Gene and Alternative Splicing Annotation with AIR

Total Page:16

File Type:pdf, Size:1020Kb

Gene and Alternative Splicing Annotation with AIR Downloaded from genome.cshlp.org on May 8, 2012 - Published by Cold Spring Harbor Laboratory Press Gene and alternative splicing annotation with AIR Liliana Florea, Valentina Di Francesco, Jason Miller, et al. Genome Res. 2005 15: 54-66 Access the most recent version at doi:10.1101/gr.2889405 Supplemental http://genome.cshlp.org/content/suppl/2004/12/08/15.1.54.DC1.html Material References This article cites 49 articles, 34 of which can be accessed free at: http://genome.cshlp.org/content/15/1/54.full.html#ref-list-1 Article cited in: http://genome.cshlp.org/content/15/1/54.full.html#related-urls Creative This article is distributed exclusively by Cold Spring Harbor Laboratory Press Commons for the first six months after the full-issue publication date (see License http://genome.cshlp.org/site/misc/terms.xhtml). After six months, it is available under a Creative Commons License (Attribution-NonCommercial 3.0 Unported License), as described at http://creativecommons.org/licenses/by-nc/3.0/. Email alerting Receive free email alerts when new articles cite this article - sign up in the box at the service top right corner of the article or click here To subscribe to Genome Research go to: http://genome.cshlp.org/subscriptions © 2005, Published by Cold Spring Harbor Laboratory Press Downloaded from genome.cshlp.org on May 8, 2012 - Published by Cold Spring Harbor Laboratory Press Methods Gene and alternative splicing annotation with AIR Liliana Florea,1,4,5 Valentina Di Francesco,2 Jason Miller,1 Russell Turner,1 Alison Yao,2 Michael Harris,2 Brian Walenz,1 Clark Mobarry,1 Gennady V. Merkulov,3 Rosane Charlab,3 Ian Dew,1 Zuoming Deng,3 Sorin Istrail,1 Peter Li,2 and Granger Sutton1 1Informatics Research, Applied Biosystems, Rockville, Maryland 20850, USA; 2Advanced Solutions, and 3Scientific Content and Applications, Celera Genomics, Rockville, Maryland 20850, USA Designing effective and accurate tools for identifying the functional and structural elements in a genome remains at the frontier of genome annotation owing to incompleteness and inaccuracy of the data, limitations in the computational models, and shifting paradigms in genomics, such as alternative splicing. We present a methodology for the automated annotation of genes and their alternatively spliced mRNA transcripts based on existing cDNA and protein sequence evidence from the same species or projected from a related species using syntenic mapping information. At the core of the method is the splice graph, a compact representation of a gene, its exons, introns, and alternatively spliced isoforms. The putative transcripts are enumerated from the graph and assigned confidence scores based on the strength of sequence evidence, and a subset of the high-scoring candidates are selected and promoted into the annotation. The method is highly selective, eliminating the unlikely candidates while retaining 98% of the high-quality mRNA evidence in well-formed transcripts, and produces annotation that is measurably more accurate than some evidence-based gene sets. The process is fast, accurate, and fully automated, and combines the traditionally distinct gene annotation and alternative splicing detection processes in a comprehensive and systematic way, thus considerably aiding in the ensuing manual curation efforts. [Supplemental material is available online at www.genome.org and https://panther.appliedbiosystems.com/publications.jsp.] With the genome sequences of human and several other mam- programs in an automatic fashion, and in some cases the results malian organisms now available (Lander et al. 2001; Venter et al. are manually curated by expert annotators to detect and correct 2001; Kirkness et al. 2003; Mural et al. 2002; Waterston et al. errors in the predicted gene structure and to identify alternative 2002), identifying the elements they encode has become a task of splicing events. The massive undertakings of manual curation in immediate and utmost importance. Interpreting the raw se- annotation projects such as NCBI’s collection of reference se- quence data into useful biological information, also known as quences (RefSeq; http://www.ncbi.nlm.nih.gov/RefSeq/), the in- genome annotation, is a complex process that requires the effi- ternational Vertebrate Genome Annotation database (VEGA; cient integration of computational analyses, auxiliary biological http://vega.sanger.ac.uk/), and Celera’s annotation jamborees data, and biological expertise. In particular, determining the lo- (Adams et al. 2000; Rubin et al. 2000) and ongoing processes to cation, structure, and function of protein-coding genes is an es- improve the quality of the predicted genes (Venter et al. 2001; sential first step in any annotation project, as it holds the key to Mural et al. 2002) have involved hundreds of expert annotators. understanding the structures and functions of the proteins they The more accurate the automated portion of the annotation pro- encode, and can help focus the search for other