Fluid, Electrolyte & Ph Balance

Total Page:16

File Type:pdf, Size:1020Kb

Fluid, Electrolyte & Ph Balance Fluid / Electrolyte / Acid-Base Balance Fluid, Electrolyte Body Fluids: & pH Balance Cell function depends not only on continuous nutrient supply / waste removal, but also on the physical / chemical homeostasis of surrounding fluids 1) Water: (universal solvent) Body water varies based on of age, sex, mass, and body composition H2O ~ 73% body weight Low body fat Low bone mass H2O (♂) ~ 60% body weight H2O (♀) ~ 50% body weight ♀ = body fat / muscle mass H2O ~ 45% body weight Fluid / Electrolyte / Acid-Base Balance Fluid / Electrolyte / Acid-Base Balance Body Fluids: Clinical Application: Cell function depends not only on continuous nutrient supply / waste removal, but also on the physical / chemical homeostasis of surrounding fluids The volumes of the body fluid compartments are measured by the dilution method 1) Water: (universal solvent) Total Body Water Step 1: Step 2: Step 4: Volume = 40 L (60% body weight) Identify appropriate marker Inject known volume of Calculate volume of body substance marker into individual fluid compartment Plasma Total Body Water: Amount Volume = A marker is placed in (L) Concentration the system that is distributed (mg) Intracellular Fluid (ICF) Interstitial wherever water is found Volume = 3 = 3 Volume Volume = 25 L Fluid Amount: Marker: D2O (40% body weight) Volume = 12 L Step 3: Amount of marker injected (mg) – Amount excreted (mg) L Extracellular Fluid Volume: Let marker equilibrate and A marker is placed in measure marker Concentration: the system that can not cross • Plasma concentration Concentration in plasma (mg / L) cell membranes Extracellular Fluid (ECF) • Urine concentration Volume = 15 L Marker: Mannitol Note: (20% body weight) ICF Volume = TBW – ECF Volume Fluid / Electrolyte / Acid-Base Balance Fluid / Electrolyte / Acid-Base Balance Electrolytes have great osmotic power: Body Fluids: 2+ - - Fluid Movement Among Compartments: MgCl2 Mg + Cl + Cl Cell function depends not only on continuous nutrient supply / waste removal, The continuous exchange and mixing of body fluids are regulated but also on the physical / chemical homeostasis of surrounding fluids by osmotic and hydrostatic pressures 2) Solutes: Plasma 300 mosm A) Non-electrolytes Hydrostatic Pressure (do not dissociate in solution – neutral) • Mostly organic molecules Interstitial 300 mosm (e.g., glucose, lipids, urea) Fluid Osmotic Pressure B) Electrolytes Intracellular 300 mosm (dissociate into ions in solution – charged) Fluid Osmotic Osmotic • Inorganic salts Pressure Pressure • Inorganic / organic acids • Proteins In a steady state, Although individual [solute] are different The volume of a particular The shift of fluids between intracellular osmolarity between compartments, the osmotic compartment depends on compartments depends on is equal to concentrations of the ICF and amount of solute present osmolarity of solute present ECF are usually identical… extracellular osmolarity Marieb & Hoehn (Human Anatomy and Physiology, 8th ed.) – Figures 26.2 1 Fluid / Electrolyte / Acid-Base Balance Fluid / Electrolyte / Acid-Base Balance Water Balance: Water Balance: ICF functions as a reservoir For proper hydration: Waterintake = Wateroutput Thirst Mechanism: osmolarity / volume Water Output (-) Water Intake of extra. fluid Feces (2%) < 0 Metabolism (10%) Sweat (8%) Osmolarity rises: Osmoreceptors stimulated • Thirst (Hypothalamus) Solid foods (30%) Skin / lungs (30%) • ADH release volume / osmolarity of Sensation Drink > 0 extracellular fluid of thirst Osmolarity lowers: Ingested liquids (60%) Urine (60%) • Thirst • ADH release saliva Dry mouth secretion 2500 ml/day 2500 ml/day = 0 (-) Fluid / Electrolyte / Acid-Base Balance Fluid / Electrolyte / Acid-Base Balance Pathophysiology: Pathophysiology: Disturbances that alter solute