Anet Newsletter 8

Total Page:16

File Type:pdf, Size:1020Kb

Anet Newsletter 8 30 APRIL 2006 No. 8 ANeT Newsletter International Network for the Study of Asian Ants / DIWPA Network for Social Insect Collections / DIVERSITAS in West Pacific and Asia Proceedings of Committee Meeting of 5th ANeT Workshop Minutes prepared by: Prof. Datin Dr. Maryati Mohamed Institute for Tropical Biology & Conservation Universiti Malaysia Sabah, MALAYSIA Place and Date of the Committee Meeting Committee meeting of 5th ANeT Workshop was held on 30th November 2005 at the National Museum, Kuala Lumpur. The meeting started at 12.30 with a discussion on the draft of Action Plan tabled by Dr. John Fellowes and meeting then chaired by Prof. Maryati Mohamed at 1.00 pm. Meeting adjourned at 3.00 p.m. Members Attending Prof. Maryati Mohamed, the President of ANeT (Malaysia) Prof. Seiki Yamane (Japan) Prof. Kazuo Ogata (Japan) Dr. Rudy Kohout (Australia) Dr. John R. Fellowes (Hong Kong/UK) Mr. Suputa (Indonesia) Dr. Yoshiaki Hashimoto (Japan) Dr. Decha Wiwatwitaya (Thailand) Dr. Bui Tuan Viet (Vietnam) Dr. Himender Bharti (India) Dr. Sriyani Dias (Sri Lanka) Mr. Bakhtiar Effendi Yahya, the Secretariat of ANeT (Japan) Ms. Petherine Jimbau, the Secretariat of ANeT (Malaysia) Agenda Agreed 1. Discussion on Proposal on Action Plan as tabled by Dr. John Fellowes 2. Proceedings/Journal 3. Next meeting - 6th ANeT Seminar and Meeting (date and venue) 4. New members and structure of committee membership 5. Any other business ANeT Newsletter No. 8. 30 April 2006 Agenda Item 1: Discussion on Proposal on Action Plan as tabled by Dr. John Fellowes Draft of Proposal was distributed. During the discussion no amendments were proposed to the draft Action Plan objectives. The main issue discussed was setting up of a common coding system for ants of Asian region. Members agreed: 1. Due to the slow process of taxonomic review and the need for internationally-standardised nomenclature, we need a coding system to cover both described and undescribed species from Asia, as held in the ANeT collections. 2. Geographical range of collection to use the common coding system for ANeT ant is the Oriental region plus Sulawesi and Iran. 3. Code agreed is exemplified as: Tetramorium (subgenus) ANET 001 (the ANET spelling is all capital letters and the number of 0s depend on size of genus. Subgenus is optional. Genus and subgenus in italics.) 4. All ants will be coded. This means that some may have even had confirmed species name. Example: Tetramorium ANET 001 is Tetramorium bicarinatum. 5. For the next two years (November 2005 to November 2007) Dr. Rudy Kohout is given the honour to start the system going using Polyrhachis and Echinopla. The system will be reviewed in the 6th ANeT Seminar and Meeting. If it is successful and practical, and acceptable to many members, then allocation of other members who are keen to be manager of particular genera will follow. This will then become the unified system of species coding for ants for ANeT. The list is to be databased on Excel. 6. The draft objectives of the Action Plan will be given out to members for comment, which should be submitted to Dr. John Fellowes by middle of December 2005. Members will also be invited to participate in the Plan. 7. John will then coordinate the Plan compilation, ready for discussion of recommended actions at ANeT 2007. Agenda Item 2: Proceedings/Journal 1. The President proposed that a journal be initiated because ANeT is now 7 years old and has a good number of members doing high quality research on ants. The journal would give ANeT an identity and provide opportunity for younger members to start writing good scientific papers on ants. However, it is not a must that all members must submit to the journal. 