Intel Threading Building Blocks 1 Outfitting C++ for Multi-Core Processor Parallelism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Other Apis What’S Wrong with Openmp?
Threaded Programming Other APIs What’s wrong with OpenMP? • OpenMP is designed for programs where you want a fixed number of threads, and you always want the threads to be consuming CPU cycles. – cannot arbitrarily start/stop threads – cannot put threads to sleep and wake them up later • OpenMP is good for programs where each thread is doing (more-or-less) the same thing. • Although OpenMP supports C++, it’s not especially OO friendly – though it is gradually getting better. • OpenMP doesn’t support other popular base languages – e.g. Java, Python What’s wrong with OpenMP? (cont.) Can do this Can do this Can’t do this Threaded programming APIs • Essential features – a way to create threads – a way to wait for a thread to finish its work – a mechanism to support thread private data – some basic synchronisation methods – at least a mutex lock, or atomic operations • Optional features – support for tasks – more synchronisation methods – e.g. condition variables, barriers,... – higher levels of abstraction – e.g. parallel loops, reductions What are the alternatives? • POSIX threads • C++ threads • Intel TBB • Cilk • OpenCL • Java (not an exhaustive list!) POSIX threads • POSIX threads (or Pthreads) is a standard library for shared memory programming without directives. – Part of the ANSI/IEEE 1003.1 standard (1996) • Interface is a C library – no standard Fortran interface – can be used with C++, but not OO friendly • Widely available – even for Windows – typically installed as part of OS – code is pretty portable • Lots of low-level control over behaviour of threads • Lacks a proper memory consistency model Thread forking #include <pthread.h> int pthread_create( pthread_t *thread, const pthread_attr_t *attr, void*(*start_routine, void*), void *arg) • Creates a new thread: – first argument returns a pointer to a thread descriptor. -
Analysis of GPU-Libraries for Rapid Prototyping Database Operations
Analysis of GPU-Libraries for Rapid Prototyping Database Operations A look into library support for database operations Harish Kumar Harihara Subramanian Bala Gurumurthy Gabriel Campero Durand David Broneske Gunter Saake University of Magdeburg Magdeburg, Germany fi[email protected] Abstract—Using GPUs for query processing is still an ongoing Usually, library operators for GPUs are either written by research in the database community due to the increasing hardware experts [12] or are available out of the box by device heterogeneity of GPUs and their capabilities (e.g., their newest vendors [13]. Overall, we found more than 40 libraries for selling point: tensor cores). Hence, many researchers develop optimal operator implementations for a specific device generation GPUs each packing a set of operators commonly used in one involving tedious operator tuning by hand. On the other hand, or more domains. The benefits of those libraries is that they are there is a growing availability of GPU libraries that provide constantly updated and tested to support newer GPU versions optimized operators for manifold applications. However, the and their predefined interfaces offer high portability as well as question arises how mature these libraries are and whether they faster development time compared to handwritten operators. are fit to replace handwritten operator implementations not only w.r.t. implementation effort and portability, but also in terms of This makes them a perfect match for many commercial performance. database systems, which can rely on GPU libraries to imple- In this paper, we investigate various general-purpose libraries ment well performing database operators. Some example for that are both portable and easy to use for arbitrary GPUs such systems are: SQreamDB using Thrust [14], BlazingDB in order to test their production readiness on the example of using cuDF [15], Brytlyt using the Torch library [16]. -
Thread and Multitasking
11/6/17 Thread and multitasking Alberto Bosio, Associate Professor – UM Microelectronic Departement [email protected] Agenda l POSIX Threads Programming l http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html l Compiler: http://cygwin.com/index.html 1 11/6/17 Process vs Thread process thread Picture source: https://computing.llnl.gov/tutorials/pthreads/ Shared Memory Model Picture source: https://computing.llnl.gov/tutorials/pthreads/ 2 11/6/17 Simple Thread Example void *func ( ) { /* define local data */ - - - - - - - - - - - - - - - - - - - - - - /* function code */ - - - - - - - - - - - pthread_exit(exit_value); } int main ( ) { pthread_t tid; int exit_value; - - - - - - - - - - - pthread_create (0, 0, func (), 0); - - - - - - - - - - - pthread_join (tid, &exit_value); - - - - - - - - - - - } Basic Functions Purpose Process Model Threads Model Creation of a new thread fork ( ) thr_create( ) Start execution of a new thread exec( ) [ thr_create() builds the new thread and starts the execution Wait for completion of thread wait( ) thr_join() Exit and destroy the thread exit( ) thr_exit() 3 11/6/17 Code comparison main ( ) main() { { fork ( ); thread_create(0,0,func(),0); fork ( ); thread_create(0,0,func(),0); fork ( ); thread_create(0,0,func(),0); } } Creation #include <pthread.h> int pthread_create( pthread_t *thread, const pthread_attr_t *attr, void *(*start_routine)(void*), void *arg); 4 11/6/17 Exit #include <pthread.h> void pthread_exit(void *retval); join #include <pthread.h> int pthread_join( pthread_t thread, void *retval); 5 11/6/17 Joining Passing argument (wrong example) int rc; long t; for(t=0; t<NUM_THREADS; t++) { printf("Creating thread %ld\n", t); rc = pthread_create(&threads[t], NULL, PrintHello, (void *) &t); ... } 6 11/6/17 Passing argument (good example) long *taskids[NUM_THREADS]; for(t=0; t<NUM_THREADS; t++) { taskids[t] = (long *) malloc(sizeof(long)); *taskids[t] = t; printf("Creating thread %ld\n", t); rc = pthread_create(&threads[t], NULL, PrintHello, (void *) taskids[t]); .. -
