Sorting Networks

Total Page:16

File Type:pdf, Size:1020Kb

Sorting Networks Sorting Networks Uri Zwick Tel Aviv University May 2015 Comparators 푥 min(푥, 푦) 푦 max(푥, 푦) 푥 min(푥, 푦) 푦 max(푥, 푦) Can we use comparators to build efficient sorting networks? Comparator networks A comparator network is a network composed of comparators. There are 푛 input wires, each feeding a single comparator. Each output of a comparator is either an output wire, or feeds a single comparator. The network must be acyclic. Number of output wires must also be 푛. “Standard form” Exercise: Show that any comparator network is equivalent to a network in standard form. A simple sorting network 5 comparators 3 levels Insertion sort 푆표푟푡(푛) Selection/bubble sort 푆표푟푡(푛) Selection/bubble Sort 푛 푛−1 Size = Depth = 2푛 − 1 2 Exercise: Any sorting network that only compares 푛 푛−1 adjacent lines must be of size at least 2 Exercise: Prove that the network on the next slide, whose depth is 푛, is a sorting network Odd-Even Transposition Sort 푛 푛−1 Size = Depth = 푛 2 The 0-1 principle Theorem: If a network sort all 0-1 inputs, then it sort all inputs The 0-1 principle Lemma: Let 푓 be a monotone non-decreasing function. Then, if a network maps 푥1, 푥2, . , 푥푛 to 푦1, 푦2, . , 푦푛, then it maps 푓(푥1), 푓(푥2), . , 푓(푥푛) to 푓(푦1), 푓(푦2), . , 푓(푦푛) Proof: By induction on the number of comparisons using 푓 min 푎, 푏 = min(푓 푎 , 푓 푏 ) 푓 max 푎, 푏 = max(푓 푎 , 푓 푏 ) The 0-1 principle Proof: Suppose that a network is not a sorting network. It then maps some 푥1, 푥2, . , 푥푛 to 푦1, 푦2, . , 푦푛, where 푦푖 > 푦푖+1, for some 1 ≤ 푖 < 푛. Let 푓 푥 = 1, iff 푥 ≥ 푦푖, 0 otherwise. The network maps 푓(푥1), 푓(푥2), . , 푓(푥푛) to 푓(푦1), … , 푓(푦푖) = 1, 푓 푦푖+1 = 0 , . , 푓(푦푛) Thus, the network does not sort all 0-1 inputs. Sorting by merging 푆표푟푡(푛) 푀푒푟푔푒(푛, 푚) 푆표푟푡(푚) Batcher’s odd-even merge 푛 푛 푚 푛 푚 푀( , ) 푀( , ) 2 2 2 2 푚 Batcher’s odd-even merge 푛 푛 푚 푛 푚 푀( , ) 푀( , ) 2 2 2 2 푚 Batcher’s odd-even merge To merge 푎1, 푎2, . , 푎푛 with 푏1, 푏2, . , 푏푚: Split 푎1, 푎2, . , 푎푛 into 푎1, 푎3, … and 푎2, 푎4, … Split 푏1, 푏2, . , 푏푚 into 푏1, 푏3, … and 푏2, 푏4, … Merge odd-indexed items to create 표1, 표2, … Merge even-indexed items to create 푒1, 푒2, … Compare/swap (푒1, 표2), (푒2, 표3), … Does it really work? Batcher’s odd-even merge 푀(1,1) 푀(2,2) Batcher’s odd-even merge - 푀(4,4) Batcher’s odd-even merge - 푀(4,4) Odd-even merge → Odd-even sort Batcher’s odd-even merge Proof using the 0-1 principle. Suppose that 푎1, 푎2, . , 푎푛 starts with 푛0 0’s and that 푏1, 푏2, . , 푏푚 starts with 푚0 0’s. 푛 푚 Then 표 , 표 , … starts with 0 + 0 0’s, 1 2 2 2 푛 푚 and 푒 , 푒 , … starts 0 + 0 0’s. 1 2 2 2 The difference is either 0,1 or 2! There is a problem only if difference is 2 and last level of comparators fixes it. Batcher’s odd-even merge 푒 0 0 0 0 0 1 1 1 표 0 0 0 0 0 1 1 1 푒 0 0 0 0 1 1 1 1 표 0 0 0 0 0 1 1 1 푒 0 0 0 1 1 1 1 1 표 0 0 0 0 0 1 1 1 Batcher’s odd-even merge Exercise: Justify the use of the 0-1 principle. Exercise: Prove the correctness of the odd-even merging network directly without relying on the 0-1 principle. Batcher’s odd-even merge Size – number of comparators 푀 푛, 0 = 푀 0, 푚 = 0 푀 1,1 = 1 푛 푚 푛 푚 푛 + 푚 − 1 푀 푛, 푚 = 푀 , + 푀 , + 2 2 2 2 2 푛 푛 푀 푛, 푛 = 2푀 , + (푛 − 1) 2 2 푀 2푘, 2푘 = 푘2푘 + 1 푀 푛, 푛 = 푛 lg 푛 + 푂(푛) No better merging networks are known for any 푛, 푚! Are the odd-even merge networks optimal? Bitonic sequences A sequence is strict bitonic iff it is a concatenation of a decreasing sequence and an increasing sequence A sequence is bitonic iff it is a