Interior-Point Methods for Optimization
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
University of California, San Diego
UNIVERSITY OF CALIFORNIA, SAN DIEGO Computational Methods for Parameter Estimation in Nonlinear Models A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Physics with a Specialization in Computational Physics by Bryan Andrew Toth Committee in charge: Professor Henry D. I. Abarbanel, Chair Professor Philip Gill Professor Julius Kuti Professor Gabriel Silva Professor Frank Wuerthwein 2011 Copyright Bryan Andrew Toth, 2011 All rights reserved. The dissertation of Bryan Andrew Toth is approved, and it is acceptable in quality and form for publication on microfilm and electronically: Chair University of California, San Diego 2011 iii DEDICATION To my grandparents, August and Virginia Toth and Willem and Jane Keur, who helped put me on a lifelong path of learning. iv EPIGRAPH An Expert: One who knows more and more about less and less, until eventually he knows everything about nothing. |Source Unknown v TABLE OF CONTENTS Signature Page . iii Dedication . iv Epigraph . v Table of Contents . vi List of Figures . ix List of Tables . x Acknowledgements . xi Vita and Publications . xii Abstract of the Dissertation . xiii Chapter 1 Introduction . 1 1.1 Dynamical Systems . 1 1.1.1 Linear and Nonlinear Dynamics . 2 1.1.2 Chaos . 4 1.1.3 Synchronization . 6 1.2 Parameter Estimation . 8 1.2.1 Kalman Filters . 8 1.2.2 Variational Methods . 9 1.2.3 Parameter Estimation in Nonlinear Systems . 9 1.3 Dissertation Preview . 10 Chapter 2 Dynamical State and Parameter Estimation . 11 2.1 Introduction . 11 2.2 DSPE Overview . 11 2.3 Formulation . 12 2.3.1 Least Squares Minimization . -
An Algorithm Based on Semidefinite Programming for Finding Minimax
Takustr. 7 Zuse Institute Berlin 14195 Berlin Germany BELMIRO P.M. DUARTE,GUILLAUME SAGNOL,WENG KEE WONG An algorithm based on Semidefinite Programming for finding minimax optimal designs ZIB Report 18-01 (December 2017) Zuse Institute Berlin Takustr. 7 14195 Berlin Germany Telephone: +49 30-84185-0 Telefax: +49 30-84185-125 E-mail: [email protected] URL: http://www.zib.de ZIB-Report (Print) ISSN 1438-0064 ZIB-Report (Internet) ISSN 2192-7782 An algorithm based on Semidefinite Programming for finding minimax optimal designs Belmiro P.M. Duarte a,b, Guillaume Sagnolc, Weng Kee Wongd aPolytechnic Institute of Coimbra, ISEC, Department of Chemical and Biological Engineering, Portugal. bCIEPQPF, Department of Chemical Engineering, University of Coimbra, Portugal. cTechnische Universität Berlin, Institut für Mathematik, Germany. dDepartment of Biostatistics, Fielding School of Public Health, UCLA, U.S.A. Abstract An algorithm based on a delayed constraint generation method for solving semi- infinite programs for constructing minimax optimal designs for nonlinear models is proposed. The outer optimization level of the minimax optimization problem is solved using a semidefinite programming based approach that requires the de- sign space be discretized. A nonlinear programming solver is then used to solve the inner program to determine the combination of the parameters that yields the worst-case value of the design criterion. The proposed algorithm is applied to find minimax optimal designs for the logistic model, the flexible 4-parameter Hill homoscedastic model and the general nth order consecutive reaction model, and shows that it (i) produces designs that compare well with minimax D−optimal de- signs obtained from semi-infinite programming method in the literature; (ii) can be applied to semidefinite representable optimality criteria, that include the com- mon A−; E−; G−; I− and D-optimality criteria; (iii) can tackle design problems with arbitrary linear constraints on the weights; and (iv) is fast and relatively easy to use. -
Julia, My New Friend for Computing and Optimization? Pierre Haessig, Lilian Besson