Introduction to Multi-Threading and Vectorization Matti Kortelainen Larsoft Workshop 2019 25 June 2019 Outline
Introduction to multi-threading and vectorization Matti Kortelainen LArSoft Workshop 2019 25 June 2019 Outline Broad introductory overview: • Why multithread? • What is a thread? • Some threading models – std::thread – OpenMP (fork-join) – Intel Threading Building Blocks (TBB) (tasks) • Race condition, critical region, mutual exclusion, deadlock • Vectorization (SIMD) 2 6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization Motivations for multithreading Image courtesy of K. Rupp 3 6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization Motivations for multithreading • One process on a node: speedups from parallelizing parts of the programs – Any problem can get speedup if the threads can cooperate on • same core (sharing L1 cache) • L2 cache (may be shared among small number of cores) • Fully loaded node: save memory and other resources – Threads can share objects -> N threads can use significantly less memory than N processes • If smallest chunk of data is so big that only one fits in memory at a time, is there any other option? 4 6/25/19 Matti Kortelainen | Introduction to multi-threading and vectorization What is a (software) thread? (in POSIX/Linux) • “Smallest sequence of programmed instructions that can be managed independently by a scheduler” [Wikipedia] • A thread has its own – Program counter – Registers – Stack – Thread-local memory (better to avoid in general) • Threads of a process share everything else, e.g. – Program code, constants – Heap memory – Network connections – File handles -
Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++
Concurrent Cilk: Lazy Promotion from Tasks to Threads in C/C++ Christopher S. Zakian, Timothy A. K. Zakian Abhishek Kulkarni, Buddhika Chamith, and Ryan R. Newton Indiana University - Bloomington, fczakian, tzakian, adkulkar, budkahaw, [email protected] Abstract. Library and language support for scheduling non-blocking tasks has greatly improved, as have lightweight (user) threading packages. How- ever, there is a significant gap between the two developments. In previous work|and in today's software packages|lightweight thread creation incurs much larger overheads than tasking libraries, even on tasks that end up never blocking. This limitation can be removed. To that end, we describe an extension to the Intel Cilk Plus runtime system, Concurrent Cilk, where tasks are lazily promoted to threads. Concurrent Cilk removes the overhead of thread creation on threads which end up calling no blocking operations, and is the first system to do so for C/C++ with legacy support (standard calling conventions and stack representations). We demonstrate that Concurrent Cilk adds negligible overhead to existing Cilk programs, while its promoted threads remain more efficient than OS threads in terms of context-switch overhead and blocking communication. Further, it enables development of blocking data structures that create non-fork-join dependence graphs|which can expose more parallelism, and better supports data-driven computations waiting on results from remote devices. 1 Introduction Both task-parallelism [1, 11, 13, 15] and lightweight threading [20] libraries have become popular for different kinds of applications. The key difference between a task and a thread is that threads may block|for example when performing IO|and then resume again. -
Scalable and High Performance MPI Design for Very Large
SCALABLE AND HIGH-PERFORMANCE MPI DESIGN FOR VERY LARGE INFINIBAND CLUSTERS DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Sayantan Sur, B. Tech ***** The Ohio State University 2007 Dissertation Committee: Approved by Prof. D. K. Panda, Adviser Prof. P. Sadayappan Adviser Prof. S. Parthasarathy Graduate Program in Computer Science and Engineering c Copyright by Sayantan Sur 2007 ABSTRACT In the past decade, rapid advances have taken place in the field of computer and network design enabling us to connect thousands of computers together to form high-performance clusters. These clusters are used to solve computationally challenging scientific problems. The Message Passing Interface (MPI) is a popular model to write applications for these clusters. There are a vast array of scientific applications which use MPI on clusters. As the applications operate on larger and more complex data, the size of the compute clusters is scaling higher and higher. Thus, in order to enable the best performance to these scientific applications, it is very critical for the design of the MPI libraries be extremely scalable and high-performance. InfiniBand is a cluster interconnect which is based on open-standards and gaining rapid acceptance. This dissertation presents novel designs based on the new features offered by InfiniBand, in order to design scalable and high-performance MPI libraries for large-scale clusters with tens-of-thousands of nodes. Methods developed in this dissertation have been applied towards reduction in overall resource consumption, increased overlap of computa- tion and communication, improved performance of collective operations and finally designing application-level benchmarks to make efficient use of modern networking technology. -