cyclic shift of a strict bitonic sequence 8 6 4 1 2 5 7 9 4 1 2 5 7 9 8 6 1 4 2 3 A Bitonic sorter A (strict) bitonic sorter is a network that sorts every (strict) bitonic sequence. If 푎1, 푎2, . , 푎푛 and 푏1, 푏2, . , 푏푚 are sorted, then 푎푛, 푎푛−1, . , 푎1, 푏1, 푏2, . , 푏푚, is bitonic. Thus, a strict bitonic sorter can serve as a merging network Batcher’s bitonic sorter 푛 푛 퐵 푛 퐵 2 2 Is this different from odd-even merge? Batcher’s bitonic sorter Simple proof using the 0-1 principle. A strict binary bitonic sequence – 1푘0ℓ1푛−푘−ℓ The odd and even subsequences are also strict binary bitonic sequences. By induction they are sorted correctly. The difference between the number of 0’s in the two sorted sequences is one of −1,0,1. Final level of comparators fixes the problem. Batcher’s bitonic sorter Exercise: Show that the difference between the number of 0’s in the odd and even subsequences of 1푘0ℓ1푛−푘−ℓ is 푘 + ℓ 푘 + ℓ 푘 푘 − − − 2 2 2 2 Note: We do not need this exact formula in the proof given in the previous slide. Seeing that the difference is −1,0,1 is immediate. Batcher’s bitonic sorter for n=2푘 Very regular structure! When 푛 = 2푘, there are 푘 levels with 푛 comparators each. 2 Lines 푖 and 푗 are compared at level ℓ iff they differ only in the ℓ-th most significant bit Batcher’s bitonic sorter for n=2푘 Alternative recursive definition for 푛 = 2푘 Sorts general bitonic sequences The AKS sorting networks [Ajtai-Komlós-Szemerédi (1983)] There are sorting networks of 푂(log 푛) depth, and hence 푂(푛 log 푛) size. The construction is fairly complicated. The constant factors are very large..
Recommended publications
  • Sort Algorithms 15-110 - Friday 2/28 Learning Objectives
    Sort Algorithms 15-110 - Friday 2/28 Learning Objectives • Recognize how different sorting algorithms implement the same process with different algorithms • Recognize the general algorithm and trace code for three algorithms: selection sort, insertion sort, and merge sort • Compute the Big-O runtimes of selection sort, insertion sort, and merge sort 2 Search Algorithms Benefit from Sorting We use search algorithms a lot in computer science. Just think of how many times a day you use Google, or search for a file on your computer. We've determined that search algorithms work better when the items they search over are sorted. Can we write an algorithm to sort items efficiently? Note: Python already has built-in sorting functions (sorted(lst) is non-destructive, lst.sort() is destructive). This lecture is about a few different algorithmic approaches for sorting. 3 Many Ways of Sorting There are a ton of algorithms that we can use to sort a list. We'll use https://visualgo.net/bn/sorting to visualize some of these algorithms. Today, we'll specifically discuss three different sorting algorithms: selection sort, insertion sort, and merge sort. All three do the same action (sorting), but use different algorithms to accomplish it. 4 Selection Sort 5 Selection Sort Sorts From Smallest to Largest The core idea of selection sort is that you sort from smallest to largest. 1. Start with none of the list sorted 2. Repeat the following steps until the whole list is sorted: a) Search the unsorted part of the list to find the smallest element b) Swap the found element with the first unsorted element c) Increment the size of the 'sorted' part of the list by one Note: for selection sort, swapping the element currently in the front position with the smallest element is faster than sliding all of the numbers down in the list.
