Editorial Board (PDF)

Total Page:16

File Type:pdf, Size:1020Kb

Editorial Board (PDF) Mark Johnston, Editor-in-Chief University of Colorado HSC-Denver Tracey DePellegrin, GENETICS Editorial Board Executive Editor CELLULAR GENETICS Yi Rao Lars M. Steinmetz Mark A. Beaumont Deborah Andrew Peking University European Molecular Biology Laboratory & University of Bristol Johns Hopkins University School of Medicine Meera V. Sundaram Stanford University Graham Coop Orna Cohen-Fix University of Pennsylvania Trisha Wittkopp University of California, Davis NIDDK, National Institutes of Health Mariana F. Wolfner University of Michigan Simon Gravel Cornell University Amy S. Gladfelter McGill University UNC Chapel Hill and Dartmouth College Yongbiao Xue STATISTICAL GENETICS AND Joachim Hermisson Chinese Academy of Sciences N. Louise Glass GENOMICS University of Vienna University of California, Berkeley Sharon Browning Guillaume Martin Bob Goldstein GENE EXPRESSION University of Washington l’Institut des Sciences de l’Evolution de University of North Carolina at Chapel Hill James A. Birchler Jeffrey Endelman Montpellier (ISEM) Barth D. Grant University of Missouri University of Wisconsin-Madison Joanna Masel Rutgers University Junbiao Dai Eleazar Eskin University of Arizona Soni Lacefield Shenzhen Institutes of Advanced Technology University of California, Los Angeles Sohini Ramachandran Chinese Academy of Sciences Indiana University Haiyan Huang Brown University Michael Freitag University of California, Berkeley Aurélien Tellier Oregon State University Neil Risch Technical University of Munich COMPLEX TRAITS Pamela Geyer University of California, San Francisco Lindi M. Wahl Elissa J. Chesler University of Iowa Chiara Sabatti Western University The Jackson Laboratory Craig Kaplan Stanford University Brian Charlesworth (Perspectives Editor) Hans Daetwyler University of Pittsburgh Mikko J. Sillanpää University of Edinburgh La Trobe University Mitzi Kuroda Dirk-Jan de Koning Harvard Medical School University of Oulu Deborah Charlesworth (Perspectives Editor) Swedish University of Agricultural Sciences Victoria Meller William Valdar University of Edinburgh Jonathan Flint Wayne State University University of North Carolina at Chapel Hill Elizabeth A. De Stasio (Primers Editor) University of California, Los Angeles Aaron P. Mitchell Noah Zaitlen Lawrence University Jennifer Gleason University of Georgia University of California, Los Angeles Jasper Rine (Reviews Editor) The University of Kansas Oliver J. Rando University of California, Berkeley Michael Allen Gore University of Massachusetts Medical School METHODS, TECHNOLOGY, AND Trudi Schüpbach (Consulting Editor) Cornell University Nathan Springer RESOURCES Princeton University Elizabeth Hauser University of Minnesota Hannes Bülow Michael Turelli (Reviews Editor) Duke University Elizabeth Tran Albert Einstein College of Medicine University of California, Davis Thomas E. Juenger Purdue University Stanley Fields Adam S. Wilkins (Perspectives Editor) University of Texas University of Washington Humboldt University of Berlin Dahlia Nielsen GENOME INTEGRITY AND Liqun Luo North Carolina State University TRANSMISSION Stanford University Andrew H. Paterson BOARD OF SENIOR EDITORS Jack Bateman Kate O'Connor-Giles University of Georgia Karen M. Arndt Bowdoin College Brown University Katie Peichel University of Pittsburgh Needhi Bhalla Norbert Perrimon University of Bern Nicholas H. Barton University of California, Santa Cruz Harvard Medical School Christine Queitsch Douglas Bishop Institute of Science and Technology Austria University of Washington Valerie Reinke University of Chicago David J. Begun Paul Scheet Yale University Anne Britt University of California, Davis MD Anderson Cancer Center Jay Shendure University of California, Davis Karl Broman Albert Tenesa University of Washington Brian R. Calvi The University of Edinburgh University of Wisconsin-Madison Indiana University Trisha Wittkopp Mario Calus Francesca Cole EMPIRICAL POPULATION GENETICS University of Michigan Wageningen UR Livestock Research University of Texas MD Anderson Daniel A. Barbash Audrey Gasch Jason B. Wolf Cancer Center Cornell University University of Bath University of Wisconsin-Madison JoAnne Engebrecht Santiago C. González-Martínez Jianming Yu University of California, Davis