DNA Scaffolds Enable Efficient and Tunable Functionalization of Biomaterials for Immune Cell Modulation
ARTICLES https://doi.org/10.1038/s41565-020-00813-z DNA scaffolds enable efficient and tunable functionalization of biomaterials for immune cell modulation Xiao Huang 1,2, Jasper Z. Williams 2,3, Ryan Chang1, Zhongbo Li1, Cassandra E. Burnett4, Rogelio Hernandez-Lopez2,3, Initha Setiady1, Eric Gai1, David M. Patterson5, Wei Yu2,3, Kole T. Roybal2,4, Wendell A. Lim2,3 ✉ and Tejal A. Desai 1,2 ✉ Biomaterials can improve the safety and presentation of therapeutic agents for effective immunotherapy, and a high level of control over surface functionalization is essential for immune cell modulation. Here, we developed biocompatible immune cell-engaging particles (ICEp) that use synthetic short DNA as scaffolds for efficient and tunable protein loading. To improve the safety of chimeric antigen receptor (CAR) T cell therapies, micrometre-sized ICEp were injected intratumorally to present a priming signal for systemically administered AND-gate CAR-T cells. Locally retained ICEp presenting a high density of priming antigens activated CAR T cells, driving local tumour clearance while sparing uninjected tumours in immunodeficient mice. The ratiometric control of costimulatory ligands (anti-CD3 and anti-CD28 antibodies) and the surface presentation of a cytokine (IL-2) on ICEp were shown to substantially impact human primary T cell activation phenotypes. This modular and versatile bio- material functionalization platform can provide new opportunities for immunotherapies. mmune cell therapies have shown great potential for cancer the specific antibody27, and therefore a high and controllable den- treatment, but still face major challenges of efficacy and safety sity of surface biomolecules could allow for precise control of ligand for therapeutic applications1–3, for example, chimeric antigen binding and cell modulation. -
Parallelism in Cilk Plus
Cilk Plus: Language Support for Thread and Vector Parallelism Arch D. Robison Intel Sr. Principal Engineer Outline Motivation for Intel® Cilk Plus SIMD notations Fork-Join notations Karatsuba multiplication example GCC branch Copyright© 2012, Intel Corporation. All rights reserved. 2 *Other brands and names are the property of their respective owners. Multi-Threading and Vectorization are Essential to Performance Latest Intel® Xeon® chip: 8 cores 2 independent threads per core 8-lane (single prec.) vector unit per thread = 128-fold potential for single socket Intel® Many Integrated Core Architecture >50 cores (KNC) ? independent threads per core 16-lane (single prec.) vector unit per thread = parallel heaven Copyright© 2012, Intel Corporation. All rights reserved. 3 *Other brands and names are the property of their respective owners. Importance of Abstraction Software outlives hardware. Recompiling is easier than rewriting. Coding too closely to hardware du jour makes moving to new hardware expensive. C++ philosophy: abstraction with minimal penalty Do not expect compiler to be clever. But let it do tedious bookkeeping. Copyright© 2012, Intel Corporation. All rights reserved. 4 *Other brands and names are the property of their respective owners. “Three Layer Cake” Abstraction Message Passing exploit multiple nodes Fork-Join exploit multiple cores exploit parallelism at multiple algorithmic levels SIMD exploit vector hardware Copyright© 2012, Intel Corporation. All rights reserved. 5 *Other brands and names are the property of their respective owners. Composition Message Driven compose via send/receive Fork-Join compose via call/return SIMD compose sequentially Copyright© 2012, Intel Corporation. All rights reserved. 6 *Other brands and names are the property of their respective owners. -
A Cilk Implementation of LTE Base-Station Up- Link on the Tilepro64 Processor
A Cilk Implementation of LTE Base-station up- link on the TILEPro64 Processor Master of Science Thesis in the Programme of Integrated Electronic System Design HAO LI Chalmers University of Technology Department of Computer Science and Engineering Goteborg,¨ Sweden, November 2011 The Author grants to Chalmers University of Technology and University of Gothen- burg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the au- thor to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for ex- ample a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. A Cilk Implementation of LTE Base-station uplink on the TILEPro64 Processor HAO LI © HAO LI, November 2011 Examiner: Sally A. McKee Chalmers University of Technology Department of Computer Science and Engineering SE-412 96 Goteborg¨ Sweden Telephone +46 (0)31-255 1668 Supervisor: Magnus Sjalander¨ Chalmers University of Technology Department of Computer Science and Engineering SE-412 96 Goteborg¨ Sweden Telephone +46 (0)31-772 1075 Cover: A Cilk Implementation of LTE Base-station uplink on the TILEPro64 Processor. -