    [Show full text]
  • CS 758/858: Algorithms
    CS 758/858: Algorithms ■ COVID Prof. Wheeler Ruml Algorithms TA Sumanta Kashyapi This Class Complexity http://www.cs.unh.edu/~ruml/cs758 4 handouts: course info, schedule, slides, asst 1 2 online handouts: programming tips, formulas 1 physical sign-up sheet/laptop (for grades, piazza) Wheeler Ruml (UNH) Class 1, CS 758 – 1 / 25 COVID ■ COVID Algorithms This Class Complexity ■ check your Wildcat Pass before coming to campus ■ if you have concerns, let me know Wheeler Ruml (UNH) Class 1, CS 758 – 2 / 25 ■ COVID Algorithms ■ Algorithms Today ■ Definition ■ Why? ■ The Word ■ The Founder This Class Complexity Algorithms Wheeler Ruml (UNH) Class 1, CS 758 – 3 / 25 Algorithms Today ■ ■ COVID web: search, caching, crypto Algorithms ■ networking: routing, synchronization, failover ■ Algorithms Today ■ machine learning: data mining, recommendation, prediction ■ Definition ■ Why? ■ bioinformatics: alignment, matching, clustering ■ The Word ■ ■ The Founder hardware: design, simulation, verification ■ This Class business: allocation, planning, scheduling Complexity ■ AI: robotics, games Wheeler Ruml (UNH) Class 1, CS 758 – 4 / 25 Definition ■ COVID Algorithm Algorithms ■ precisely defined ■ Algorithms Today ■ Definition ■ mechanical steps ■ Why? ■ ■ The Word terminates ■ The Founder ■ input and related output This Class Complexity What might we want to know about it? Wheeler Ruml (UNH) Class 1, CS 758 – 5 / 25 Why? ■ ■ COVID Computer scientist 6= programmer Algorithms ◆ ■ Algorithms Today understand program behavior ■ Definition ◆ have confidence in results, performance ■ Why? ■ The Word ◆ know when optimality is abandoned ■ The Founder ◆ solve ‘impossible’ problems This Class ◆ sets you apart (eg, Amazon.com) Complexity ■ CPUs aren’t getting faster ■ Devices are getting smaller ■ Software is the differentiator ■ ‘Software is eating the world’ — Marc Andreessen, 2011 ■ Everything is computation Wheeler Ruml (UNH) Class 1, CS 758 – 6 / 25 The Word: Ab¯u‘Abdall¯ah Muh.ammad ibn M¯us¯aal-Khw¯arizm¯ı ■ COVID 780-850 AD Algorithms Born in Uzbekistan, ■ Algorithms Today worked in Baghdad.
    [Show full text]
  • Bubble Sort: an Archaeological Algorithmic Analysis
    Bubble Sort: An Archaeological Algorithmic Analysis Owen Astrachan 1 Computer Science Department Duke University [email protected] Abstract 1 Introduction Text books, including books for general audiences, in- What do students remember from their first program- variably mention bubble sort in discussions of elemen- ming courses after one, five, and ten years? Most stu- tary sorting algorithms. We trace the history of bub- dents will take only a few memories of what they have ble sort, its popularity, and its endurance in the face studied. As teachers of these students we should ensure of pedagogical assertions that code and algorithmic ex- that what they remember will serve them well. More amples used in early courses should be of high quality specifically, if students take only a few memories about and adhere to established best practices. This paper is sorting from a first course what do we want these mem- more an historical analysis than a philosophical trea- ories to be? Should the phrase Bubble Sort be the first tise for the exclusion of bubble sort from books and that springs to mind at the end of a course or several courses. However, sentiments for exclusion are sup- years later? There are compelling reasons for excluding 1 ported by Knuth [17], “In short, the bubble sort seems discussion of bubble sort , but many texts continue to to have nothing to recommend it, except a catchy name include discussion of the algorithm after years of warn- and the fact that it leads to some interesting theoreti- ings from scientists and educators.