INRAE UMR BIOGECO David I. Greenstein Iowa State University University of Minnesota Eva Hoffmann Matthew W. Hahn University of Copenhagen Indiana University Oliver Hobert DEVELOPMENTAL AND Neil Hunter Charles H. Langley Columbia University BEHAVIORAL GENETICS University of California, Davis University of California, Davis Anthony D. Long University of California at Irvine Kathryn Barton Amy MacQueen Mara Lawniczak Carnegie Institution for Science Wesleyan University Wellcome Sanger Institute Mark D. Rose Hugo J. Bellen Houra Merrikh Jeffrey G. Lawrence Georgetown University Baylor College of Medicine Vanderbilt University University of Pittsburgh Jeff Sekelsky Hannes Bülow Jac A. Nickoloff Leonie C. Moyle University of North Carolina at Chapel Hill Albert Einstein College of Medicine Colorado State University Indiana University Barbara Conradt Yikang Rong Michael W. Nachman GENETICS publishes high quality, original University College London University of South China University of California, Berkeley research presenting novel findings on a Gerald B. Downes Jennifer Surtees John Novembre range of topics bearing on heredity and University of Massachusetts, Amherst University at Buffalo University of Chicago variation. GENETICS is a peer-edited Bruce W. Draper Daven Presgraves journal—all editorial decisions are made University of California, Davis GENOME AND SYSTEMS BIOLOGY University of Rochester by the authors’ peers—with a tradition of Robert J. Duronio Kirsten Bomblies Andrea Sweigart rigorous peer review. Publication is open University of North Carolina at Chapel Hill ETH Zürich University of Georgia equally to members and non-members of Elissa Hallem Alan Moses Daniel M. Weinreich the Genetics Society of America. Submit University of California, Los Angeles University of Toronto Brown University manuscripts at https://genetics.msubmit.net. Yasuhiko Kawakami Norbert Perrimon Stephen I. Wright GSA Journals Editorial Office University of Minnesota Harvard Medical School University of Toronto 6120 Executive Boulevard Scott Kennedy Valerie Reinke Suite 550 Harvard University Medical School Yale University THEORETICAL POPULATION Rockville, MD 20852 Abraham A. Palmer Jay Shendure University of Chicago University of Washington GENETICS Phone: 412-226-5930 Amy Ralston Jason Stajich Aneil F. Agrawal Fax: 412-226-5931 Michigan State University University of California, Riverside University of Toronto E-mail: [email protected].
Recommended publications
  • The Reemergence of a Biological Conceptualization of Race in Research on Race/Ethnic Disparities in Health
    Back with a Vengeance: the Reemergence of a Biological Conceptualization of Race in Research on Race/Ethnic Disparities in Health Reanne Frank Department of Society, Human Development and Health, Harvard University Department of Sociology, Ohio State University Paper presented at the Annual Meeting of the Population Association of America. Los Angeles California, March 30-April 1, 2006. Over the last five years, literature on the role of race in biomedicine has exploded. Articles detailing differences in allele frequencies between ‘racial’ groups have become commonplace in the journal Nature-Genetics . The clinical relevance of race/ancestry groupings has been debated in the pages of the Journal of the American Medical Association (JAMA) and in the Annals of Internal Medicine . The latest issue of the New England Journal of Medicine contained a full feature article, one letter and one commentary, all positing a genetic connection between race and disease. The recent approval by the Federal Drug Administration (FDA) of BiDil, a heart failure medication patented exclusively for African-Americans, likely marks the beginning of new era of race-based pharmaceuticals and clinical care. It would not be an exaggeration to say that we are currently on the forefront of a new wave of scientific endeavors, fueled largely by developments in the Human Genome Project (HGP), which will alter the fields of anthropology, population genetics, epidemiology, demography, and medicine for years to come. But to argue that the current developments aimed at elucidating a genetic basis of race/ethnic disparities in health, constitute an entirely new phenomenon, would be to ignore the weight of history connecting race, genes, and disease.