functional ele- cess and the stronger the correlation between predictions and the ments such as SNPs and regulatory modules to specific regions of underlying sequence evidence, the more effectively the ensuing the genome. It is the structural component of gene annotation, manual curation and validation efforts will construct and vali- or the identification of the exon–intron structure of genes and date gene models. Besides accuracy, an additional challenge that their alternatively spliced isoforms on the genome, that is the such pipelines have to withstand is the ever growing amount of focus of this paper. new data (Karolchik et al. 2003). Therefore, there is an outstand- Large-scale gene annotation processes at the major genom- ing demand for annotation processes and related visualization, ics centers (Ensembl, Hubbard et al. 2002, Birney et al. 2004; data mining, and storage resources that are fast, highly accurate, UCSC Genome Browser database, Karolchik et al. 2003; Celera and flexible enough to allow the seamless incorporation of new Genome Browser and Otto annotation system, Venter et al. 2001; sequence evidence as it becomes available in the databases. NCBI Human Genome Resources, online documentation at Despite the large body of work in the area of gene finding http://www.ncbi.nlm.nih.gov/genome/guide/human/) typically (Claverie 1997; Rogic et al. 2001; Zhang 2002; and references combine the results from a variety of prediction and alignment therein) and the recent convergence in the estimates for the number of human genes (Lander et al. 2001; Venter et al. 2001; 4Present address: Department of Computer Science, George Wash- Pennisi 2003), gene finding is still an area under active develop- ington University, Washington, DC 20052, USA. ment. Biases in each method, incomplete and inaccurate se- 5 Corresponding author. quence data, and limitations of the computational gene model in E-mail [email protected]; fax (240) 453-3324. Article and publication are at http://www.genome.org/cgi/doi/10.1101/ capturing data-driven artifacts and biological phenomena such gr.2889405. as overlapping genes and alternative splicing are only a few 54 Genome Research 15:54–66 ©2005 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/05; www.genome.org www.genome.org Downloaded from genome.cshlp.org on May 8, 2012 - Published by Cold Spring Harbor Laboratory Press Gene and alternative splicing annotation with AIR of the challenges that continue to face current methods. Ab initio existing evidence, and then select the ones that are the most prediction programs such as GenScan (Burge and Karlin 1997), likely to exist in vivo, according to the support by the evidence. FGenesH (Salamov and Solovyev 2000), Genie (Kulp et al. 1996), Since alternative splicing has become an integral part of charac- and GeneMark (Lukashin and Borodovski 1998) have reached terizing the transcriptome, the splice graph has emerged as a high accuracy at predicting coding exons but are intrinsically candidate model for representing genes and their transcripts ineffective at predicting exons in the 5Ј and 3Ј untranslated re- (Kan et al. 2001; Heber et al. 2002; Haas et al. 2003; Sugnet et al. gions (UTRs), are confounded by overlapping genes, and produce 2004; Xing et al. 2004), but the combinatorial nature of the set of a large number of false positives (Dunham et al. 1999; Rogic et al. transcripts encoded in the graph has long been a deterrent to 2001). Comparative methods based on alignments of protein and using it in annotation systems. The method we propose tackles cDNA (EST, mRNA) sequences with genomic sequences (Pro- this problem by scoring, evaluating, and selecting candidate crustes, Gelfand et al. 1996; EstGenome, Mott 1997; sim4, Florea transcripts based on their support by the evidence. The second et al. 1998; GeneWise, Birney and Durbin 2000; Spidey, Wheelan novel feature in AIR is the use of precomputed whole-genome et al. 2001) depend critically on the completeness and quality of alignments to map the coordinates of exons and transcripts from sequences used. More recently, programs that inherently com- a related species to the genome being annotated. This approach bine predictive and comparative clues (GenomeScan, Yeh et al. is generally faster, once the genome-to-genome alignment is 2001; TwinScan, Korf et al. 2001) have been used with some computed, and exhibited higher accuracy than direct cross- success to improve the prediction accuracy but still suffer from species alignments in testing. some of the deficiencies of both approaches, such as the diffi- In the Methods section we describe in detail the two main culty in identifying the 5Ј and 3Ј UTRs of a gene and the occa- components of AIR, namely the construction and selection of sional merging of adjoining or overlapping genes. For accuracy transcripts based on the splice graph model augmented with a reasons, or because of the restricted ability to cope with the tre- scoring scheme, and the tracking of features between two related mendous amount of data generated by the sequencing projects, genomes guided by their whole-genome alignments.
