Surveillance Protocol
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Period of Presymptomatic Transmission
PERIOD OF PRESYMPTOMATIC TRANSMISSION RAG 17/09/2020 QUESTION Transmission of SARS-CoV-2 before onset of symptoms in the index is known, and this is supported by data on viral shedding. Based on the assumption that the viral load in the upper respiratory tract is highest one day before and the days immediately after onset of symptoms, current procedures for contact tracing (high and low risk contacts), go back two days before start of symptoms in the index (or sampling date in asymptomatic persons) (1), (2), (3). This is in line with the ECDC and WHO guidelines to consider all potential contacts of a case starting 48h before symptom onset (4) (5). The question was asked whether this period should be extended. BACKGROUND Viral load According to ECDC and WHO, viral RNA can be detected from one to three days before the onset of symptoms (6,7). The highest viral loads, as measured by RT-PCR, are observed around the day of symptom onset, followed by a gradual decline over time (1,3,8–10) . Period of transmission A much-cited study by He and colleagues and published in Nature used publicly available data from 77 transmission pairs to model infectiousness, using the reported serial interval (the period between symptom onset in infector-infectee) and combining this with the median incubation period. They conclude that infectiousness peaks around symptom onset. The initial article stated that the infectious period started at 2.3 days before symptom onset. However, a Swiss team spotted an error in their code and the authors issued a correction, stating the infectious period can start from as early as 12.3 days before symptom onset (11). -
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
Measles: Chapter 7.1 Chapter 7: Measles Paul A
VPD Surveillance Manual 7 Measles: Chapter 7.1 Chapter 7: Measles Paul A. Gastanaduy, MD, MPH; Susan B. Redd; Nakia S. Clemmons, MPH; Adria D. Lee, MSPH; Carole J. Hickman, PhD; Paul A. Rota, PhD; Manisha Patel, MD, MS I. Disease Description Measles is an acute viral illness caused by a virus in the family paramyxovirus, genus Morbillivirus. Measles is characterized by a prodrome of fever (as high as 105°F) and malaise, cough, coryza, and conjunctivitis, followed by a maculopapular rash.1 The rash spreads from head to trunk to lower extremities. Measles is usually a mild or moderately severe illness. However, measles can result in complications such as pneumonia, encephalitis, and death. Approximately one case of encephalitis2 and two to three deaths may occur for every 1,000 reported measles cases.3 One rare long-term sequelae of measles virus infection is subacute sclerosing panencephalitis (SSPE), a fatal disease of the central nervous system that generally develops 7–10 years after infection. Among persons who contracted measles during the resurgence in the United States (U.S.) in 1989–1991, the risk of SSPE was estimated to be 7–11 cases/100,000 cases of measles.4 The risk of developing SSPE may be higher when measles occurs prior to the second year of life.4 The average incubation period for measles is 11–12 days,5 and the average interval between exposure and rash onset is 14 days, with a range of 7–21 days.1, 6 Persons with measles are usually considered infectious from four days before until four days after onset of rash with the rash onset being considered as day zero. -
Glossary of Key Terms and Concepts Related to the COVID-19 Pandemic
Glossary of Key Terms and Concepts Related to the COVID-19 Pandemic Asymptomatic: Defined by the National Library of Medicine as individuals who do not have symptoms of an illness or disease. Asymptomatic individuals include those who have been infected with a disease but are not showing symptoms or those who have recovered from a disease. In the case of COVID-19, recent studies show that infected individuals without symptoms can spread the disease to others. Close contact is defined by the CDC as “a) being within approximately 6 feet (2 meters) of a COVID-19 case for a prolonged period of time; close contact can occur while caring for, living with, visiting, or sharing a healthcare waiting area or room with a COVID-19 case, or b) having direct contact with infectious secretions of a COVID-19 case (e.g., being coughed on).” Coronavirus: “Coronaviruses are a large family of viruses which may cause illness.” They are named for the crown-like spikes on their surface. Several coronaviruses are known to cause respiratory infections ranging from the common cold to more severe diseases such as Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS). The most recently discovered coronavirus causes coronavirus disease COVID-19.” WHO and CDC. COVID-19: COVID-19 is the infectious disease caused by the most recently discovered coronavirus. This novel (new) coronavirus was first reported in China in December 2019. The World Health Organization announced COVID-19 as the official name of the disease in February 2020. Other names used to refer to COVID-19 include SARS-CoV-2 and 2019-nCoV. -