    [Show full text]
  • Does Genomics Challenge the Social Construction of Race?
    STXXXX10.1177/0735275114550881Sociological TheoryMorning 550881research-article2014 Article Sociological Theory 2014, Vol. 32(3) 189 –207 Does Genomics Challenge the © American Sociological Association 2014 DOI: 10.1177/0735275114550881 Social Construction of Race? stx.sagepub.com Ann Morning1 Abstract Shiao, Bode, Beyer, and Selvig argue that the theory of race as a social construct should be revisited in light of recent genetic research, which they interpret as demonstrating that human biological variation is patterned in “clinal classes” that are homologous to races. In this reply, I examine both their claims and the genetics literature they cite, concluding that not only does constructivist theory already accommodate the contemporary study of human biology, but few geneticists portray their work as bearing on race. Equally important, methods for statistically identifying DNA-based clusters within the human species are shaped by several design features that offer opportunities for the incorporation of cultural assumptions about difference. As a result, Shiao et al.’s theoretical distinction between social race and biological “clinal class” is empirically jeopardized by the fact that even our best attempts at objectively recording “natural” human groupings are socially conditioned. Keywords race, science, genetics, ethnicity, classification Early on in “The Genomic Challenge to the Social Construction of Race,” Shiao, Bode, Beyer, and Selvig (2012:67, 69) describe the social constructionist account of race as “lack- ing biological reality.” As they see it, the constructivist perspective is “unnecessarily bur- dened with . a conception of human biological variation that is out of step with recent advances in genetic research” (Shiao et al. 2012:68). The authors’ response is to propose a “solution” that reformulates racial constructionism by reconceptualizing the nature of racial (and ethnic) categorization (Shiao et al.
    [Show full text]
  • How Genomics Is Rewriting Race, Medicine and Human History
    Patterns of Prejudice, Vol. 40, Nos 4Á/5, 2006 Blood and stories: how genomics is rewriting race, medicine and human history PRISCILLA WALD ABSTRACT In 2003 Howard University announced its intention to create a databank of the DNA of African Americans, most of whom were patients in their medical centre. Proponents of the decision invoked the routine exclusion of African Americans from research that would give them access to the most up-to-date medical technologies and treatments. They argued that this databank would rectify such exclusions. Opponents argued that such a move tacitly affirmed the biological (genetic) basis of race that had long fuelled racism as well as that the potential costs were not worth the uncertain benefits. Howard University’s controversial decision emerges from research in genomic medicine that has added new urgency to the question of the relationship between science and racism. This relationship is the topic of Wald’s essay. Scientific disagreements over the relative usefulness of ‘race’ as a classification in genomic medical research have been obscured by charges of racism and political correctness. The question takes us to the assumptions of population genomics that inform the medical research, and Wald turns to the Human Genome Diversity Project, the new Genographics Project and the 2003 film Journey of Man to consider how racism typically inheres not in the intentions of researchers, but in the language, images and stories through which scientists, journalists and the public inevitably interpret information. Wald demonstrates the importance of under- standing those stories as inseparable from scientific and medical research. Her central argument is that if we understand the power of the stories we can better understand the debates surrounding race and genomic medicine, which, in turn, can help us make better ethical and policy decisions and be useful in the practices of science and medicine.