Recommended publications
  • Long-Read Cdna Sequencing Identifies Functional Pseudogenes in the Human Transcriptome Robin-Lee Troskie1, Yohaann Jafrani1, Tim R
    Troskie et al. Genome Biology (2021) 22:146 https://doi.org/10.1186/s13059-021-02369-0 SHORT REPORT Open Access Long-read cDNA sequencing identifies functional pseudogenes in the human transcriptome Robin-Lee Troskie1, Yohaann Jafrani1, Tim R. Mercer2, Adam D. Ewing1*, Geoffrey J. Faulkner1,3* and Seth W. Cheetham1* * Correspondence: adam.ewing@ mater.uq.edu.au; faulknergj@gmail. Abstract com; [email protected]. au Pseudogenes are gene copies presumed to mainly be functionless relics of evolution 1Mater Research Institute-University due to acquired deleterious mutations or transcriptional silencing. Using deep full- of Queensland, TRI Building, QLD length PacBio cDNA sequencing of normal human tissues and cancer cell lines, we 4102 Woolloongabba, Australia Full list of author information is identify here hundreds of novel transcribed pseudogenes expressed in tissue-specific available at the end of the article patterns. Some pseudogene transcripts have intact open reading frames and are translated in cultured cells, representing unannotated protein-coding genes. To assess the biological impact of noncoding pseudogenes, we CRISPR-Cas9 delete the nucleus-enriched pseudogene PDCL3P4 and observe hundreds of perturbed genes. This study highlights pseudogenes as a complex and dynamic component of the human transcriptional landscape. Keywords: Pseudogene, PacBio, Long-read, lncRNA, CRISPR Background Pseudogenes are gene copies which are thought to be defective due to frame- disrupting mutations or transcriptional silencing [1, 2]. Most human pseudogenes (72%) are derived from retrotransposition of processed mRNAs, mediated by proteins encoded by the LINE-1 retrotransposon [3, 4]. Due to the loss of parental cis-regula- tory elements, processed pseudogenes were initially presumed to be transcriptionally silent [1] and were excluded from genome-wide functional screens and most transcrip- tome analyses [2].
    [Show full text]
  • Linkage and Association Analysis of Obesity Traits Reveals Novel Loci and Interactions with Dietary N-3 Fatty Acids in an Alaska Native (Yup’Ik) Population
    METABOLISM CLINICAL AND EXPERIMENTAL XX (2015) XXX– XXX Available online at www.sciencedirect.com Metabolism www.metabolismjournal.com Linkage and association analysis of obesity traits reveals novel loci and interactions with dietary n-3 fatty acids in an Alaska Native (Yup’ik) population Laura Kelly Vaughan a, Howard W. Wiener b, Stella Aslibekyan b, David B. Allison c, Peter J. Havel d, Kimber L. Stanhope d, Diane M. O’Brien e, Scarlett E. Hopkins e, Dominick J. Lemas f, Bert B. Boyer e,⁎, Hemant K. Tiwari c a Department of Biology, King University, 1350 King College Rd, Bristol, TN 37620, USA b Department of Epidemiology, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35294, USA c Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, 1665 University Blvd, Birmingham, AL 35294, USA d Departments of Nutrition and Molecular Biosciences, University of California at Davis, 1 Shields Ave, Davis, CA 95616, USA e USACenter for Alaska Native Health Research, Institute of Arctic Biology, 311 Irving I Building, University of Alaska Fairbanks, Fairbanks, AK 99775, USA f Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, 13123 East 16th Ave, Aurora, CO 80045, USA ARTICLE INFO ABSTRACT Article history: Objective. To identify novel genetic markers of obesity-related traits and to identify gene- Received 16 June 2014 diet interactions with n-3 polyunsaturated fatty acid (n-3 PUFA) intake in Yup’ik people. Accepted 28 February 2015 Material and methods. We measured body composition, plasma adipokines and ghrelin in 982 participants enrolled in the Center for Alaska Native Health Research (CANHR) Study.