A CPU/GPU Task-Parallel Runtime with Explicit Epoch Synchronization
TREES: A CPU/GPU Task-Parallel Runtime with Explicit Epoch Synchronization Blake A. Hechtman, Andrew D. Hilton, and Daniel J. Sorin Department of Electrical and Computer Engineering Duke University Abstract —We have developed a task-parallel runtime targeting CPUs are a poor fit for GPUs. To understand system, called TREES, that is designed for high why this mismatch exists, we must first understand the performance on CPU/GPU platforms. On platforms performance of an idealized task-parallel application with multiple CPUs, Cilk’s “work-first” principle (with no runtime) and then how the runtime’s overhead underlies how task-parallel applications can achieve affects it. The performance of a task-parallel application performance, but work-first is a poor fit for GPUs. We is a function of two characteristics: its total amount of build upon work-first to create the “work-together” work to be performed (T1, the time to execute on 1 principle that addresses the specific strengths and processor) and its critical path (T∞, the time to execute weaknesses of GPUs. The work-together principle on an infinite number of processors). Prior work has extends work-first by stating that (a) the overhead on shown that the runtime of a system with P processors, the critical path should be paid by the entire system at TP, is bounded by = ( ) + ( ) due to the once and (b) work overheads should be paid co- greedy o ff line scheduler bound [3][10]. operatively. We have implemented the TREES runtime A task-parallel runtime introduces overheads and, for in OpenCL, and we experimentally evaluate TREES purposes of performance analysis, we distinguish applications on a CPU/GPU platform. -
Library for Handling Asynchronous Events in C++
Masaryk University Faculty of Informatics Library for Handling Asynchronous Events in C++ Bachelor’s Thesis Branislav Ševc Brno, Spring 2019 Declaration Hereby I declare that this paper is my original authorial work, which I have worked out on my own. All sources, references, and literature used or excerpted during elaboration of this work are properly cited and listed in complete reference to the due source. Branislav Ševc Advisor: Mgr. Jan Mrázek i Acknowledgements I would like to thank my supervisor, Jan Mrázek, for his valuable guid- ance and highly appreciated help with avoiding death traps during the design and implementation of this project. ii Abstract The subject of this work is design, implementation and documentation of a library for the C++ programming language, which aims to sim- plify asynchronous event-driven programming. The Reactive Blocks Library (RBL) allows users to define program as a graph of intercon- nected function blocks which control message flow inside the graph. The benefits include decoupling of program’s logic and the method of execution, with emphasis on increased readability of program’s logical behavior through understanding of its reactive components. This thesis focuses on explaining the programming model, then proceeds to defend design choices and to outline the implementa- tion layers. A brief analysis of current competing solutions and their comparison with RBL, along with overhead benchmarks of RBL’s abstractions over pure C++ approach is included. iii Keywords C++ Programming Language, Inversion -
Intel Threading Building Blocks
Praise for Intel Threading Building Blocks “The Age of Serial Computing is over. With the advent of multi-core processors, parallel- computing technology that was once relegated to universities and research labs is now emerging as mainstream. Intel Threading Building Blocks updates and greatly expands the ‘work-stealing’ technology pioneered by the MIT Cilk system of 15 years ago, providing a modern industrial-strength C++ library for concurrent programming. “Not only does this book offer an excellent introduction to the library, it furnishes novices and experts alike with a clear and accessible discussion of the complexities of concurrency.” — Charles E. Leiserson, MIT Computer Science and Artificial Intelligence Laboratory “We used to say make it right, then make it fast. We can’t do that anymore. TBB lets us design for correctness and speed up front for Maya. This book shows you how to extract the most benefit from using TBB in your code.” — Martin Watt, Senior Software Engineer, Autodesk “TBB promises to change how parallel programming is done in C++. This book will be extremely useful to any C++ programmer. With this book, James achieves two important goals: • Presents an excellent introduction to parallel programming, illustrating the most com- mon parallel programming patterns and the forces governing their use. • Documents the Threading Building Blocks C++ library—a library that provides generic algorithms for these patterns. “TBB incorporates many of the best ideas that researchers in object-oriented parallel computing developed in the last two decades.” — Marc Snir, Head of the Computer Science Department, University of Illinois at Urbana-Champaign “This book was my first introduction to Intel Threading Building Blocks.