    [Show full text]
  • Substructured Population Growth in the Ashkenazi Jews Inferred with Approximate Bayesian Computation
    bioRxiv preprint doi: https://doi.org/10.1101/467761; this version posted November 11, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Substructured population growth in the Ashkenazi Jews inferred with Approximate Bayesian Computation Ariella L. Gladstein1, and Michael F. Hammer2 1Department of Ecology, Evolution and Biology, University of Arizona, Tucson, AZ 2ARL Division of Biotechnology, University of Arizona, Tucson, AZ The Ashkenazi Jews (AJ) are a population isolate that have Europe, the Ashkenazi Jews (AJ), are an ideal population resided in Central Europe since at least the 10th century and for studying the effects of complex demography, because share ancestry with both European and Middle Eastern pop- they have a well documented history (2) with census records ulations. Between the 11th and 16th centuries, AJ expanded (3) and have been relatively isolated, with a high frequency eastward leading to two culturally distinct communities, one in of founder mutations associated with disease (4). The AJ central Europe and one in eastern Europe. Our aim was to de- have experienced an intricate demographic history, including termine if there are genetically distinct AJ subpopulations that bottlenecks, extreme growth, and gene flow, that affect the reflect the cultural groups, and if so, what demographic events contributed to the population differentiation. We used Approx- frequency of genetic diseases (see Gladstein and Hammer imate Bayesian Computation (ABC) to choose among models of (5) for a more in-depth review of the literature and Carmi AJ history and infer demographic parameter values, including et al.
    [Show full text]
  • Hs Talks Human Population Genetics
    Human Population Genetics Evolution and Variation 27 seminar style presentations by leading world experts Series Editors: Prof. Luigi Luca Cavalli-Sforza and Prof. Marcus Feldman – Stanford University, USA State of the art briefings at your computer, when you want The Speakers them, as often as you want them Prof. Sir Walter Bodmer • Talks specially commissioned • For research scientists, graduate Prof. Luigi Luca Cavalli-Sforza for this series students and the most committed Dr. Nancy Cox senior undergraduates • Simple format – animated slides Prof. Kaare Christensen with accompanying narration, • Available online and on CD-ROM Prof. Andrew Clark synchronized for easy listening with licensing options to meet everyone’s needs Dr. Bertrand Desjardins • Look and feel of face-to-face Dr. Anna Di Rienzo seminars that preserve each • A must have resource for everyone Prof. Marcus Feldman speaker’s personality and involved in the evolution and variation approach of human population genetics Prof. Henry Greely Prof. Austin Hughes Topics covered Target audience Dr. Toomas Kivisild • Evolutionary history • Human geneticists Prof. Richard Klein • Evolutionary forces at play • Population geneticists Prof. Gil McVean • Markers • Evolutionary biologists Prof. S. Qasim Mehdi • The human phenotype • Molecular geneticists Prof. Joanna Mountain Prof. Masatoshi Nei • Population structure • Physiologists • Complex patterns of natural selection Dr. Yoshihito Niimura • Biological Prof. Neil Risch • The Human Genome Project anthropologists Dr. Noah Rosenberg • HapMap Project • Social anthropologists Dr. Merritt Ruhlen • Historical and geographical genetic • All researchers interested Dr. Theodore Schurr variation in human evolution Prof. Antonio Torroni Prof. Peter Underhill “These talks by many of the world's leading authorities are clearly presented, up-to-date and well-illustrated.
    [Show full text]
  • 1 Human Genetic Variation Recognizes Functional Elements In
    Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Human Genetic Variation Recognizes Functional Elements in Non-Coding Sequence David Lomelin1, Eric Jorgenson2,3, Neil Risch1,4,5 1Institute for Human Genetics 2Department of Neurology 3Ernest Gallo Clinic and Research Center 4Department of Epidemiology and Biostatistics University of California, San Francisco 5Division of Research, Kaiser Permanente Northern California David Lomelin Institute for Human Genetics University of California, San Francisco San Francisco, CA 94143-0794, USA Email: [email protected] 1 Downloaded from genome.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract Non-coding DNA, particularly intronic DNA, harbors important functional elements that affect gene expression and RNA splicing. Yet, it is unclear which specific non-coding sites are essential for gene function and regulation. To identify functional elements in non-coding DNA, we characterized genetic variation within introns using ethnically diverse human polymorphism data from three public databases, PMT, NIEHS, and Seattle SNPs. We demonstrate that positions within introns corresponding to known functional elements involved in pre-mRNA splicing, including the branch site, splice sites, and polypyrimidine tract show reduced levels of genetic variation. Additionally, we observed regions of reduced genetic variation that are candidates for distance dependent localization sites of functional elements, possibly intronic splicing enhancers (ISEs). Using several bioinformatics approaches, we provide additional evidence that supports our hypotheses that these regions correspond to ISEs. We conclude that studies of genetic variation can successfully discriminate and identify functional elements in non-coding regions. As more non-coding sequence data becomes available, the methods employed here can be utilized to identify additional functional elements in the human genome and provide possible explanations for phenotypic associations.