Julia, my new friend for computing and optimization? Pierre Haessig, Lilian Besson To cite this version: Pierre Haessig, Lilian Besson. Julia, my new friend for computing and optimization?. Master. France. 2018. cel-01830248 HAL Id: cel-01830248 https://hal.archives-ouvertes.fr/cel-01830248 Submitted on 4 Jul 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 1 « Julia, my New frieNd for computiNg aNd optimizatioN? » Intro to the Julia programming language, for MATLAB users Date: 14th of June 2018 Who: Lilian Besson & Pierre Haessig (SCEE & AUT team @ IETR / CentraleSupélec campus Rennes) « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 2 AgeNda for today [30 miN] 1. What is Julia? [5 miN] 2. ComparisoN with MATLAB [5 miN] 3. Two examples of problems solved Julia [5 miN] 4. LoNger ex. oN optimizatioN with JuMP [13miN] 5. LiNks for more iNformatioN ? [2 miN] « Julia, my new computing friend? » | 14 June 2018, IETR@Vannes | By: L. Besson & P. Haessig 3 1. What is Julia ? Open-source and free programming language (MIT license) Developed since 2012 (creators: MIT researchers) Growing popularity worldwide, in research, data science, finance etc… Multi-platform: Windows, Mac OS X, GNU/Linux.. -
[20Pt]Algorithms for Constrained Optimization: [ 5Pt]
SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s Algorithms for Constrained Optimization: The Benefits of General-purpose Software Michael Saunders MS&E and ICME, Stanford University California, USA 3rd AI+IoT Business Conference Shenzhen, China, April 25, 2019 Optimization Software 3rd AI+IoT Business Conference, Shenzhen, April 25, 2019 1/39 SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s SOL Systems Optimization Laboratory George Dantzig, Stanford University, 1974 Inventor of the Simplex Method Father of linear programming Large-scale optimization: Algorithms, software, applications Optimization Software 3rd AI+IoT Business Conference, Shenzhen, April 25, 2019 2/39 SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s SOL history 1974 Dantzig and Cottle start SOL 1974{78 John Tomlin, LP/MIP expert 1974{2005 Alan Manne, nonlinear economic models 1975{76 MS, MINOS first version 1979{87 Philip Gill, Walter Murray, MS, Margaret Wright (Gang of 4!) 1989{ Gerd Infanger, stochastic optimization 1979{ Walter Murray, MS, many students 2002{ Yinyu Ye, optimization algorithms, especially interior methods This week! UC Berkeley opened George B. Dantzig Auditorium Optimization Software 3rd AI+IoT Business Conference, Shenzhen, April 25, 2019 3/39 SOL Optimization 1970s 1980s 1990s 2000s 2010s Summary 2020s Optimization problems Minimize an objective function subject to constraints: 0 x 1 min '(x) st ` ≤ @ Ax A ≤ u c(x) x variables 0 1 A matrix c1(x) B . C c(x) nonlinear functions @ . A c (x) `; u bounds m Optimization -
Numericaloptimization
Numerical Optimization Alberto Bemporad http://cse.lab.imtlucca.it/~bemporad/teaching/numopt Academic year 2020-2021 Course objectives Solve complex decision problems by using numerical optimization Application domains: • Finance, management science, economics (portfolio optimization, business analytics, investment plans, resource allocation, logistics, ...) • Engineering (engineering design, process optimization, embedded control, ...) • Artificial intelligence (machine learning, data science, autonomous driving, ...) • Myriads of other applications (transportation, smart grids, water networks, sports scheduling, health-care, oil & gas, space, ...) ©2021 A. Bemporad - Numerical Optimization 2/102 Course objectives What this course is about: • How to formulate a decision problem as a numerical optimization problem? (modeling) • Which numerical algorithm is most appropriate to solve the problem? (algorithms) • What’s the theory behind the algorithm? (theory) ©2021 A. Bemporad - Numerical Optimization 3/102 Course contents • Optimization modeling – Linear models – Convex models • Optimization theory – Optimality conditions, sensitivity analysis – Duality • Optimization algorithms – Basics of numerical linear algebra – Convex programming – Nonlinear programming ©2021 A. Bemporad - Numerical Optimization 4/102 References i ©2021 A. Bemporad - Numerical Optimization 5/102 Other references • Stephen Boyd’s “Convex Optimization” courses at Stanford: http://ee364a.stanford.edu http://ee364b.stanford.edu • Lieven Vandenberghe’s courses at UCLA: http://www.seas.ucla.edu/~vandenbe/ • For more tutorials/books see http://plato.asu.edu/sub/tutorials.html ©2021 A. Bemporad - Numerical Optimization 6/102 Optimization modeling What is optimization? • Optimization = assign values to a set of decision variables so to optimize a certain objective function • Example: Which is the best velocity to minimize fuel consumption ? fuel [ℓ/km] velocity [km/h] 0 30 60 90 120 160 ©2021 A. -