    [Show full text]
  • Data Structures & Algorithms
    DATA STRUCTURES & ALGORITHMS Tutorial 6 Questions SORTING ALGORITHMS Required Questions Question 1. Many operations can be performed faster on sorted than on unsorted data. For which of the following operations is this the case? a. checking whether one word is an anagram of another word, e.g., plum and lump b. findin the minimum value. c. computing an average of values d. finding the middle value (the median) e. finding the value that appears most frequently in the data Question 2. In which case, the following sorting algorithm is fastest/slowest and what is the complexity in that case? Explain. a. insertion sort b. selection sort c. bubble sort d. quick sort Question 3. Consider the sequence of integers S = {5, 8, 2, 4, 3, 6, 1, 7} For each of the following sorting algorithms, indicate the sequence S after executing each step of the algorithm as it sorts this sequence: a. insertion sort b. selection sort c. heap sort d. bubble sort e. merge sort Question 4. Consider the sequence of integers 1 T = {1, 9, 2, 6, 4, 8, 0, 7} Indicate the sequence T after executing each step of the Cocktail sort algorithm (see Appendix) as it sorts this sequence. Advanced Questions Question 5. A variant of the bubble sorting algorithm is the so-called odd-even transposition sort . Like bubble sort, this algorithm a total of n-1 passes through the array. Each pass consists of two phases: The first phase compares array[i] with array[i+1] and swaps them if necessary for all the odd values of of i.
    [Show full text]
  • 13 Basic Sorting Algorithms
    Concise Notes on Data Structures and Algorithms Basic Sorting Algorithms 13 Basic Sorting Algorithms 13.1 Introduction Sorting is one of the most fundamental and important data processing tasks. Sorting algorithm: An algorithm that rearranges records in lists so that they follow some well-defined ordering relation on values of keys in each record. An internal sorting algorithm works on lists in main memory, while an external sorting algorithm works on lists stored in files. Some sorting algorithms work much better as internal sorts than external sorts, but some work well in both contexts. A sorting algorithm is stable if it preserves the original order of records with equal keys. Many sorting algorithms have been invented; in this chapter we will consider the simplest sorting algorithms. In our discussion in this chapter, all measures of input size are the length of the sorted lists (arrays in the sample code), and the basic operation counted is comparison of list elements (also called keys). 13.2 Bubble Sort One of the oldest sorting algorithms is bubble sort. The idea behind it is to make repeated passes through the list from beginning to end, comparing adjacent elements and swapping any that are out of order. After the first pass, the largest element will have been moved to the end of the list; after the second pass, the second largest will have been moved to the penultimate position; and so forth. The idea is that large values “bubble up” to the top of the list on each pass. A Ruby implementation of bubble sort appears in Figure 1.
    [Show full text]
  • Sorting Partnership Unless You Sign Up! Brian Curless • Homework #5 Will Be Ready After Class, Spring 2008 Due in a Week
    Announcements (5/9/08) • Project 3 is now assigned. CSE 326: Data Structures • Partnerships due by 3pm – We will not assume you are in a Sorting partnership unless you sign up! Brian Curless • Homework #5 will be ready after class, Spring 2008 due in a week. • Reading for this lecture: Chapter 7. 2 Sorting Consistent Ordering • Input – an array A of data records • The comparison function must provide a – a key value in each data record consistent ordering on the set of possible keys – You can compare any two keys and get back an – a comparison function which imposes a indication of a < b, a > b, or a = b (trichotomy) consistent ordering on the keys – The comparison functions must be consistent • Output • If compare(a,b) says a<b, then compare(b,a) must say b>a • If says a=b, then must say b=a – reorganize the elements of A such that compare(a,b) compare(b,a) • If compare(a,b) says a=b, then equals(a,b) and equals(b,a) • For any i and j, if i < j then A[i] ≤ A[j] must say a=b 3 4 Why Sort? Space • How much space does the sorting • Allows binary search of an N-element algorithm require in order to sort the array in O(log N) time collection of items? • Allows O(1) time access to kth largest – Is copying needed? element in the array for any k • In-place sorting algorithms: no copying or • Sorting algorithms are among the most at most O(1) additional temp space.