2. The names of the journal proposed were ASIAN MYRMECOLOGY and ASIAN ANTS, the first being favoured by the committee. The President will seek an ISSN number and registration that will also determine the name. 3. A committee for the journal was proposed and they are: i. Advisor : Prof. Maryati Mohamed ii. Editors : Dr. Martin Pfeiffer and Dr. John Fellowes iii. Editorial board (to be confirmed after further discussion) 4. Rudy volunteered to design the cover and the size agreed is B5. Format is as in ANeT first Proceedings. 5. A managing editor (Ms. Petherine Jimbau) will be stationed at Universiti Malaysia Sabah. ANeT Newsletter No. 8. 30 APRIL 2006 Submitted manuscripts will be sent to the Editors to handle the review process. Final accepted manuscripts will be sent to either Ms. Petherine / Mr. Bakhtiar or both for journal publication. 6. Where appropriate, members are encouraged to submit their presentations made during the 5th ANeT Seminar and Meeting to the journal by August 2006. A six-month editing period is expected, followed by 2 months of finalization and printing. The first journal is expected to be out by mid-2007. 7. Besides presentations made at the 5th Seminar and Meeting, members may send other papers about ants from their research [from time to time]. The scope will include Taxonomy and Biogeography, Ecology and Conservation and Applied Myrmecology. 8. The President will find funding to cover the cost of managing and printing the journal and it will be published every two years. [9. Post-meeting note: Martin Pfeiffer agreed to be co-editor of the journal; John and Martin were to draft guidelines for submission, and a proposed editorial board, for approval by the ANeT Committee in May 2006.] Agenda Item 3: Next Meeting - 6th ANeT Seminar and Meeting (Date and Venue) After some discussions, members agreed that the 6th ANeT Seminar and Meeting will be in India at the end of October 2007. Agenda Item 4: New Members and Structure of Committee Membership 1. By December 2004, there were 54 members. By 30th November 2005 the total number of members was 61. The updated list of names of members will be provided by the secretariat. The breakdown of representation is as below: 2. The President reported that there is about RM 683.35 from previous fee collection, and Bakhtiar reported about RMl,000 fee had been collected in this meeting. 3. Members decided to set up a more structured Committee to reflect the size of ANeT and ensure effective division of responsibilities. A clear and simple constitution will be proposed and discussed for members' approval at ANeT 2007. In the meantime the committee is as follows, with the names of members volunteering to assist in the respective portfolios: President: Prof. Datin Dr. Maryati Mohamed Vice President / Coordinating Secretariat for 6th ANeT Seminar & Meeting 2007: Dr. Himender Bharti ANeT Newsletter No. 8. 30 APRIL 2006 Secretaries: Mr. Bakhtiar Effendi Yahya (Kagoshima University, Japan) & Ms. Petherine Jimbau (UMS, Malaysia) Treasurer: Ms. Petherine Jimbau Committee Members: Action Plan: Dr. John Fellowes Newsletter: Prof. Seiki Yamane, Dr. Decha Wiwatwitaya & Dr. Katsuyuki Eguchi Journal: Dr. John Fellowes & Dr. Martin Pfeiffer Other members: Dr. Bui Tuan Viet (Vietnam); Dr. Sriyani Dias (Sri Lanka); Dr. Yoshiaki Hashimoto (Japan); Dr. Rudy Kohout (Australia); Prof. Kazuo Ogata (Japan); Mr. Suputa (Indonesia). 