    [Show full text]
  • Spring 2003 Final3
    NCBI News National Center for Biotechnology Information National Library of Medicine National Institutes of Health Department of Health and Human Services Spring 2003 [ A Field Guide to GenBank® and NCBI Resources: First Version of Human NCBI’s Scientific Outreach and Training Program Genome Reference Sequence Debuts on Biological sequence and structure use of NCBI databases and tools. DNA’s 50th information are now used in nearly The course, called “A Field Guide every field of biological research. A to GenBank and NCBI Resources”, working knowledge of these resources is designed especially for biologists April 14, 2003 marked the and standard computational biology who work at the bench or in the field 50th anniversary of the tools are an essential part of every but use sequence and structure data description of the structure biologist’s toolkit. However, keeping in their research. All researchers, of DNA and also saw the up with these databases and tools can educators and students who work release of the first version of be challenging in this period of rapidly with biological sequence and structure the 3 billion base pair refer- changing bioinformatics resources. data should find this to be a useful ence sequence of the human introduction and survey of the genome. Annotations to the In order to help researchers keep available NCBI tools and databases. raw sequence made public on April 14 abreast of enhancements and the Because of the rapid expansion of were released on April 29 when the increasing diversity of NCBI molecu- the resources, even experienced NCBI reference genome, NCBI build 33, lar biology resources, the NCBI users will likely learn something new appeared in the NCBI Map Viewer.
    [Show full text]
  • A Literature-Based Database for Cell Senescence Genes and Its Application to Identify Critical Cell Aging Pathways and Associated Diseases
    Citation: Cell Death and Disease (2016) 7, e2053; doi:10.1038/cddis.2015.414 OPEN & 2016 Macmillan Publishers Limited All rights reserved 2041-4889/16 www.nature.com/cddis CSGene: a literature-based database for cell senescence genes and its application to identify critical cell aging pathways and associated diseases M Zhao1, L Chen2 and H Qu*,2 Cell senescence is a cellular process in which normal diploid cells cease to replicate and is a major driving force for human cancers and aging-associated diseases. Recent studies on cell senescence have identified many new genetic components and pathways that control cell aging. However, there is no comprehensive resource for cell senescence that integrates various genetic studies and relationships with cell senescence, and the risk associated with complex diseases such as cancer is still unexplored. We have developed the first literature-based gene resource for exploring cell senescence genes, CSGene. We complied 504 experimentally verified genes from public data resources and published literature. Pathway analyses highlighted the prominent roles of cell senescence genes in the control of rRNA gene transcription and unusual rDNA repeat that constitute a center for the stability of the whole genome. We also found a strong association of cell senescence with HIV-1 infection and viral carcinogenesis that are mainly related to promoter/enhancer binding and chromatin modification processes. Moreover, pan-cancer mutation and network analysis also identified common cell aging mechanisms in cancers and uncovered a highly modular network structure. These results highlight the utility of CSGene for elucidating the complex cellular events of cell senescence.
    [Show full text]
  • Biomolecule and Bioentity Interaction Databases in Systems Biology: a Comprehensive Review
    biomolecules Review Biomolecule and Bioentity Interaction Databases in Systems Biology: A Comprehensive Review Fotis A. Baltoumas 1,* , Sofia Zafeiropoulou 1, Evangelos Karatzas 1 , Mikaela Koutrouli 1,2, Foteini Thanati 1, Kleanthi Voutsadaki 1 , Maria Gkonta 1, Joana Hotova 1, Ioannis Kasionis 1, Pantelis Hatzis 1,3 and Georgios A. Pavlopoulos 1,3,* 1 Institute for Fundamental Biomedical Research, Biomedical Sciences Research Center “Alexander Fleming”, 16672 Vari, Greece; zafeiropoulou@fleming.gr (S.Z.); karatzas@fleming.gr (E.K.); [email protected] (M.K.); [email protected] (F.T.); voutsadaki@fleming.gr (K.V.); [email protected] (M.G.); hotova@fleming.gr (J.H.); [email protected] (I.K.); hatzis@fleming.gr (P.H.) 2 Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark 3 Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece * Correspondence: baltoumas@fleming.gr (F.A.B.); pavlopoulos@fleming.gr (G.A.P.); Tel.: +30-210-965-6310 (G.A.P.) Abstract: Technological advances in high-throughput techniques have resulted in tremendous growth Citation: Baltoumas, F.A.; of complex biological datasets providing evidence regarding various biomolecular interactions. Zafeiropoulou, S.; Karatzas, E.; To cope with this data flood, computational approaches, web services, and databases have been Koutrouli, M.; Thanati, F.; Voutsadaki, implemented to deal with issues such as data integration, visualization, exploration, organization, K.; Gkonta, M.; Hotova, J.; Kasionis, scalability, and complexity. Nevertheless, as the number of such sets increases, it is becoming more I.; Hatzis, P.; et al. Biomolecule and and more difficult for an end user to know what the scope and focus of each repository is and how Bioentity Interaction Databases in redundant the information between them is.