Superspreading of Airborne Pathogens in a Heterogeneous World Julius B
www.nature.com/scientificreports OPEN Superspreading of airborne pathogens in a heterogeneous world Julius B. Kirkegaard*, Joachim Mathiesen & Kim Sneppen Epidemics are regularly associated with reports of superspreading: single individuals infecting many others. How do we determine if such events are due to people inherently being biological superspreaders or simply due to random chance? We present an analytically solvable model for airborne diseases which reveal the spreading statistics of epidemics in socio-spatial heterogeneous spaces and provide a baseline to which data may be compared. In contrast to classical SIR models, we explicitly model social events where airborne pathogen transmission allows a single individual to infect many simultaneously, a key feature that generates distinctive output statistics. We fnd that diseases that have a short duration of high infectiousness can give extreme statistics such as 20% infecting more than 80%, depending on the socio-spatial heterogeneity. Quantifying this by a distribution over sizes of social gatherings, tracking data of social proximity for university students suggest that this can be a approximated by a power law. Finally, we study mitigation eforts applied to our model. We fnd that the efect of banning large gatherings works equally well for diseases with any duration of infectiousness, but depends strongly on socio-spatial heterogeneity. Te statistics of an on-going epidemic depend on a number of factors. Most directly: How easily is it transmit- ted? And how long are individuals afected and infectious? Scientifc papers and news paper articles alike tend to summarize the intensity of epidemics in a single number, R0 . Tis basic reproduction number is a measure of the average number of individuals an infected patient will successfully transmit the disease to. -
Herpes: a Patient's Guide
Herpes: A Patient’s Guide Herpes: A Patient’s Guide Introduction Herpes is a very common infection that is passed through HSV-1 and HSV-2: what’s in a name? ....................................................................3 skin-to-skin contact. Canadian studies have estimated that up to 89% of Canadians have been exposed to herpes simplex Herpes symptoms .........................................................................................................4 type 1 (HSV-1), which usually shows up as cold sores on the Herpes transmission: how do you get herpes? ................................................6 mouth. In a British Columbia study, about 15% of people tested positive for herpes simplex type 2 (HSV-2), which Herpes testing: when is it useful? ..........................................................................8 is the type of herpes most commonly thought of as genital herpes. Recently, HSV-1 has been showing up more and Herpes treatment: managing your symptoms ...................................................10 more on the genitals. Some people can have both types of What does herpes mean to you: receiving a new diagnosis ......................12 herpes. Most people have such minor symptoms that they don’t even know they have herpes. What does herpes mean to you: accepting your diagnosis ........................14 While herpes is very common, it also carries a lot of stigma. What does herpes mean to you: dating with herpes ....................................16 This stigma can lead to anxiety, fear and misinformation -
Using Proper Mean Generation Intervals in Modeling of COVID-19
ORIGINAL RESEARCH published: 05 July 2021 doi: 10.3389/fpubh.2021.691262 Using Proper Mean Generation Intervals in Modeling of COVID-19 Xiujuan Tang 1, Salihu S. Musa 2,3, Shi Zhao 4,5, Shujiang Mei 1 and Daihai He 2* 1 Shenzhen Center for Disease Control and Prevention, Shenzhen, China, 2 Department of Applied Mathematics, The Hong Kong Polytechnic University, Hong Kong, China, 3 Department of Mathematics, Kano University of Science and Technology, Wudil, Nigeria, 4 The Jockey Club School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China, 5 Shenzhen Research Institute of Chinese University of Hong Kong, Shenzhen, China In susceptible–exposed–infectious–recovered (SEIR) epidemic models, with the exponentially distributed duration of exposed/infectious statuses, the mean generation interval (GI, time lag between infections of a primary case and its secondary case) equals the mean latent period (LP) plus the mean infectious period (IP). It was widely reported that the GI for COVID-19 is as short as 5 days. However, many works in top journals used longer LP or IP with the sum (i.e., GI), e.g., >7 days. This discrepancy will lead to overestimated basic reproductive number and exaggerated expectation of Edited by: infection attack rate (AR) and control efficacy. We argue that it is important to use Reza Lashgari, suitable epidemiological parameter values for proper estimation/prediction. Furthermore, Institute for Research in Fundamental we propose an epidemic model to assess the transmission dynamics of COVID-19 Sciences, Iran for Belgium, Israel, and the United Arab Emirates (UAE). -