A Framework for Solving Mixed-Integer Semidefinite Programs
A FRAMEWORK FOR SOLVING MIXED-INTEGER SEMIDEFINITE PROGRAMS TRISTAN GALLY, MARC E. PFETSCH, AND STEFAN ULBRICH ABSTRACT. Mixed-integer semidefinite programs arise in many applications and several problem-specific solution approaches have been studied recently. In this paper, we investigate a generic branch-and-bound framework for solving such problems. We first show that strict duality of the semidefinite relaxations is inherited to the subproblems. Then solver components like dual fixing, branch- ing rules, and primal heuristics are presented. We show the applicability of an implementation of the proposed methods on three kinds of problems. The re- sults show the positive computational impact of the different solver components, depending on the semidefinite programming solver used. This demonstrates that practically relevant mixed-integer semidefinite programs can successfully be solved using a general purpose solver. 1. INTRODUCTION The solution of mixed-integer semidefinite programs (MISDPs), i.e., semidefinite programs (SDPs) with integrality constraints on some of the variables, received increasing attention in recent years. There are two main application areas of such problems: In the first area, they arise because they capture an essential structure of the problem. For instance, SDPs are important for expressing ellipsoidal uncer- tainty sets in robust optimization, see, e.g., Ben-Tal et al. [10]. In particular, SDPs appear in the context of optimizing robust truss structures, see, e.g., Ben-Tal and Nemirovski [11] as well as Bendsøe and Sigmund [12]. Allowing to change the topological structure then yields MISDPs; Section 9.1 will provide more details. Another application arises in the design of downlink beamforming, see, e.g., [56]. -
Abstracts Exact Separation of K-Projection Polytope Constraints Miguel F
13th EUROPT Workshop on Advances in Continuous Optimization 8-10 July [email protected] http://www.maths.ed.ac.uk/hall/EUROPT15 Abstracts Exact Separation of k-Projection Polytope Constraints Miguel F. Anjos Cutting planes are often used as an efficient means to tighten continuous relaxations of mixed-integer optimization problems and are a vital component of branch-and-cut algorithms. A critical step of any cutting plane algorithm is to find valid inequalities, or cuts, that improve the current relaxation of the integer-constrained problem. The maximally violated valid inequality problem aims to find the most violated inequality from a given family of cuts. $k$-projection polytope constraints are a family of cuts that are based on an inner description of the cut polytope of size $k$ and are applied to $k\times k$ principal minors of a semidefinite optimization relaxation. We propose a bilevel second order cone optimization approach to solve the maximally violated $k$ projection polytope constraint problem. We reformulate the bilevel problem as a single-level mixed binary second order cone optimization problem that can be solved using off-the-shelf conic optimization software. Additionally we present two methods for improving the computational performance of our approach, namely lexicographical ordering and a reformulation with fewer binary variables. All of the proposed formulations are exact. Preliminary results show the computational time and number of branch-and-bound nodes required to solve small instances in the context of the max-cut problem. Global convergence of the Douglas{Rachford method for some nonconvex feasibility problems Francisco J. -
A Survey of Numerical Methods for Nonlinear Semidefinite Programming