    [Show full text]
  • Navigo: Interactive Tool for Visualization and Functional Similarity and Coherence Analysis with Gene Ontology Qing Wei1, Ishita K
    Wei et al. BMC Bioinformatics (2017) 18:177 DOI 10.1186/s12859-017-1600-5 SOFTWARE Open Access NaviGO: interactive tool for visualization and functional similarity and coherence analysis with gene ontology Qing Wei1, Ishita K. Khan1, Ziyun Ding2, Satwica Yerneni3 and Daisuke Kihara2,1* Abstract Background: The number of genomics and proteomics experiments is growing rapidly, producing an ever-increasing amount of data that are awaiting functional interpretation. A number of function prediction algorithms were developed and improved to enable fast and automatic function annotation. With the well-defined structure and manual curation, Gene Ontology (GO) is the most frequently used vocabulary for representing gene functions. To understand relationship and similarity between GO annotations of genes, it is important to have a convenient pipeline that quantifies and visualizes the GO function analyses in a systematic fashion. Results: NaviGO is a web-based tool for interactive visualization, retrieval, and computation of functional similarity and associations of GO terms and genes. Similarity of GO terms and gene functions is quantified with six different scores including protein-protein interaction and context based association scores we have developed in our previous works. Interactive navigation of the GO function space provides intuitive and effective real-time visualization of functional groupings of GO terms and genes as well as statistical analysis of enriched functions. Conclusions: We developed NaviGO, which visualizes and analyses functional similarity and associations of GO terms and genes. The NaviGO webserver is freely available at: http://kiharalab.org/web/navigo. Keywords: Gene function, Gene ontology, GO, Ontology, GO directed acyclic graph, Function similarity, Gene function prediction, GO annotation, function enrichment analysis, GO parental terms, GO association score Background their parental relationship make it non-trivial to provide Functional elucidation of genes is one of the central an intuitive summary of GO annotations of genes.
    [Show full text]
  • The Human Protein Coevolution Network
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Methods The human protein coevolution network Elisabeth R.M. Tillier1 and Robert L. Charlebois Department of Medical Biophysics, University of Toronto, and Ontario Cancer Institute, University Health Network, Toronto, Ontario M5G 1L7, Canada Coevolution maintains interactions between phenotypic traits through the process of reciprocal natural selection. Detecting molecular coevolution can expose functional interactions between molecules in the cell, generating insights into biological processes, pathways, and the networks of interactions important for cellular function. Prediction of interaction partners from different protein families exploits the property that interacting proteins can follow similar patterns and relative rates of evolution. Current methods for detecting coevolution based on the similarity of phylogenetic trees or evolutionary distance matrices have, however, been limited by requiring coevolution over the entire evolutionary history considered and are inaccurate in the presence of paralogous copies. We present a novel method for determining coevolving protein partners by finding the largest common submatrix in a given pair of distance matrices, with the size of the largest common submatrix measuring the strength of coevolution. This approach permits us to consider matrices of different size and scale, to find lineage-specific coevolution, and to predict multiple interaction partners. We used MatrixMatchMaker to predict protein–protein interactions in the human genome. We show that proteins that are known to interact physically are more strongly coevolving than proteins that simply belong to the same biochemical pathway. The human coevolution network is highly connected, suggesting many more protein–protein interactions than are currently known from high-throughput and other experimental evidence.