    [Show full text]
  • Selected Sorting Algorithms
    Selected Sorting Algorithms CS 165: Project in Algorithms and Data Structures Michael T. Goodrich Some slides are from J. Miller, CSE 373, U. Washington Why Sorting? • Practical application – People by last name – Countries by population – Search engine results by relevance • Fundamental to other algorithms • Different algorithms have different asymptotic and constant-factor trade-offs – No single ‘best’ sort for all scenarios – Knowing one way to sort just isn’t enough • Many to approaches to sorting which can be used for other problems 2 Problem statement There are n comparable elements in an array and we want to rearrange them to be in increasing order Pre: – An array A of data records – A value in each data record – A comparison function • <, =, >, compareTo Post: – For each distinct position i and j of A, if i < j then A[i] ≤ A[j] – A has all the same data it started with 3 Insertion sort • insertion sort: orders a list of values by repetitively inserting a particular value into a sorted subset of the list • more specifically: – consider the first item to be a sorted sublist of length 1 – insert the second item into the sorted sublist, shifting the first item if needed – insert the third item into the sorted sublist, shifting the other items as needed – repeat until all values have been inserted into their proper positions 4 Insertion sort • Simple sorting algorithm. – n-1 passes over the array – At the end of pass i, the elements that occupied A[0]…A[i] originally are still in those spots and in sorted order.
    [Show full text]
  • Insertion Sort & Quick Sort
    Department of General and Computational Linguistics Sorting: Insertion Sort & Quick Sort Data Structures and Algorithms for CL III, WS 2019-2020 Corina Dima [email protected] MICHAEL GOODRICH Data Structures & Algorithms in Python ROBERTO TAMASSIA MICHAEL GOLDWASSER 12. Sorting and Selection v Why study sorting algorithms? v Insertion sort (S. 5.5.2) v Quick-sort v Optimizations for quick-sort Sorting: Insertion Sort & Quick Sort | 2 Why Study Sorting Algorithms? • Sorting is among the most important and well studied computing problems • Data is often stored in sorted order, to allow for efficient searching (i.e. with binary search) • Many algorithms rely on sorting as a subroutine • Programming languages have highly optimized, built-in sorting functions – which should be used - Python: sorted(), sort() from the list class - Java: Arrays.sort() Sorting: Insertion Sort & Quick Sort | 3 Why Study Sorting Algorithms? (cont’d) • Understand - what sorting algorithms do - what can be expected in terms of efficiency - how the efficiency of a sorting algorithm can depend on the initial ordering of the data or the type of objects being sorted Sorting: Insertion Sort & Quick Sort | 4 Sorting • Given a collection, rearrange its elements such that they are ordered from smallest to largest – or produce a new copy of the sequence with such an order • We assume that such a consistent order exists • In Python, natural order is typically defined using the < operator, having two properties: - Irreflexive property: " ≮ " - Transitive property:
    [Show full text]
  • Lecture 8.Key
    CSC 391/691: GPU Programming Fall 2015 Parallel Sorting Algorithms Copyright © 2015 Samuel S. Cho Sorting Algorithms Review 2 • Bubble Sort: O(n ) 2 • Insertion Sort: O(n ) • Quick Sort: O(n log n) • Heap Sort: O(n log n) • Merge Sort: O(n log n) • The best we can expect from a sequential sorting algorithm using p processors (if distributed evenly among the n elements to be sorted) is O(n log n) / p ~ O(log n). Compare and Exchange Sorting Algorithms • Form the basis of several, if not most, classical sequential sorting algorithms. • Two numbers, say A and B, are compared between P0 and P1. P0 P1 A B MIN MAX Bubble Sort • Generic example of a “bad” sorting 0 1 2 3 4 5 algorithm. start: 1 3 8 0 6 5 0 1 2 3 4 5 Algorithm: • after pass 1: 1 3 0 6 5 8 • Compare neighboring elements. • Swap if neighbor is out of order. 0 1 2 3 4 5 • Two nested loops. after pass 2: 1 0 3 5 6 8 • Stop when a whole pass 0 1 2 3 4 5 completes without any swaps. after pass 3: 0 1 3 5 6 8 0 1 2 3 4 5 • Performance: 2 after pass 4: 0 1 3 5 6 8 Worst: O(n ) • 2 • Average: O(n ) fin. • Best: O(n) "The bubble sort seems to have nothing to recommend it, except a catchy name and the fact that it leads to some interesting theoretical problems." - Donald Knuth, The Art of Computer Programming Odd-Even Transposition Sort (also Brick Sort) • Simple sorting algorithm that was introduced in 1972 by Nico Habermann who originally developed it for parallel architectures (“Parallel Neighbor-Sort”).