Journal of the Operations Research Society of Japan ⃝c The Operations Research Society of Japan Vol. 58, No. 1, January 2015, pp. 24–60 A SURVEY OF NUMERICAL METHODS FOR NONLINEAR SEMIDEFINITE PROGRAMMING Hiroshi Yamashita Hiroshi Yabe NTT DATA Mathematical Systems Inc. Tokyo University of Science (Received September 16, 2014; Revised December 22, 2014) Abstract Nonlinear semidefinite programming (SDP) problems have received a lot of attentions because of large variety of applications. In this paper, we survey numerical methods for solving nonlinear SDP problems. Three kinds of typical numerical methods are described; augmented Lagrangian methods, sequential SDP methods and primal-dual interior point methods. We describe their typical algorithmic forms and discuss their global and local convergence properties which include rate of convergence. Keywords: Optimization, nonlinear semidefinite programming, augmented Lagrangian method, sequential SDP method, primal-dual interior point method 1. Introduction This paper is concerned with the nonlinear SDP problem: minimize f(x); x 2 Rn; (1.1) subject to g(x) = 0;X(x) º 0 where the functions f : Rn ! R, g : Rn ! Rm and X : Rn ! Sp are sufficiently smooth, p p and S denotes the set of pth-order real symmetric matrices. We also define S+ to denote the set of pth-order symmetric positive semidefinite matrices. By X(x) º 0 and X(x) Â 0, we mean that the matrix X(x) is positive semidefinite and positive definite, respectively. When f is a convex function, X is a concave function and g is affine, this problem is a convex optimization problem. Here the concavity of X(x) means that X(¸u + (1 ¡ ¸)v) ¡ ¸X(u) ¡ (1 ¡ ¸)X(v) º 0 holds for any u; v 2 Rn and any ¸ satisfying 0 · ¸ · 1. -
Introduction to Semidefinite Programming (SDP)
Introduction to Semidefinite Programming (SDP) Robert M. Freund March, 2004 2004 Massachusetts Institute of Technology. 1 1 Introduction Semidefinite programming (SDP ) is the most exciting development in math- ematical programming in the 1990’s. SDP has applications in such diverse fields as traditional convex constrained optimization, control theory, and combinatorial optimization. Because SDP is solvable via interior point methods, most of these applications can usually be solved very efficiently in practice as well as in theory. 2 Review of Linear Programming Consider the linear programming problem in standard form: LP : minimize c · x s.t. ai · x = bi,i=1 ,...,m n x ∈+. x n c · x Here is a vector of variables, and we write “ ” for the inner-product n “ j=1 cj xj ”, etc. n n n Also, + := {x ∈ | x ≥ 0},and we call + the nonnegative orthant. n In fact, + is a closed convex cone, where K is called a closed a convex cone if K satisfies the following two conditions: • If x, w ∈ K, then αx + βw ∈ K for all nonnegative scalars α and β. • K is a closed set. 2 In words, LP is the following problem: “Minimize the linear function c·x, subject to the condition that x must solve m given equations ai · x = bi,i =1,...,m, and that x must lie in the closed n convex cone K = +.” We will write the standard linear programming dual problem as: m LD : maximize yibi i=1 m s.t. yiai + s = c i=1 n s ∈+. Given a feasible solution x of LP and a feasible solution (y, s)ofLD , the m m duality gap is simply c·x− i=1 yibi =(c−i=1 yiai) ·x = s·x ≥ 0, because x ≥ 0ands ≥ 0. -
First-Order Methods for Semidefinite Programming
FIRST-ORDER METHODS FOR SEMIDEFINITE PROGRAMMING Zaiwen Wen Advisor: Professor Donald Goldfarb Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2009 c 2009 Zaiwen Wen All Rights Reserved ABSTRACT First-order Methods For Semidefinite Programming Zaiwen Wen Semidefinite programming (SDP) problems are concerned with minimizing a linear function of a symmetric positive definite matrix subject to linear equality constraints. These convex problems are solvable in polynomial time by interior point methods. However, if the number of constraints m in an SDP is of order O(n2) when the unknown positive semidefinite matrix is n n, interior point methods become impractical both in terms of the × time (O(n6)) and the amount of memory (O(m2)) required