    [Show full text]
  • Genomes of the Mouse Collaborative Cross
    | MULTIPARENTAL POPULATIONS Genomes of the Mouse Collaborative Cross Anuj Srivastava,*,1 Andrew P. Morgan,†,‡,§,1 Maya L. Najarian,**,1 Vishal Kumar Sarsani,* J. Sebastian Sigmon,** John R. Shorter,†,‡ Anwica Kashfeen,** Rachel C. McMullan,†,‡,†† Lucy H. Williams,† Paola Giusti-Rodríguez,† Martin T. Ferris,†,‡ Patrick Sullivan,† Pablo Hock,†,‡ Darla R. Miller,†,‡ Timothy A. Bell,†,‡ Leonard McMillan,** Gary A. Churchill,*,2 and Fernando Pardo-Manuel de Villena†,‡,2 *The Jackson Laboratory, Bar Harbor, Maine 04609, and †Department of Genetics, ‡Lineberger Comprehensive Cancer Center, §Curriculum of Bioinformatics and Computational Biology, **Department of Computer Science, and ††Curriculum of Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599 ORCID IDs: 0000-0003-1942-4543 (A.P.M.); 0000-0003-4732-5526 (J.R.S.); 0000-0003-1241-6268 (M.T.F.); 0000-0002-0781-7254 (D.R.M.); 0000-0002-5738-5795 (F.P.-M.d.V.) ABSTRACT The Collaborative Cross (CC) is a multiparent panel of recombinant inbred (RI) mouse strains derived from eight founder laboratory strains. RI panels are popular because of their long-term genetic stability, which enhances reproducibility and integration of data collected across time and conditions. Characterization of their genomes can be a community effort, reducing the burden on individual users. Here we present the genomes of the CC strains using two complementary approaches as a resource to improve power and interpretation of genetic experiments. Our study also provides a cautionary tale regarding the limitations imposed by such basic biological processes as mutation and selection. A distinct advantage of inbred panels is that genotyping only needs to be performed on the panel, not on each individual mouse.
    [Show full text]
  • Analysis of DNA Methylation Sites Used for Forensic Age Prediction and Their Correlation with Human Aging
    Silva DSBS, et al., J Forensic Leg Investig Sci 2021, 7: 054 DOI: 10.24966/FLIS-733X/100054 HSOA Journal of Forensic, Legal & Investigative Sciences Research Article Analysis of DNA Methylation Introduction DNA samples left behind in crime scenes are often used for Sites used for Forensic Age identification purposes by comparing them to reference samples or to a forensic database. In cases where there is no match, investigators may Prediction and their Correlation turn to alternative approaches using advanced technologies to gain valuable leads on phenotypic traits (externally visible characteristics) with Human Aging of the person who had left the DNA material. Previous studies have found that phenotypes can be predicted by using information obtained from different DNA markers, such as single nucleotide Silva DSBS1* and Karantenislis G2 polymorphisms (SNPs), insertion/deletion polymorphisms (InDel), and epigenetic markers [1-11]. It is well established that epigenetic 1Department of Chemistry, Hofstra University, Hempstead-NY, USA modifications are major regulators in the translation of genotype 2John F Kennedy High School, Bellmore-NY, USA to phenotype. Epigenetic regulation encompasses various levels of gene expression and involves modifications of DNA, histones, RNA and chromatin, with functional consequences for the human Abstract genome [12-14]. DNA methylation is the most well-characterized epigenetic modification. It is usually associated with transcriptional Phenotype-related features, such as age, are linked to repression and it involves the addition of a methyl group (– CH3) in genetic components through regulatory pathways and epigenetic the cytosine of CpG dinucleotides. Differences in DNA methylation modifications, such as DNA methylation, are major regulators in levels in specific regions of the genome can affect the expression of the translation of genotype to phenotype.