4. There was a suggestion that other ANeT members may be nominated for Committee Membership, when there is a proposal by any member of ANeT and endorsed by Committee Members, during the next meeting. This suggestion will be incorporated in the draft constitution. Agenda Item 5: Any Other Business These are some comments and suggestions by members: J. R. Fellowes: I'm not sure about previous members such as Prof. Kim, Dr. Erwin etc. who couldn't attend this workshop, or Dr. Rosli who could not attend the committee meeting. Also Eguchi san, who has been a central player in ANeT throughout. I would suggest all these are included in the provisional committee membership, but that by 2007 we need greater clarity on committee membership, its responsibilities and its duration, so that all members can understand the system. Sk. Yamane: Also remind secretariat to inform members that articles for the newsletter must be submitted by the second week of December 2005, so that it can be published by the end of December 2005. [Post-meeting note: deadline postponed until the end of March?] H. Bharti: Suggest that other members of ANeT should also start work on coding species of their specific genus. J. R. Fellowes: Suggest that more communication between committee members be made through emails. ANeT Newsletter No. 8. 30 APRIL 2006 [Research Plan] A First Step toward a Classification of Crematogaster in Asia Shingo HOSOISHI Institute of Tropical Agriculture, Kyushu University, Fukuoka, 812-8581 JAPAN E-mail: [email protected] Background Many myrmecologists know that the genus Crematogaster is one of the most common ants occurring worldwide and most speciose in the tropics. The ants are easy to recognize but difficult to identify to species. The genus is conventionally divided into 16 subgenera, with approximately 400 described species in the world (Bolton, 1993). In Asia, about 200 species and subspecies have been named, in 11 subgenera, but the taxonomy is far from complete. If we could have more reliable groupings, we would be able to add further information to unnamed species (or those that are difficult to identify), like "subgenus A" or "sp. cf. x group". Here I would like to give a brief outline of Crematogaster in Asia as a first step to a comprehensive revision. Subgenus-level classification was established in the slightly different systems of Wheeler (1922) and Emery (1922). The former included 13 subgenera and the latter 11 subgenera: Rhachiocrema and Neocrema were independent subgenera in Wheeler's but were included in Orthocrema in Emery's; Eucrema was independent in Wheeler's but was included in Crematogaster in Emery's, while conversely Acrocoelia was separated from Crematogaster in Emery's.
Recommended publications
  • New Records of the Rare Ant Species (Hymenoptera, Formicidae) in Poland
    B ALTIC COASTAL ZONE Vol. 24 pp. 73–80 2020 ISSN 2083-5485 © Copyright by Institute of Modern Languages of the Pomeranian University in Słupsk Received: 7/04/2021 Original research paper Accepted: 25/05/2021 NEW RECORDS OF THE RARE ANT SPECIES (HYMENOPTERA, FORMICIDAE) IN POLAND Alexander Radchenko1, Oleg Aleksandrowicz2 1 Schmalhausen Institute of Zoology NAS of Ukraine, B. Khmelnitskogo str., 15, Kiev-30, 01-630, Ukraine e-mail: [email protected] 2 Institute of Biology and Earth Sciences, Pomeranian University in Słupsk, Poland e-mail: [email protected] Abstract There are two rare ant’s species were found on the northern part of the Wielkie Bagno peat bog in Słowiński National Park. More than 10 workers of Formica picea and four dealate gynes of Myrmica karavajevi were collected in pitfall traps 2-12 of August 2006. Key words: rare ant species, Hymenoptera, Formicidae, Słowiński National Park INTRODUCTION At present, 104 species of ants from 25 genera of 4 subfamilies are known in Poland (Salata and Borowiec 2011, Czechowski et al. 2012), among which there are a couple of rare species, including Formica picea Nylander, 1846 and Myrmica karavajevi (Arnoldi 1930). Both of them are known from sporadic fi nds in various regions of Poland (see below), and one of the authors of this article had collected them on the territory of the Słowiński National Park (Baltic Shore). STUDY AREA The Wielkie Bagno (Great Bog) is a raised bog of the Baltic type (UTM XA56; 54°41’44.55”N 17°29’6.90”E). Its northern part located on the territory of the Słow- iński National Park (Fig.