or water balance in the body can Disturbances that alter solute or water balance in the body can cause a shift of water between fluid compartments cause a shift of water between fluid compartments Water intoxication Volume Contraction: A decrease in ECF volume Volume Expansion: An increase in ECF volume 300 mOsm < 300 mOsm NaCl not reabsorbed Greater than normal from kidney filtrate 300 mOsm NaCl water reabsorption IV bag Water Aldosterone Diarrhea deficiency insufficiency Osmotic IV Yang’s lunch SIADH 300 mOsm 300 mOsm > 300 mOsm < 300 mOsm 300 mOsm 300 mOsm > 300 mOsm < 300 mOsm Extracellular Extracellular Extracellular Extracellular Extracellular Extracellular Extracellular Extracellular Fluid Fluid Fluid Fluid Fluid Fluid Fluid Fluid 300 mOsm 300 mOsm > 300 mOsm < 300 mOsm 300 mOsm 300 mOsm > 300 mOsm < 300 mOsm Intracellular Intracellular Intracellular Intracellular Intracellular Intracellular Intracellular Intracellular Fluid Fluid Fluid Fluid Fluid Fluid Fluid Fluid Isomotic Contraction Hyperosmotic Contraction Hyposmotic Contraction Isomotic Expansion Hyperosmotic Expansion Hyposmotic Expansion ECF volume = Decrease ECF volume = Decrease ECF volume = Decrease IV bags of varying solutes ECF volume = Increase ECF volume = Increase ECF volume = Increase ECF osmolarity = No change ECF osmolarity = Increase ECF osmolarity = Decrease allow for manipulation of ECF osmolarity = No change ECF osmolarity = Increase ECF osmolarity = Decrease ECF / ICF levels… ICF volume = No change ICF volume = Decrease ICF volume = Increase ICF volume = No change ICF volume = Decrease ICF volume = Increase ICF osmolarity = No change ICF osmolarity = Increase ICF osmolarity = Decrease ICF osmolarity = No change ICF osmolarity = Increase ICF osmolarity = Decrease Fluid / Electrolyte / Acid-Base Balance Fluid / Electrolyte / Acid-Base Balance Acid-Base Balance: Acid-Base Balance: Acid-base balance is concerned with maintaining a normal Acid production in the human body has two forms: hydrogen ion concentration in the body fluids volatile acids and fixed acids Compatible range for life + 1) Volatile Acids: Acids that leave solution and enter the atmosphere pH = -log10 [H ] -9 pH = -log10 [40 x 10 ] Normal H CO HCO - + H+ [H+] pH = 7.4 CO2 + H2O 2 3 3 End product of carbonic Note: aerobic metabolism acid (13,000 – 20,000 mmol / day) Eliminated via the lungs 1) [H+] and pH are inversely related 2) Relationship is logarithmic, not linear [H+] = 40 x 10-9 Eq / L 2) Fixed Acids: Acids that do not leave solution (~ 50 mmol / day) Normal range of arterial pH = 7.37 – 7.42 Products of normal Products of extreme Ingested (harmful) Problems Encountered: catabolism: catabolism: products: 1) Disruption of cell membrane stability Diabetes mellitus 2) Alteration of protein structure • Sulfuric acid (amino acids) • Acetoacetic acid • Salicylic acid (e.g., aspirin) (ketobodies) 3) Enzymatic activity change • Phosphoric acid (phospholipids) • B-hydroxybutyric acid • Formic acid (e.g., methanol) • Lactic acid (anaerobic respiration) • Oxalic acids (e.g., ethylene glycol) Eliminated via the kidneys Costanzo (Physiology, 4th ed.) – Figure 7.1 2 Fluid / Electrolyte / Acid-Base Balance Fluid / Electrolyte / Acid-Base Balance For the human body, the Acid-Base Balance: Acid-Base Balance: most effective physiologic buffers will have a pK at 7.4 1.0 H+ Gain: Distant from H+ Loss: one another The Henderson-Hasselbalch equation is used to calculate • Across digestive epithelium • Release at lungs the pH of a buffered solution • Cell metabolic activities • Secretion into urine Chemical Buffer: A mixture of a weak acid and its conjugate base or a weak base and Henderson-Hasselbalch Equation: Most effective its conjugate acid that resist a change in pH -1 +1 [A-] buffering Robert Pitt: pH = pK + log [HA] + 150 mEq H 150 mEq H+ Brønsted-Lowry Nomenclature: + Weak acid: pH = -log10 [H ] Acid form = HA = H+ donor pK = -log10 K (equilibrium constant) [A-] = Concentration of base form of buffer (mEq / L) - + Base form = A = H acceptor [HA] = Concentration of acid form of buffer (mEq / L) 11.4 L Weak base: pK is a characteristic value for a buffer pair 11.4 L + + Acid form = BH = H donor (strong acid = pK; weak acid = pK) Base form = B = H+ acceptor 7.44 7.14 7.00 1.84 Costanzo (Physiology, 4th ed.) – Figure 7.2 Fluid / Electrolyte / Acid-Base Balance pK = 6.1 Fluid / Electrolyte / Acid-Base Balance - [HCO3 ] = 24 mmol / L Acid-Base Balance: Solubility = 0.03 mmol / L / mm Hg Acid-Base Balance: PCO2 = 40 mm Hg The major buffers of the ECF are bicarbonate and phosphate The major buffers of the ECF are bicarbonate and phosphate - - 1) HCO3 / CO2 Buffer: 1) HCO3 / CO2 Buffer: - + CO2 + H2O H2CO3 HCO3 + H Acid-base map: (HA) (A-) Shows relationship between the acid and base forms of a buffer and the pH of the solution Utilized as first line of defense when H+ enters / lost from system: - (1) Concentration of HCO3 normally high at 24 mEq / L - Ellipse: (2) The pK of HCO3 / CO2 buffer is 6.1 (near pH of ECF) Normal values for (3) CO is volatile; it can be expired by the lungs 2 arterial blood Note: The pH of arterial blood can - HCO3 24 Abnormal combinations of PCO2 be calculated with the pH = pK + log pH = 6.1 + log - Isohydric line and HCO3 concentration can Henderson-Hasselbalch equation 0.03 x PCO2 0.03 x 40 yield normal values of pH (‘same pH’) (compensatory mechanisms) pH = 7.4 Costanzo (Physiology, 4th ed.) – Figure 7.4 Fluid / Electrolyte / Acid-Base Balance Fluid / Electrolyte / Acid-Base Balance H+ enters cells via a build up of Acid-Base Balance: Acid-Base Balance: CO2 in ECF, which then enters cells, or to maintain electroneutrality The major buffers of the ECF are bicarbonate and phosphate The major buffers of the ICF are organic phosphates
Recommended publications
  • Extracellular Volume in the Brain- the Relevance of the Chloride Space
    Pediat. Res. 12: 635-645 (1978) A Review: Extracellular Volume in the Brain- The Relevance of the Chloride Space DONALD B. CHEEK(lZ2'AND A. BARRY HOLT Royal Children's Hospital Research Foundation, Parkville, Victoria, Australia By simultaneous infusion of anions into the blood and into the concerning brain water and the chloride space (C1 space) as a ventriculocisternal area it is possible to define two compart- measure of extracellular volume (ECV) . ments, one of blood plus brain and one of cerebrospinal fluid The rhesus monkey (Macaca mulatta) is a useful experimental (CSF) plus brain, with a zone of slow equilibration within the model. Comparisons of the macaque brain with the human brain brain where the two components meet. It would appear that during can prove rewarding. Our work on the growth of halogens (Br- and I-) have a much more remarkable and rapid the macaque brain and the distribution of C1- and H,O extends entrance into brain tissue from blood and, with increasing blood from midgestation (80 days) to term (165 days) and well into concentration, penetrate the second compartment significantly. the postnatal period (120 days after birth). The results of this Chloride is more strongly transported across the choroid plexus work have been documented in a recent publication (21). from blood to CSF (in comparison with I- or Br-). Chloride should resemble Br- and I- in diffusing rapidly through the intercellular canals back into the blood. However, knowledge I. CSF CIRCULATION AND ITS BARRIERS concerning C1- distribution dynamics is meager. The dynamics of chloride distribution, diffusion, and transport Homeostasis and the constancy of Claude Bernard's "Milieu using, for example, 36Cl-, 38Cl-, and stable C1-, have not been Interne" is essential for normal function of the central nervous studied sufficiently (in the two compartments), but circumstan- system (CNS).