at each iteration to form the m × m positive definite Schur complement matrix M and compute the search direction by finding the Cholesky factorization of M. This significantly limits the application of interior-point methods. In comparison, the computational cost of each iteration of first-order optimization approaches is much cheaper, particularly, if any sparsity in the SDP constraints or other special structure is exploited. This dissertation is devoted to the development, analysis and evaluation of two first-order approaches that are able to solve large SDP problems which have been challenging for interior point methods. In chapter 2, we present a row-by-row (RBR) method based on solving a sequence of problems obtained by restricting the n-dimensional positive semidefinite constraint on the matrix X. By fixing any (n 1)-dimensional principal submatrix of X and using its − (generalized) Schur complement, the positive semidefinite constraint is reduced to a sim- ple second-order cone constraint. -
Semidefinite Optimization ∗
Semidefinite Optimization ∗ M. J. Todd † August 22, 2001 Abstract Optimization problems in which the variable is not a vector but a symmetric matrix which is required to be positive semidefinite have been intensely studied in the last ten years. Part of the reason for the interest stems from the applicability of such problems to such diverse areas as designing the strongest column, checking the stability of a differential inclusion, and obtaining tight bounds for hard combinatorial optimization problems. Part also derives from great advances in our ability to solve such problems efficiently in theory and in practice (perhaps “or” would be more appropriate: the most effective computational methods are not always provably efficient in theory, and vice versa). Here we describe this class of optimization problems, give a number of examples demonstrating its significance, outline its duality theory, and discuss algorithms for solving such problems. ∗Copyright (C) by Cambridge University Press, Acta Numerica 10 (2001) 515–560. †School of Operations Research and Industrial Engineering, Cornell University, Ithaca, New York 14853, USA ([email protected]). Research supported in part by NSF through grant DMS-9805602 and ONR through grant N00014-96-1-0050. 1 1 Introduction Semidefinite optimization is concerned with choosing a symmetric matrix to optimize a linear function subject to linear constraints and a further crucial constraint that the matrix be positive semidefinite. It thus arises from the well-known linear programming problem by replacing the -
Linear Programming Notes
Linear Programming Notes Lecturer: David Williamson, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE These notes summarize the central definitions and results of the theory of linear program- ming, as taught by David Williamson in ORIE 6300 at Cornell University in the fall of 2014. Proofs and discussion are mostly omitted. These notes also draw on Convex Optimization by Stephen Boyd and Lieven Vandenberghe, and on Stephen Boyd's notes on ellipsoid methods. Prof. Williamson's full lecture notes can be found here. Contents 1 The linear programming problem3 2 Duailty 5 3 Geometry6 4 Optimality conditions9 4.1 Answer 1: cT x = bT y for a y 2 F(D)......................9 4.2 Answer 2: complementary slackness holds for a y 2 F(D)........... 10 4.3 Answer 3: the verifying y is in F(D)...................... 10 5 The simplex method 12 5.1 Reformulation . 12 5.2 Algorithm . 12 5.3 Convergence . 14 5.4 Finding an initial basic feasible solution . 15 5.5 Complexity of a pivot . 16 5.6 Pivot rules . 16 5.7 Degeneracy and cycling . 17 5.8 Number of pivots . 17 5.9 Varieties of the simplex method . 18 5.10 Sensitivity analysis . 18 5.11 Solving large-scale linear programs . 20 1 6 Good algorithms 23 7 Ellipsoid methods 24 7.1 Ellipsoid geometry . 24 7.2 The basic ellipsoid method . 25 7.3 The ellipsoid method with objective function cuts . 28 7.4 Separation oracles . 29 8 Interior-point methods 30 8.1 Finding a descent direction that preserves feasibility . 30 8.2 The affine-scaling direction .