S marrón orgánica bajo alto 8 bajo medio medio bajo materia 4/13/2010 A2I4 Individual empinado E marrón orgánica bajo bajo 4 muy alto alto alto bajo materia 4/13/2010 A2I3 Individual empinado SE marrón orgánica bajo medio 2 bajo medio medio bajo materia 4/13/2010 A2I2 Individual empinado SO marrón orgánica bajo alto 4 bajo bajo alto medio materia 4/13/2010 A2I6 Individual escaso O marrón orgánica bajo alto 8 bajo bajo medio bajo materia 4/13/2010 A2I V Individual escaso SE marrón orgánica bajo alto 6 alto bajo alto bajo materia 4/13/2010 A2G8 Grupo empinado SO marrón orgánica bajo alto 12 alto alto alto bajo

4/13/2010 A2 HI1 Individual escaso SO marrón arcilla bajo bajo 4 alto bajo alto bajo materia 4/13/2010 A2I II Individual mediano SO marrón orgánica bajo alto 4 medio medio alto bajo materia 4/13/2010 A2I I Individual plano marrón orgánica bajo medio 3 bajo medio alto bajo materia 4/13/2010 A2G9 Grupo empinado SO marrón orgánica bajo alto 6 medio medio alto bajo materia 4/13/2010 A2 HG1 Grupo empinado S marrón orgánica bajo alto 10 bajo alto alto bajo materia 4/13/2010 A2I VIII Individual plano marrón orgánica bajo medio 4 bajo alto alto bajo

4/13/2010 A2G10 Grupo escaso NE marrón arcilla medio medio 1 bajo bajo medio bajo materia 4/13/2010 A2I8 Individual empinado SO marrón orgánica alto medio 7 bajo bajo alto bajo materia 4/14/2010 A2I IX Individual mediano E marrón orgánica bajo alto 8 medio medio alto medio

- 89 - materia 4/14/2010 A2G6 Grupo empinado E marrón orgánica bajo alto 3 bajo bajo alto bajo materia 4/14/2010 A2 HG2 Grupo mediano NE marrón orgánica bajo alto 7 bajo alto alto bajo materia 4/14/2010 A2G4 Grupo empinado E marrón orgánica bajo alto 6 medio alto alto medio materia 4/14/2010 A2I1 Individual empinado E & O (cima de una colina) marrón orgánica bajo alto 10 bajo bajo alto bajo materia 4/14/2010 A2G3 Grupo empinado E marrón orgánica bajo alto 1 bajo bajo alto bajo materia 4/14/2010 A2 HI2 Individual empinado SE marrón orgánica bajo alto 5 bajo medio alto bajo materia 4/14/2010 A2I III Individual empinado SE marrón orgánica bajo alto 7 bajo medio alto bajo materia 4/14/2010 A2 HI4 Individual empinado S marrón orgánica bajo alto 7 bajo medio alto bajo materia 4/14/2010 A2 HI3 Individual empinado SE marrón orgánica bajo alto 7 bajo alto medio bajo materia 4/14/2010 A2 HI5 Individual empinado E marrón orgánica bajo alto 10 bajo medio alto bajo materia 4/14/2010 A2 HI6 Individual empinado S marrón orgánica bajo alto 6 bajo medio medio medio materia 4/14/2010 A2G2 Grupo escaso O marrón orgánica bajo medio 6 medio medio alto bajo materia 4/14/2010 A2G1 Grupo escaso SE marrón orgánica bajo alto 8 bajo alto alto bajo materia 4/14/2010 A2I XI Individual escaso S marrón orgánica bajo alto 3 medio bajo alto bajo materia 4/14/2010 A2I VI Individual empinado NO marrón orgánica bajo alto 6 medio alto alto bajo

- 90 - Tabla 3: Todos hoyos en Ambroya 2 con su norte-sur, este-oeste longitud y la zona de diferencia total.

Hoyo N-S longitud (m) E-O longitud (m) AREA (m2) A2I I 12.91 23.35 206.67 A2I II 9.68 10.12 62.22 A2G9 35.76 32.99 855.15 A2G1 47.17 25.24 1080.18 A2G2 45.91 49.73 1686.88 A2G3 44.98 51.68 1610.06 A2I1 16.43 8.63 150.92 A2I III 12.29 10.97 103.58 A2I2 10.42 17.26 133.77 A2I3 14.57 12.63 135.14 A2G7 17.17 20.81 286.33 A2I IV 9.49 10.22 91.76 A2I6 8.25 6.96 46.83 A2G8 27.62 23.25 512.81 A2I V 10 11.23 70.79 A2G10 9.49 14.42 100.83 A2I8 8.11 10.37 80.46 A2I VI 12.21 8.39 117.54 A2I VII 28.02 27.43 585.17 A2G4 29.3 28.78 1197.11 A2I VIII 11.83 13.93 138.61 A2I IX 16.42 12.1 160.65 A2G6 29.02 40.19 936.45 A2I5 13.98 12.88 122.07 A2I4 21.41 12.91 198.77 A2I X 8.69 4.14 30.52 A2I XI 7.92 7.02 47.78 A2I XII 8.48 8.5 60.89 A2HI1 13.81 28.67 240.10 A2HG1 24.43 17.8 403.37 A2HI2 20.89 22.92 337.73 A2HI3 19.59 11.07 138.82 A2HI4 11.56 23.19 276.36 A2HI5 13.9 18.97 192.31 A2HI6 14.65 10.15 155.93 A2HG2 14.06 18.54 242.62

TOTAL Hoyo Area 1.28ha

- 91 - Tabla 4: Inventario completo de las perturbaciones y el área total dañada

Tipo de alteración Área (m2) Media área (m2) Desviación Estándar Hoyo Grupal 8911.78 810.16 547.96 Hoyo Individual 3885.38 155.41 116.5

Switch Hala (Tertiary 4540.6 349.28 57.47 Roads) Switch Principal 10058.29 3352.76 236.54 (Secondary Roads) Camino Mula 4157.83 4157.83 N/A (Primary Roads) Total Área Dañado 31553.88 Total Área Ambroya 2 319200

- 92 -