    [Show full text]
  • Pathophysiology of Acid Base Balance: the Theory Practice Relationship
    Intensive and Critical Care Nursing (2008) 24, 28—40 ORIGINAL ARTICLE Pathophysiology of acid base balance: The theory practice relationship Sharon L. Edwards ∗ Buckinghamshire Chilterns University College, Chalfont Campus, Newland Park, Gorelands Lane, Chalfont St. Giles, Buckinghamshire HP8 4AD, United Kingdom Accepted 13 May 2007 KEYWORDS Summary There are many disorders/diseases that lead to changes in acid base Acid base balance; balance. These conditions are not rare or uncommon in clinical practice, but every- Arterial blood gases; day occurrences on the ward or in critical care. Conditions such as asthma, chronic Acidosis; obstructive pulmonary disease (bronchitis or emphasaemia), diabetic ketoacidosis, Alkalosis renal disease or failure, any type of shock (sepsis, anaphylaxsis, neurogenic, cardio- genic, hypovolaemia), stress or anxiety which can lead to hyperventilation, and some drugs (sedatives, opoids) leading to reduced ventilation. In addition, some symptoms of disease can cause vomiting and diarrhoea, which effects acid base balance. It is imperative that critical care nurses are aware of changes that occur in relation to altered physiology, leading to an understanding of the changes in patients’ condition that are observed, and why the administration of some immediate therapies such as oxygen is imperative. © 2007 Elsevier Ltd. All rights reserved. Introduction the essential concepts of acid base physiology is necessary so that quick and correct diagnosis can The implications for practice with regards to be determined and appropriate treatment imple- acid base physiology are separated into respi- mented. ratory acidosis and alkalosis, metabolic acidosis The homeostatic imbalances of acid base are and alkalosis, observed in patients with differing examined as the body attempts to maintain pH bal- aetiologies.
    [Show full text]
  • L7-Renal Regulation of Body Fluid [PDF]
    Iden8fy and describe the role of the Sensors and Objectives Effectors in the Abbreviations renal regulaon of body fluid volume ADH An8diurec hormone & osmolality ECF Extracellular fluid ECV Effec8ve Circulang Iden8fy the site and Volume describe the Describe the role of ANF Atrial natriure8c factor influence of the kidney in aldosterone on regulaon of body ANP ATRIAL NATRIURETIC PEPTIDE reabsorp8on of Na+ fluid volume & in the late distal osmolality tubules. PCT Proximal convoluted tubules AVP arginine vasopressin Understand the role of ADH in the reabsorp8on of water and urea Mind map Blood volume remains exactly constant despite extreme changes in daily fluid intake and the reason for that is : 1- slight change in blood volume ! Renal regulaNon of marked change in Extra Cellular cardiac output Volume Is a reflex 2- a slight change mechanism in RegulaNon of ECF Thus, regulaon of in cardiac output which variables volume = Na+ also dependent !large change in reflecng total RegulaNon of body upon blood pressure body sodium and Na+= RegulaNon BP baroreceptors. 3-slight change in ECV are monitor by blood pressure ! appropriate sensor large change in (receptors) URINE OUTPUT . Con. Blood Volume regulation : Sensors Effectors Affecng 1- Rennin angiotensin, aldosterone. 1- Caro8d sinus Urinary Na excre8on. 2- ADH ( the result will cause a change in NA+ and water excre8on either 3- Renal sympathe8c nerve by increasing it or 2- Volume receptors decreasing it ) . (large vein, atria, intrarenalartery) 4- ANP Con. Blood Volume regulation : Cardiac atria Low pressure receptors Pulmonary vasculature Central vascular sensors Carod sinus Sensors in the CNS High pressure receptors AorNc arch Juxtaglomerular apparatus (renal afferent arteriole) Sensors in the liver ECF volume Receptors Con.