    [Show full text]
  • Effects on Brood Development in the Carpenter Ant Camponotus Vicinus Mayr After Exposure to the Yeast Associate Schwanniomyces Polymorphus Kloecker
    insects Article Effects on Brood Development in the Carpenter Ant Camponotus vicinus Mayr after Exposure to the Yeast Associate Schwanniomyces polymorphus Kloecker Mark E. Mankowski 1,*, Jeffrey J. Morrell 2 and Patricia K. Lebow 3 1 Forest Products Laboratory Starkville, USDA Forest Service, Starkville, MS 39759, USA 2 Centre Timber Durability and Design Life, University of the Sunshine Coast, Sippy Downs, QLD 4102, Australia; [email protected] 3 Forest Products Laboratory Madison, USDA Forest Service, Madison, WI 53726, USA; [email protected] * Correspondence: [email protected] Simple Summary: Carpenter ants are important to ecosystem services as they assist in the breakdown of course woody debris when excavating wood for nests. Feeding on a variety of carbohydrate and protein sources, they have an infrabuccal filter that limits passage of large food particles to their gut. A variety of yeasts have been found associated with the infrabuccal pocket and the nests of these ants. The yeast Schwanniomyces polymorphus is associated with the carpenter ant Camponotus vicinus. To examine a possible nutritional association between this yeast and ant, we reared small sub-colonies of defaunated and non-defaunated C. vincus brood on several artificial diets where various nutritional components were removed. Part of the testing involved exposure of brood to these diets and cells of S. polymorphus. Dietary treatments that were augmented with yeast generally had deleterious Citation: Mankowski, M.E.; Morrell, J.J.; effects on brood development compared to diets without yeast. However, increased brood weight Lebow, P.K. Effects on Brood and increased number of adult ants from initial brood was observed in non-defaunated ants fed a Development in the Carpenter Ant diet where B vitamins and sterols were absent, but augmented with live yeast.
    [Show full text]
  • Does Argentine Ant Invasion Conserve Colouring Variation of Myrmecomorphic Jumping Spider?
    Open Journal of Animal Sciences, 2014, 4, 144-151 Published Online June 2014 in SciRes. http://www.scirp.org/journal/ojas http://dx.doi.org/10.4236/ojas.2014.43019 Argentine Ant Affects Ant-Mimetic Arthropods: Does Argentine Ant Invasion Conserve Colouring Variation of Myrmecomorphic Jumping Spider? Yoshifumi Touyama1, Fuminori Ito2 1Niho, Minami-ku, Hiroshima City, Japan 2Laboratory of Entomology, Faculty of Agriculture, Kagawa University, Ikenobe, Japan Email: [email protected] Received 23 April 2014; revised 3 June 2014; accepted 22 June 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Argentine ant invasion changed colour-polymorphic composition of ant-mimetic jumping spider Myrmarachne in southwestern Japan. In Argentine ant-free sites, most of Myrmarachne exhibited all-blackish colouration. In Argentine ant-infested sites, on the other hand, blackish morph de- creased, and bicoloured (i.e. partly bright-coloured) morphs increased in dominance. Invasive Argentine ant drives away native blackish ants. Disappearance of blackish model ants supposedly led to malfunction of Batesian mimicry of Myrmarachne. Keywords Batesian Mimicry, Biological Invasion, Linepithema humile, Myrmecomorphy, Myrmarachne, Polymorphism 1. Introduction It has attracted attention of biologists that many arthropods morphologically and/or behaviorally resemble ants [1]-[4]. Resemblance of non-ant arthropods to aggressive and/or unpalatable ants is called myrmecomorphy (ant-mimicry). Especially, spider myrmecomorphy has been described through many literatures [5]-[9]. Myr- mecomorphy is considered to be an example of Batesian mimicry gaining protection from predators.