    [Show full text]
  • Advanced Topics in Sorting
    Advanced Topics in Sorting complexity system sorts duplicate keys comparators 1 complexity system sorts duplicate keys comparators 2 Complexity of sorting Computational complexity. Framework to study efficiency of algorithms for solving a particular problem X. Machine model. Focus on fundamental operations. Upper bound. Cost guarantee provided by some algorithm for X. Lower bound. Proven limit on cost guarantee of any algorithm for X. Optimal algorithm. Algorithm with best cost guarantee for X. lower bound ~ upper bound Example: sorting. • Machine model = # comparisons access information only through compares • Upper bound = N lg N from mergesort. • Lower bound ? 3 Decision Tree a < b yes no code between comparisons (e.g., sequence of exchanges) b < c a < c yes no yes no a b c b a c a < c b < c yes no yes no a c b c a b b c a c b a 4 Comparison-based lower bound for sorting Theorem. Any comparison based sorting algorithm must use more than N lg N - 1.44 N comparisons in the worst-case. Pf. Assume input consists of N distinct values a through a . • 1 N • Worst case dictated by tree height h. N ! different orderings. • • (At least) one leaf corresponds to each ordering. Binary tree with N ! leaves cannot have height less than lg (N!) • h lg N! lg (N / e) N Stirling's formula = N lg N - N lg e N lg N - 1.44 N 5 Complexity of sorting Upper bound. Cost guarantee provided by some algorithm for X. Lower bound. Proven limit on cost guarantee of any algorithm for X.
    [Show full text]
  • Sorting Algorithm 1 Sorting Algorithm
    Sorting algorithm 1 Sorting algorithm In computer science, a sorting algorithm is an algorithm that puts elements of a list in a certain order. The most-used orders are numerical order and lexicographical order. Efficient sorting is important for optimizing the use of other algorithms (such as search and merge algorithms) that require sorted lists to work correctly; it is also often useful for canonicalizing data and for producing human-readable output. More formally, the output must satisfy two conditions: 1. The output is in nondecreasing order (each element is no smaller than the previous element according to the desired total order); 2. The output is a permutation, or reordering, of the input. Since the dawn of computing, the sorting problem has attracted a great deal of research, perhaps due to the complexity of solving it efficiently despite its simple, familiar statement. For example, bubble sort was analyzed as early as 1956.[1] Although many consider it a solved problem, useful new sorting algorithms are still being invented (for example, library sort was first published in 2004). Sorting algorithms are prevalent in introductory computer science classes, where the abundance of algorithms for the problem provides a gentle introduction to a variety of core algorithm concepts, such as big O notation, divide and conquer algorithms, data structures, randomized algorithms, best, worst and average case analysis, time-space tradeoffs, and lower bounds. Classification Sorting algorithms used in computer science are often classified by: • Computational complexity (worst, average and best behaviour) of element comparisons in terms of the size of the list . For typical sorting algorithms good behavior is and bad behavior is .
    [Show full text]
  • Selection Sort
    Sorting Selection Sort · Sorting and searching are among the most common ð The list is divided into two sublists, sorted and unsorted, programming processes. which are divided by an imaginary wall. · We want to keep information in a sensible order. ð We find the smallest element from the unsorted sublist - alphabetical order and swap it with the element at the beginning of the - ascending/descending order unsorted data. - order according to names, ids, years, departments etc. ð After each selection and swapping, the imaginary wall between the two sublists move one element ahead, · The aim of sorting algorithms is to put unordered increasing the number of sorted elements and decreasing information in an ordered form. the number of unsorted ones. · There are many sorting algorithms, such as: ð Each time we move one element from the unsorted - Selection Sort sublist to the sorted sublist, we say that we have - Bubble Sort completed a sort pass. - Insertion Sort - Merge Sort ð A list of n elements requires n-1 passes to completely - Quick Sort rearrange the data. · The first three are the foundations for faster and more efficient algorithms. 1 2 Selection Sort Example Selection Sort Algorithm /* Sorts by selecting smallest element in unsorted portion of array and exchanging it with element Sorted Unsorted at the beginning of the unsorted list. Pre list must contain at least one item last contains index to last element in list Post list is rearranged smallest to largest */ 23 78 45 8 32 56 Original List void selectionSort(int list[], int last)
    [Show full text]