    [Show full text]
  • Intravenous Fluid Therapy: a Review
    INTRAVENOUS FLUID THERAPY: A REVIEW Joanne Gaffney, RN, CANP, MS If this common intervention isn’t managed vigilantly, it actually can exacerbate the risks it’s designed to alleviate. umerous conditions— In this article, I’ll review the ba- The body loses fluid through metabolic, infective, sics of fluid balance and the etiology such normal physiologic func- traumatic, and iatro- of fluid loss. I’ll discuss how to as- tions as breathing and urination. N genic—can cause fluid sess fluid depletion, outline the prin- But when certain diseases or en- depletion. In such cases, initiat- ciples of fluid replacement therapy, vironmental conditions substan- ing intravenous (IV) fluid replace- and explain the context in which tially increase fluid loss, the body ment is commonplace. In fact, IV various types of solutions are ad- may be unable to maintain ho- fluid replacement therapy is one ministered. I will not, however, meostasis, and fluid replacement of the most common invasive cover the treatment of diabetes mel- may be necessary. procedures hospitalized patients litus and diabetes insipidus, which undergo, and it’s performed in cer- follow different principles that are NORMAL FLUID LOSS tain outpatient and home care set- beyond the scope of this article. Normal fluid loss includes both in- tings as well. sensible and sensible losses. Each Fluid loss can put patients at FLUID MECHANICS day the skin loses approximately substantial risk for fluid and elec- Body water represents approxi- 300 mL and the lungs lose approxi- trolyte imbalances, which can lead mately 60% of a person’s total mately 700 mL of water from evap- to shock and multiple organ failure.
    [Show full text]
  • Ph Buffers in the Blood
    pH Buffers in the Blood Authors: Rachel Casiday and Regina Frey Department of Chemistry, Washington University St. Louis, MO 63130 For information or comments on this tutorial, please contact R. Frey at [email protected]. Please click here for a pdf version of this tutorial. Key Concepts: Exercise and how it affects the body Acid-base equilibria and equilibrium constants How buffering works Quantitative: Equilibrium Constants Qualitative: Le Châtelier's Principle Le Châtelier's Principle Direction of Equilibrium Shifts Application to Blood pH How Does Exercise Affect the Body? Many people today are interested in exercise as a way of improving their health and physical abilities. But there is also concern that too much exercise, or exercise that is not appropriate for certain individuals, may actually do more harm than good. Exercise has many short-term (acute) and long-term effects that the body must be capable of handling for the exercise to be beneficial. Some of the major acute effects of exercising are shown in Figure 1. When we exercise, our heart rate, systolic blood pressure, and cardiac output (the amount of blood pumped per heart beat) all increase. Blood flow to the heart, the muscles, and the skin increase. The body's metabolism becomes more active, producing CO and H+ in the muscles. We breathe faster and deeper to supply the oxygen 2 required by this increased metabolism. Eventually, with strenuous exercise, our body's metabolism exceeds the oxygen supply and begins to use alternate biochemical processes that do not require oxygen. These processes generate lactic acid, which enters the blood stream.
    [Show full text]
  • Effects of Chloride and Extracellular Fluid Volume on Bicarbonate
    Effects of Chloride and Extracellular Fluid Volume on Bicarbonate Reabsorption along the Nephron in Metabolic Alkalosis in the Rat Reassessment of the Classical Hypothesis of the Pathogenesis of Metabolic Alkalosis John H. Galla, Denise N. Bonduris, and Robert G. Luke Nephrology Research and Training Center, University ofAlabama at Birmingham, Birmingham, Alabama 35294; and Division of Nephrology, Department ofMedicine, University ofAlabama at Birmingham, Birmingham, Alabama 35294 Abstract fluid (ECF) volume expansion effects a decrease in proximal tubule fluid reabsorption that, in turn, decreases the reabsorption Volume expansion has been considered essential for the correc- of bicarbonate in this nephron segment. As a result, more bi- tion of chloride-depletion metabolic alkalosis (CDA). To examine carbonate is delivered to distal sites in the nephron, which are the predictions of this hypothesis, rats dialyzed against 0.15 M considered to have a lesser capacity to reabsorb bicarbonate, but NaHCO3 to produce CDA and controls, CON, dialyzed against a greater capacity to reabsorb chloride. Thus, bicarbonate is ex- Ringer-f1C03 were infused with either 6% albumin (VE) or 80 creted; chloride, retained; and the alkalosis, corrected. mM non-sodium chloride salts (CC) added to 5% dextrose (DX) We have recently proposed and provided evidence for an and studied by micropuncture. CDA was maintained in rats in- alternative hypothesis in which the provision of chloride results fused with DX. VE expanded plasma volume (25%), maintained in a series of intrarenal events that leads to complete correction glomerular filtration rate (GFR), but did not correct CDA despite of CDA without the need for expansion of the ECF volume (6- increased fractional delivery of total CO2 (tCO2) out of the prox- 8).