Mumps Public Information
Louisiana Office of Public Health Infectious Disease Epidemiology Section Phone: 1-800-256-2748 www.infectiousdisease.dhh.louisiana.gov Mumps What is mumps? How is mumps diagnosed? Mumps is a disease that is caused by the mumps virus. It spreads Mumps is diagnosed by a combination of symptoms and physical easily through coughing and sneezing. Mumps can cause fever, signs and laboratory confirmation of the virus, as not all cases headache, body aches, fatigue and inflammation of the salivary develop characteristic parotitis, and not all cases of parotitis are (spit) glands, which can lead to swelling of the cheeks and jaws. caused by mumps. Who gets mumps? What is the treatment for mumps? Mumps is a common childhood disease, but adults can also get There is no “cure” for mumps, only supportive treatment (bed mumps. While vaccination reduces the chances of getting ill rest, fluids and fever reduction). Most cases will recover on their considerably, even those fully immunized can get the disease. own. How do people get mumps? If someone becomes very ill, he/she should seek medical Mumps is spread from person to person. When an infected attention. The ill person should call the doctor in advance so that person talks, coughs or sneezes, the virus is released into the air he/she doesn’t have to sit in the waiting room for a long time and and enters another person’s body through the nose, mouth or possibly infect other patients. throat. People can also become sick if they eat food or use utensils, cups or other objects that have come into contact with How can mumps be prevented? the mucus or saliva (spit) from an infected person. -
Optimal Time of Initiation for Asymptomatic, HIV-Infected, Treatment Naive Adults
Draft: When to Start ART Optimal time of initiation for asymptomatic, HIV-infected, treatment naive adults BACKGROUND Provision of combination antiretroviral treatment (ART) to people infected with human immunodeficiency virus (HIV) reduces both progression to the acquired immunodeficiency syndrome (AIDS) and the morbidity and mortality associated with advanced HIV infection. According to consensus, initiation of therapy is best based on the CD4 count, a marker of immune status, rather than viral load, a marker of virologic replication (Sterling 2001). For patients with advanced symptoms, treatment should be started regardless of CD4 count. However, the point during the course of HIV infection at which ART is initiated in asymptomatic patients remains unclear and in a 2006 BMJ review, Deeks clearly articulated optimal timing of ART initiation as a key unanswered question for people infected with HIV, clinicians and policy-makers (Deeks 2006). Guidelines issued by various agencies provide different initiation recommendations according to resource availability. This can be confusing for clinicians and policy-makers when determining the best point to initiate therapy. In 2008, the United States Panel of the International AIDS Society recommended that antiretroviral treatment of adult HIV infection not be initiated before CD4 cell count declines to less than 350/µL (Hammer 2008). In patients with 350 CD4 cells/microL or more, the decision to begin therapy should be individualized based on the presence of comorbidities, risk factors for progression to AIDS and non-AIDS defining diseases (Hammer 2008). In comparison, in resource-constrained settings, the World Health Organization recommends that ART should not be initiated at concentrations of CD4 counts above 200 cells/µL in asymptomatic patients (WHO 2006) and does not address initiation at higher concentration of CD4 cells. -
Asymptomatic COVID-19 – Implications for the Control of Transmission in South Africa