    [Show full text]
  • Formica Uralensis Ruzsky (Hymenoptera: Formicidae) in Poland
    FRAGMENTA FAUNISTICA 48 (2): 175–180, 2005 PL ISSN 0015-9301 © MUSEUM AND INSTITUTE OF ZOOLOGY PAS Formica uralensis Ruzsky (Hymenoptera: Formicidae) in Poland Anna M. STANKIEWICZ*, Marcin SIELEZNIEW**, Marek L. BOROWIEC*** and Wojciech CZECHOWSKI* *Laboratory of Social and Myrmecophilous Insects, Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warsaw, Poland; e-mails: [email protected], [email protected] **Department of Applied Entomology, SGGW-Warsaw Agriculture University, Nowoursynowska 159, 02-776 Warsaw, Poland; e-mail: [email protected] ***Zoological Institute, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław; e-mail: [email protected] Abstract: Formica uralensis Ruzs. is a boreo-montane ant species, common to the area east of the Ural Mts, but very scarce and relict in Europe, where is occurs almost exclusively in peat bogs. In Poland, the species was known only from one site, Bagno Rakowskie, a peat bog near Frampol, the Roztocze Uplands, where it was found half a century ago. The current presence of the species there is confirmed and two new localities are reported in the Lublin Uplands: in a peat bog in the Moszne Lake nature reserve within the Polesie National Park and in a marshy meadow near the Buzornica peat bog at Kosyń within the śółwiowe Błota nature reserve. Key words: ants, Formica uralensis, relict species, peatland fauna, Poland INTRODUCTION Formica uralensis Ruzs. is a widely distributed boreo-montane species. Its northern range limit is a little south of the northern border of the forest zone, and the southern limit runs across Ukraine, the upper course of the Ural River and the Altay Mts, reaching the Pacific shores in the east.
    [Show full text]
  • Larvae of the Green Lacewing Mallada Desjardinsi (Neuroptera: Chrysopidae) Protect Themselves Against Aphid-Tending Ants by Carrying Dead Aphids on Their Backs
    Appl Entomol Zool (2011) 46:407–413 DOI 10.1007/s13355-011-0053-y ORIGINAL RESEARCH PAPER Larvae of the green lacewing Mallada desjardinsi (Neuroptera: Chrysopidae) protect themselves against aphid-tending ants by carrying dead aphids on their backs Masayuki Hayashi • Masashi Nomura Received: 6 March 2011 / Accepted: 11 May 2011 / Published online: 28 May 2011 Ó The Japanese Society of Applied Entomology and Zoology 2011 Abstract Larvae of the green lacewing Mallada desj- Introduction ardinsi Navas are known to place dead aphids on their backs. To clarify the protective role of the carried dead Many ants tend myrmecophilous homopterans such as aphids against ants and the advantages of carrying them for aphids and scale insects, and utilize the secreted honeydew lacewing larvae on ant-tended aphid colonies, we carried as a sugar resource; in return, the homopterans receive out some laboratory experiments. In experiments that beneficial services from the tending ants (Way 1963; Breton exposed lacewing larvae to ants, approximately 40% of the and Addicott 1992; Nielsen et al. 2010). These mutualistic larvae without dead aphids were killed by ants, whereas no interactions between ants and homopterans reduce the larvae carrying dead aphids were killed. The presence of survival and abundance of other arthropods, including the dead aphids did not affect the attack frequency of the non-honeydew-producing herbivores and other predators ants. When we introduced the lacewing larvae onto plants (Bristow 1984; Buckley 1987; Suzuki et al. 2004; Kaplan colonized by ant-tended aphids, larvae with dead aphids and Eubanks 2005), because the tending ants become more stayed for longer on the plants and preyed on more aphids aggressive and attack arthropods that they encounter on than larvae without dead aphids.