    [Show full text]
  • The Renin-Angiotensin-Aldosterone System in Patients with Cystic Fibrosis of the Pancreas
    Pcdiat. Res. 5:626-C32 (1971) Aldosterone renin angiotensin sodium cystic fibrosis of sweat the pancreas The Renin-Angiotensin-Aldosterone System in Patients with Cystic Fibrosis of the Pancreas A. P. SIMOPOULOS'191, A. LAPEY, T. F. BOAT, P. A. DI SANT' AGNESE, AND F. C. BARTTER Endocrinology Branch, National Heart and Lung Institute, and Pediatric Metabolism Branch, National Institute of Arthritis and Metabolic Diseases, National Institutes of Health, Bethcsda, Maryland, USA Extract Patients with cystic fibrosis of the pancreas (CFP) have elevated plasma renin activity, supine renin 497-595 compared with a normal value of 228 ± 133 ng/100 ml plasma on 109 mEq sodium intake/24 hr, but have normal renin release mechanisms as far as postural changes are concerned, since the renin activity increases normally with the upright posture; upright renin, 594-875 compared with a normal value of 359 ± 210 ng/100 ml plasma on the same sodium intake. The high aldosterone secretion rates (ASR), 161 —4-45 compared with a normal value of 90 ± 31 /jg/24 hr, seen on 109 mEq sodium intake were probably secondary to the abnormally high renin release. The same can be said for the lack of adequate suppression to normal of both renin and ASR on 249 mEq sodium intake/24 hr, supine renin 205-544 compared with a normal value of 97 ± 71 ng/100 ml plasma; upright renin 845-893 compared with a normal value of 212 ±61 ng/100 ml plasma; ASR on the same intake, 93-333 compared with a normal value of 62.15 ± 27.8 /ug/24 hr.
    [Show full text]
  • The Influence of Extracellular Fluid Volume on the Renal Bicarbonate Threshold. a Study of Two Children with Lowe's Syndrome
    Pediat. Res. 3: 140-148 (1969) Bicarbonate oculo-cerebro-renal threshold syndrome extracellular water titratable acidity kidney tubular acidosis The Influence of Extracellular Fluid Volume on the Renal Bicarbonate Threshold. A Study of Two Children with Lowe's Syndrome OSKAROETLIKER[~~~ and ETTORE ROSSI Department of Pediatrics, University of Bernr, Switzerland Extract This study on the renal acid-base balance in two slightly acidotic patients with Lowe's syndrome was undertaken to demonstrate the influence of extracellular fluid volume on the renal bicarbonate thresh- old. The clinical observation of chronic dehydration in both patients lead to the hypothesis that a low plasma volume might account for a relative compensation of metabolic acidosis in these patients and, conversely, that volume expansion might unmask a more severe acidosis. The ability to excrete an acid urine was established by measuring the response to acute NH,Cl loading. Optimal response was seen three to four hours after NH,C1 was given. Both patients were able to excrete acid urine with a pH of 5.5 at blood total CO, content below 18.5 mmoles/l. The ex- cretion rates for titratable acidity (TA) and for ammonium rose after NH,C1 administration to val- ues within normal range (table I). The excretion rate of TA in one patient attained normal limits after correction for the low GFR, which on repeated examinations was 25-30 % of normal. The renal bicarbonate threshold was determined by infusions of increasing amounts of NaHCO,. The infusion rates were kept constant at 1.4 ml/min/m2 during the first study undertaken in each patient, and 5.6 ml/min/m2 during the second.