http://dx.doi.org/10.5588/pha.20.0069 SHORT COMMUNICATION Asymptomatic COVID-19 – implications for the control of transmission in South Africa M. Paleker,1,2 Y. A Tembo,3,4 M.-A. Davies,5,6 H. Mahomed,1,2 D. Pienaar,3,4 S. A Madhi,7,8 K. McCarthy9 1Division of Health Systems and Public Health, Department of Global Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa, 2Metro Health Services, Western Cape Department of Health, Cape Town, South Africa, 3School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa, 4Rural Health Services, Western Cape Department of Health, Cape Town, South Africa, 5Health Impact Assessment, Western Cape Department of Health, Cape Town, South Africa, 6Centre for Infectious Disease Epidemiology and Research, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa, 7South African Medical Research Council Vaccines and Infectious Diseases Analytical Research Unit, University of the Witwatersrand, Johannesburg, South Africa, 8Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa, 9National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg, South Africa. Correspondence to: Masudah Paleker or Yamanya Tembo, Western Cape Department of Health, 5th Floor Norton Rose House, 8 Riebeek Street, Cape Town 8001, South Africa. email: [email protected]; [email protected] [MP and YAT are first co-authors and contributed equally.] Running head: Asymptomatic COVID-19 in workplaces, South Africa Article submitted 6 November 2020. Final version accepted 20 March 2021. -
Incubation Periods Impact the Spatial Predictability of Cholera and Ebola Outbreaks in Sierra Leone
Incubation periods impact the spatial predictability of cholera and Ebola outbreaks in Sierra Leone Rebecca Kahna,1, Corey M. Peaka,1, Juan Fernández-Graciaa,b, Alexandra Hillc, Amara Jambaid, Louisa Gandae, Marcia C. Castrof, and Caroline O. Buckeea,2 aCenter for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115; bInstitute for Cross-Disciplinary Physics and Complex Systems, Universitat de les Illes Balears - Consell Superior d’Investigacions Científiques, E-07122 Palma de Mallorca, Spain; cDisease Control in Humanitarian Emergencies, World Health Organization, CH-1211 Geneva 27, Switzerland; dDisease Control and Prevention, Sierra Leone Ministry of Health and Sanitation, Freetown, Sierra Leone FPGG+89; eCountry Office, World Health Organization, Freetown, Sierra Leone FPGG+89; and fDepartment of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA 02115 Edited by Burton H. Singer, University of Florida, Gainesville, FL, and approved January 22, 2020 (received for review July 29, 2019) Forecasting the spatiotemporal spread of infectious diseases during total number of secondary infections by an infectious individual in an outbreak is an important component of epidemic response. a completely susceptible population (i.e., R0) (13, 14). Indeed, the However, it remains challenging both methodologically and with basis of contact tracing protocols during an outbreak reflects the respect to data requirements, as disease spread is influenced by need to identify and contain individuals during the incubation numerous factors, including the pathogen’s underlying transmission period, and the relative effectiveness of interventions such as parameters and epidemiological dynamics, social networks and pop- symptom monitoring or quarantine significantly depends on the ulation connectivity, and environmental conditions. -
GLOSSARY of TERMS WHO European Primary Health Care Impact, Performance and Capacity Tool (PHC-IMPACT)
GLOSSARY OF TERMS WHO European Primary Health Care Impact, Performance and Capacity Tool (PHC-IMPACT) WHO European Framework for Action on Integrated Health Services Delivery Glossary of terms WHO European Primary Health Care Impact, Performance and Capacity Tool (PHC-IMPACT) Series editors Juan Tello, WHO Regional Office for Europe Erica Barbazza, University of Amsterdam Zhamin Yelgezekova, WHO European Centre for Primary Health Care Ioana Kruse, WHO European Centre for Primary Health Care Niek Klazinga, University of Amsterdam Dionne Kringos, University of Amsterdam WHO European Framework for Action on Integrated Health Services Delivery Abstract This glossary of terms aims to provide clarifying definitions related to the WHO European Primary Health Care Impact, Performance and Capacity Tool (PHC-IMPACT). PHC-IMPACT sets out to support the monitoring and improvement of primary health care in the European Region and the measurement of progress towards the services delivery component of global universal health coverage targets. The framework underpinning PHC-IMPACT has been guided by the WHO European Framework for Integrated Health Services Delivery. This glossary of terms accompanies PHC-IMPACT’s Indicator Passports – a resource providing detailed information for the use of the full suite of indicators that make up the tool. Importantly, the definitions included here have relied as far as possible on existing international classifications including the International Classification for Health Accounts, International Standard Classification of Occupations and International Standard Classification of Education. Keywords HEALTH SERVICES PRIMARY HEALTH CARE HEALTH CARE SYSTEMS HEALTH POLICY EUROPE Address requests about publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe UN City, Marmorvej 51 DK-2100 Copenhagen Ø Denmark Alternatively, complete an online request form for documentation, health information, or for permission to quote or translate, on the Regional Office website (http://www.euro.who.int/pubrequest).