    [Show full text]
  • List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti
    List of Indian Ants (Hymenoptera: Formicidae) Himender Bharti Department of Zoology, Punjabi University, Patiala, India - 147002. (email: [email protected]/[email protected]) (www.antdiversityindia.com) Abstract Ants of India are enlisted herewith. This has been carried due to major changes in terms of synonymies, addition of new taxa, recent shufflings etc. Currently, Indian ants are represented by 652 valid species/subspecies falling under 87 genera grouped into 12 subfamilies. Keywords: Ants, India, Hymenoptera, Formicidae. Introduction The following 652 valid species/subspecies of myrmecology. This species list is based upon the ants are known to occur in India. Since Bingham’s effort of many ant collectors as well as Fauna of 1903, ant taxonomy has undergone major myrmecologists who have published on the taxonomy changes in terms of synonymies, discovery of new of Indian ants and from inputs provided by taxa, shuffling of taxa etc. This has lead to chaotic myrmecologists from other parts of world. However, state of affairs in Indian scenario, many lists appeared the other running/dynamic list continues to appear on web without looking into voluminous literature on http://www.antweb.org/india.jsp, which is which has surfaced in last many years and currently periodically updated and contains information about the pace at which new publications are appearing in new/unconfirmed taxa, still to be published or verified. Subfamily Genus Species and subspecies Aenictinae Aenictus 28 Amblyoponinae Amblyopone 3 Myopopone
    [Show full text]
  • Ants 06175.Pdf Download
    FAUNA ENTOMOLOGICA SCANDINAVICA VolumeS 1979 The Formicidae (Hymenoptera) of Fennoscandia and Denmark by C. A. Collingwood co SCANDINAVIAN SCIENCE PRESS LTD. KJampenborg . Denmark 450053 Contents Introduction 9 Diagnosis and morphology 1 1 Bionomics and ecology 17 Distribution and faunistics 19 Nomenclature and systematics 25 Collecting, preserving and keeping 28 Key to subfamilies of Formicidae 28 Subfamily Ponerinae Lepeletier 29 Genus Hypoponera Santschi 30 Genus Ponera Latreille 32 Subfamily Dolichoderinae Forel 32 Genus Iridomyrmex Mayr 33 Genus Tapinoma Forster 34 Subfamily Myrmicinae Lepeletier 36 Genus Myrmica Latreille 40 Genus Sifotinia Emery 58 Genus Stenamma Westwood 60 Genus Pheidole Westwood 61 Genus Monomorium Mayr 62 Genus Diplorhoptnan Mayr 64 Genus Crematogaster Lund 66 Genus Myrmecina Curtis 67 Genus Leptothorax Mayr 68 Genus Fonnicoxentu Mayr 77 Genus Harpagoxema Forel 78 Genus Anergates Forel 79 Genus Strongylognathus Mayr 80 Genus Tetramorium Mayr 82 Subfamily Formicinae Lepeletier 85 Genus Camponotus Mayr 86 Genus Lasius Fabricius 92 Genus Paratrechina Motschulsky 108 Genus Plagiolepis Mayr ,. 110 Genus Formica Linni Ill Genus Polyergus Latreille 155 Catalogue 157 Literature 166 Index 172 Introduction The only reference work for European Formicidac that includes descriptions of most of the species found in Denmark and Fennoscandia is that of Stitz (1939). Redefinitions of certain species, nomenclature changes, the discovery of a few additional species as well as many new distribution records have inevitably made the systematic part of that work 'out of date. The most recent and valuable work dealing substantially with the same fauna is that of Kutter (1977) which, although restricted formally to the species actually recorded within Switzerland, makes descriptive reference to the very few ad- ditional species that occur in Fennoscandia.
    [Show full text]
  • Exotic Ants in Denmark (Hymenoptera: Formicidae) Eksotiske Myrer I Danmark (Hymenoptera: Formicidae)
    Exotic ants in Denmark (Hymenoptera: Formicidae) Eksotiske myrer i Danmark (Hymenoptera: Formicidae) Sämi Schär1*, Anders A. Illum2 & Rasmus Stenbak Larsen1,2 1 Centre for Social Evolution, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark 2Natural History Museum of Denmark, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark *Corresponding author, e-mail: [email protected] Abstract The number of exotic and invasive tramp organisms is increasing rapidly in the age of global trade. Ants can be particularly problematic when introduced into new ecosystems by human activities. Here we present a list of 30 exotic ant species so far introduced to Denmark. A total of 16 species temporarily established colonies inside heated buildings. Another 14 species were only sporadically introduced to the country with cargo, without documented establishment. In a search for exotic ants in five Danish hothouse complexes in the years 2013-2015, we recorded a total of ten species (Anochetus mayri, Gnamptogenys striatula, Hypoponera ergatandria, H. punctatissima, Linepithema angulatum, Neoponera unidentata, Strumigenys rogeri, Technomyrmex albipes, T. vitiensis and Solenopsis sp.). Of these, only H. punctatissima and Technomymex spp. have previously been found in Denmark and A. mayri was to our knowledge not reported from Europe before. We conclude that exotic ant communities in greenhouses are subject to turnover and that the number of exotic ant species distributed with plants likely increased in recent time. Finally, we discuss the potential of the observed species to become pests outside their native ranges. Dansk sammendrag Antallet af eksotiske og invasive organismer er stærkt stigende i takt med globaliseringen og den stigende internationale handel.