    [Show full text]
  • Biopython Tutorial and Cookbook
    Biopython Tutorial and Cookbook Jeff Chang, Brad Chapman, Iddo Friedberg, Thomas Hamelryck, Michiel de Hoon, Peter Cock Last Update – September 2008 Contents 1 Introduction 5 1.1 What is Biopython? ......................................... 5 1.1.1 What can I find in the Biopython package ......................... 5 1.2 Installing Biopython ......................................... 6 1.3 FAQ .................................................. 6 2 Quick Start – What can you do with Biopython? 8 2.1 General overview of what Biopython provides ........................... 8 2.2 Working with sequences ....................................... 8 2.3 A usage example ........................................... 9 2.4 Parsing sequence file formats .................................... 10 2.4.1 Simple FASTA parsing example ............................... 10 2.4.2 Simple GenBank parsing example ............................. 11 2.4.3 I love parsing – please don’t stop talking about it! .................... 11 2.5 Connecting with biological databases ................................ 11 2.6 What to do next ........................................... 12 3 Sequence objects 13 3.1 Sequences and Alphabets ...................................... 13 3.2 Sequences act like strings ...................................... 14 3.3 Slicing a sequence .......................................... 15 3.4 Turning Seq objects into strings ................................... 15 3.5 Concatenating or adding sequences ................................. 16 3.6 Nucleotide sequences and
    [Show full text]
  • Linkage and Association Analysis of Circulating Vitamin D and Parathyroid Hormone Identifies Novel Loci in Alaska Native Yup’Ik People Stella Aslibekyan1, Laura K
    Aslibekyan et al. Genes & Nutrition (2016) 11:23 DOI 10.1186/s12263-016-0538-y RESEARCH Open Access Linkage and association analysis of circulating vitamin D and parathyroid hormone identifies novel loci in Alaska Native Yup’ik people Stella Aslibekyan1, Laura K. Vaughan2,4, Howard W. Wiener1, Bertha A. Hidalgo1, Dominick J. Lemas3, Diane M. O’Brien5, Scarlett E. Hopkins5, Kimber L. Stanhope6, Peter J. Havel6, Kenneth E. Thummel7, Bert B. Boyer5 and Hemant K. Tiwari2* Abstract Background: Vitamin D deficiency is a well-documented public health issue with both genetic and environmental determinants. Populations living at far northern latitudes are vulnerable to vitamin D deficiency and its health sequelae, although consumption of traditional native dietary pattern rich in fish and marine mammals may buffer the effects of reduced sunlight exposure. To date, few studies have investigated the genetics of vitamin D metabolism in circumpolar populations or considered genediet interactions with fish and n-3 fatty acid intake. Methods: We searched for genomic regions exhibiting linkage and association with circulating levels of vitamin D and parathyroid hormone (PTH) in 982 Yup’ik individuals from the Center for Alaska Native Health Research Study. We also investigated potential interactions between genetic variants and a biomarker of traditional dietary intake, the δ15N value. Results: We identified several novel regions linked with circulating vitamin D and PTH as well as replicated a previous linkage finding on 2p16.2 for vitamin D. Bioinformatic analysis revealed multiple candidate genes for both PTH and vitamin D, including CUBN, MGAT3,andNFKBIA. Targeted association analysis identified NEBL as a candidate gene for vitamin D and FNDC3B for PTH.
    [Show full text]
  • X-Ray Ptychography Imaging of Human Chromosomes After Low-Dose Irradiation
    Chromosome Res https://doi.org/10.1007/s10577-021-09660-7 ORIGINAL ARTICLE X-ray Ptychography Imaging of Human Chromosomes After Low-dose Irradiation Archana Bhartiya & Darren Batey & Silvia Cipiccia & Xiaowen Shi & Christoph Rau & Stanley Botchway & Mohammed Yusuf & Ian K. Robinson Received: 18 December 2020 /Revised: 15 February 2021 /Accepted: 9 March 2021 # The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract Studies of the structural and functional role of chromosomes of metaphase human B and T cells using chromosomes in cytogenetics have spanned more than hard X-ray ptychography. We have produced ‘X-ray 10 decades. In this work, we take advantage of the karyotypes’ of both heavy metal–stained and unstained coherent X-rays available at the latest synchrotron spreads to determine the gain or loss of genetic material sources to extract the individual masses of all 46 upon low-level X-ray irradiation doses due to radiation damage. The experiments were performed at the I-13 Responsible Editors: Kiichi Fukui and Toshiyuki Wako beamline, Diamond Light Source, Didcot, UK, using the phase-sensitive X-ray ptychography method. A. Bhartiya : M. Yusuf : I. K. Robinson London Centre for Nanotechnology, University College, London, UK Keywords X-ray imaging . X-ray microscopy . Karyotype . Irradiation . Chromosome structure . Mass A. Bhartiya determination Department of Chemistry, University College, London, UK A. Bhartiya : S. Botchway : M. Yusuf : I. K. Robinson (*) Introduction Research Complex at Harwell, Harwell Campus, Didcot, UK e-mail: [email protected] Chromatin, composed of DNA-protein complexes pres- D. Batey : S. Cipiccia : X. Shi : C.
    [Show full text]