    [Show full text]
  • Sociological Theory
    Sociological Theory http://stx.sagepub.com/ Does Genomics Challenge the Social Construction of Race? Ann Morning Sociological Theory 2014 32: 189 DOI: 10.1177/0735275114550881 The online version of this article can be found at: http://stx.sagepub.com/content/32/3/189 Published by: http://www.sagepublications.com On behalf of: American Sociological Association Additional services and information for Sociological Theory can be found at: Email Alerts: http://stx.sagepub.com/cgi/alerts Subscriptions: http://stx.sagepub.com/subscriptions Reprints: http://www.sagepub.com/journalsReprints.nav Permissions: http://www.sagepub.com/journalsPermissions.nav >> Version of Record - Oct 10, 2014 What is This? Downloaded from stx.sagepub.com by guest on October 14, 2014 STXXXX10.1177/0735275114550881Sociological TheoryMorning 550881research-article2014 Article Sociological Theory 2014, Vol. 32(3) 189 –207 Does Genomics Challenge the © American Sociological Association 2014 DOI: 10.1177/0735275114550881 Social Construction of Race? stx.sagepub.com Ann Morning1 Abstract Shiao, Bode, Beyer, and Selvig argue that the theory of race as a social construct should be revisited in light of recent genetic research, which they interpret as demonstrating that human biological variation is patterned in “clinal classes” that are homologous to races. In this reply, I examine both their claims and the genetics literature they cite, concluding that not only does constructivist theory already accommodate the contemporary study of human biology, but few geneticists portray their work as bearing on race. Equally important, methods for statistically identifying DNA-based clusters within the human species are shaped by several design features that offer opportunities for the incorporation of cultural assumptions about difference.
    [Show full text]
  • UCSF Academic Senate
    UNIVERSITY OF CALIFORNIA, SAN FRANCISCO BERKELEY • DAVIS • IRVINE • LOS ANGELES • RIVERSIDE • SAN DIEGO • SAN FRANCISCO • SANTA BARBARA SANTA CRUZ • MERCED NEIL RISCH, PHD Institute for Human Genetics Lamond Family Foundation Distinguished 513 Parnassus Avenue, S965 Professor In Human Genetics San Francisco, CA 94143-0794 Director, Institute For Human Genetics EMAIL: [email protected] Professor, Epidemiology and Biostatistics September 18, 2018 David Teitel, M.D., Chair, Executive Council UCSF Academic Senate Dear Dr. Teitel, We are writing to inform you of three minor changes to our application to establish a new Masters Program in Genetic Counseling. These changes resulted from the Budget Resource Management review that occurred following approval by the Graduate Council. The changes are listed below and are incorporated into the attached application packet. 1. Class cohorts have been increased from 10 to 11 students per year 2. A revised budget (pg. 57) now reflects the increase in class cohort size and an increase in student fees from $42,000 to $44,000/year 3. Teaching FTE in the program has increased. The prior proposal mistakenly only included teaching effort to be charged to the program, not the total effort devoted to teaching. The correct figure is 1.32 FTE for teaching. We are committed to establishing one of the premier genetic counseling programs in the United States and continuing with the standard of excellence that has defined many other UCSF educational programs. The group of clinical geneticists, genetic counselors and researchers at UCSF is enthusiastic about this program and eager to see it come to fruition. Additionally, support for this program extends beyond UCSF and into the Bay Area genetics community.
    [Show full text]