    [Show full text]
  • Forestry Department Food and Agriculture Organization of the United Nations
    Forestry Department Food and Agriculture Organization of the United Nations Forest Health & Biosecurity Working Papers OVERVIEW OF FOREST PESTS KENYA January 2007 Forest Resources Development Service Working Paper FBS/20E Forest Management Division FAO, Rome, Italy Forestry Department DISCLAIMER The aim of this document is to give an overview of the forest pest1 situation in Kenya. It is not intended to be a comprehensive review. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. © FAO 2007 1 Pest: Any species, strain or biotype of plant, animal or pathogenic agent injurious to plants or plant products (FAO, 2004). Overview of forest pests - Kenya TABLE OF CONTENTS Introduction..................................................................................................................... 1 Forest pests...................................................................................................................... 1 Naturally regenerating forests..................................................................................... 1 Insects ..................................................................................................................... 1 Diseases..................................................................................................................
    [Show full text]
  • Effects on Brood Development in the Carpenter Ant Camponotus Vicinus Mayr After Exposure to the Yeast Associate Schwanniomyces Polymorphus Kloecker
    insects Article Effects on Brood Development in the Carpenter Ant Camponotus vicinus Mayr after Exposure to the Yeast Associate Schwanniomyces polymorphus Kloecker Mark E. Mankowski 1,*, Jeffrey J. Morrell 2 and Patricia K. Lebow 3 1 Forest Products Laboratory Starkville, USDA Forest Service, Starkville, MS 39759, USA 2 Centre Timber Durability and Design Life, University of the Sunshine Coast, Sippy Downs, QLD 4102, Australia; [email protected] 3 Forest Products Laboratory Madison, USDA Forest Service, Madison, WI 53726, USA; [email protected] * Correspondence: [email protected] Simple Summary: Carpenter ants are important to ecosystem services as they assist in the breakdown of course woody debris when excavating wood for nests. Feeding on a variety of carbohydrate and protein sources, they have an infrabuccal flter that limits passage of large food particles to their gut. A variety of yeasts have been found associated with the infrabuccal pocket and the nests of these ants. The yeast Schwanniomyces polymorphus is associated with the carpenter ant Camponotus vicinus. To examine a possible nutritional association between this yeast and ant, we reared small sub-colonies of defaunated and non-defaunated C. vincus brood on several artifcial diets where various nutritional components were removed. Part of the testing involved exposure of brood to these diets and cells of S. polymorphus. Dietary treatments that were augmented with yeast generally had deleterious Citation: Mankowski, M.E.; Morrell, J.J.; effects on brood development compared to diets without yeast. However, increased brood weight Lebow, P.K. Effects on Brood and increased number of adult ants from initial brood was observed in non-defaunated ants fed a Development in the Carpenter Ant diet where B vitamins and sterols were absent, but augmented with live yeast.
    [Show full text]
  • See Under CAMPONOTUS. Naefi. Formica (Coptoformica) Naefi Kutter, 1957: 4, Figs
    nacerda Norton, 1868; see under CAMPONOTUS. naefi. Formica (Coptoformica) naefi Kutter, 1957: 4, figs. 1-6 (w.q.m.) SWITZERLAND. Status as species: Bernard, 1967: 325 (redescription); Kutter, 1968a: 61; Kutter, 1977c: 285; Agosti & Collingwood, 1987b: 285 (in key); Bolton, 1995b: 199; Petrov, 2006: 111 (in key) (error). Junior synonym of foreli: Seifert, 2000a: 543; Radchenko, 2016: 312. nahua. Formica microgyna subsp. rasilis var. nahua Wheeler, W.M. 1913f: 562 (w.q.m.) MEXICO (Hidalgo); unavailable (infrasubspecific) name. As unavailable (infrasubspecific) name: Wheeler, W.M. 1917a: 542; Emery, 1925b: 256. Declared as unavailable (infrasubspecific) name: Bolton, 1995b: 199. nana. Formica nana Latreille, 1802c: 263 (w.) FRENCH GUIANA, SURINAME. Unidentifiable to genus; incertae sedis in Formica: Bolton, 1995b: 199. [Note: Latreille, 1802c: 263, Mayr, 1863: 418, Dalla Torre, 1893: 206, and Kempf, 1972a: 260, give pusilla as a senior synonym of nana Latreille, but both are unidentifiable.] nana Jerdon, 1851; see under TAPINOMA. nana Smith, F. 1858; see under CAMPONOTUS. nastata, misspelling, see under hastata. nasuta Nylander, 1856; see under PROFORMICA. natalensis Smith, F. 1858; see under CAMPONOTUS. nemoralis. Formica nemoralis Dlussky, 1964: 1037, figs. 2(3, 8), 3 (9) (w.m.) RUSSIA. Status as species: Dlussky & Pisarski, 1971: 197 (redescription); Arnol'di & Dlussky, 1978: 552 (in key). Junior synonym of forsslundi: Dlussky, 1967a: 105; Collingwood, 1971: 167; Bolton, 1995b: 199. Junior synonym of exsecta: Seifert, 2000a: 526; Radchenko, 2016: 309. neocinerea. Formica cinerea var. neocinerea Wheeler, W.M. 1913f: 399 (in key) (w.q.m.) U.S.A. (Illinois). [Formica cinerea var. neocinerea Wheeler, W.M. 1910g: 571. Nomen nudum.] As unavailable (infrasubspecific) name: Wheeler, W.M.
    [Show full text]
  • Ants - White-Footed Ant (360)
    Pacific Pests and Pathogens - Fact Sheets https://apps.lucidcentral.org/ppp/ Ants - white-footed ant (360) Photo 1. White-footed ant, Technomyrmex species, Photo 2. White-footed ant, Technomyrmex species, tending an infestation of Icerya seychellarum on tending an infestation of mealybugs on noni (Morinda avocado for their honeydew. citrifolia) for their honeydew. Photo 3. White-footed ant, Technomyrmex albipes, side Photo 4. White-footed ant, Technomyrmex albipes, view. from above. Photo 5. White-footed ant, Technomyrmex albipes; view of head. Common Name White-footed ant; white-footed house ant. Scientific Name Technomyrmex albipes. Identification of the ant requires expert examination as there are several other species that are similar. Many specimens previously identified as Technomyrmex albipes have subsequently been reidentified as Technomyrmex difficilis (difficult white-footed ant) or as Technomyrmex vitiensis (Fijian white-footed ant), which also occurs worldwide. Distribution Worldwide. Asia, Africa, North and South America (restricted), Caribbean, Europe (restricted), Oceania. It is recorded from Australia, Cook Islands, Federated States of Micronesia, Fiji, Guam, Marshall Islands, New Caledonia, New Zealand, Niue, Palau, Papua New Guinea, Pitcairn, Samoa, Solomon Islands, Tokelau, Wallis and Futuna. Hosts Tent-like nests made of debris occur on the ground within leaf litter, under stones or wood, among leaves of low vegetation, in holes, crevices and crotches of stems and trunks, in the canopies of trees, and on fruit. The ants also make nests in wall cavities of houses, foraging in kitchens and bathrooms. Symptoms & Life Cycle Damage to plants is not done directly by Technomyrmex albipes, but indirectly. The ants feed on honeydew of aphids, mealybugs, scale insects and whiteflies, and prevent the natural enemies of these pests from attacking them.
    [Show full text]