    [Show full text]
  • Acid-Base Disturbances in the Emergency Department
    A complete history and physical ex- amination are essential to determine the cause of a discovered disorder. Acid-base The initial laboratory investigation of a suspected acid-base disturbance is assessment of arterial blood gases disturbances in and serum electrolytes. Further tests to differentiate the various causes of an identified disorder might then be the emergency indicated. Physiology department Fluctuations in the acidity of body fluids are resisted by several buffer systems. A buffer is a substance that Part 1: Piecing the clues together is able to absorb or donate hydrogen (H') ions. Equation I represents buff- TIMI E RUTLEDC1)E, MID, C1CP(EM) ering; the reaction can be driven ei- ther way, depending on whether there is a deficit or an excess of H+ ions. 1. HA H++A cid-base disorders reflect effects, including confusion and The pH of a solution containing this 4 * disturbances of hydrogen seizures.-' buffer system is determined by the ion homeostasis. Human An acidosis is a pathologic process Henderson-Hasselbalch equation: extracellular fluid pH (the that tends to push blood pH dow-n- negative logarithm ofthe hydrogen ion ward. An alkalosis, on the other hand, 2. pH = pKa + log[A ]/[HA] concentration) is normally maintained pushes the pH upward. An acidosis between 7.35 and 7.45. A plasma pH and an alkalosis can co-exist in a mixed In this equation Ka is the dissociation below 7.35 is termed acidemia, and a acid-base disorder; the pH then de- constant of the weak acid HA. The pH above 7.45 is termed alkalemia.
    [Show full text]
  • Effect of Flow Rate and the Extracellular Fluid Volume on Proximal Urate and Water Absorption
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Kidney International, Vol. /7(1980), pp. 155 -16/ Effect of flow rate and the extracellular fluid volume on proximal urate and water absorption HARRY 0. SENEKJIAN, THOMAS F. KNIGHT, STEVEN C. SANSOM, and EDWARD J. WEINMAN Rena! Section, Department of Internal Medicine, Veterans Ad,ninist ration Medical Center and Baylor College of Medicine, Houston, Texas Effect of flow rate and the extracellular fluid volume on proximal laboratory. It has been demonstrated previously urate and water absorption. The in vivo microperfusion tech- nique was used to examine the effect of variations in tubular flow that the state of hydration of the extracellular fluid rate and the extracellular fluid volume on [2-14C]-urate and water volume (ECV) affects urate transport [1—4]. Spe- absorption in the proximal tubule of the rat. In nondiuretic ani- cifically, expansion of the ECV with isotonic saline mals, fractional urate absorption was highest at the lowest per- fusion rate examined and decreased as the rate of perfusion was resulted in an increase in urate excretion and an in- increased. Increasing the initial concentration of urate in the per- creased recovery of radioactive urate microinjected fusion solution had no effect on the fractional absorption of directly into the proximal tubule [1]. By analogy to urate. Fractional water absorption was also inversely related to the rate of perfusion. Expansion of the extracellular fluid volume the known changes in sodium reabsorption induced with isotonic saline resulted in rates of urate absorption similar by expansion of the ECV, we suggested a possible to control values at any given microperfusion rate.
    [Show full text]
  • Understanding Acid-Base Balance
    Understanding acid-base balance Find out how to interpret values and steady a disturbed equilibrium in an acutely ill patient. By Susan J. Appel, APRN,BC, CCRN, PhD, and Charles A. Downs, APRN,BC, CCRN, MSN Many critical illnesses can upset a patient’s acid-base bal- generates 50 to 100 mEq/day of acid from metabolism of ance, and a disturbance in acid-base equilibrium may indi- carbohydrates, proteins, and fats. In addition, the body cate other underlying diseases or organ damage. Accurately loses base in the stool. In order to maintain acid-base interpreting acid-base balance requires simultaneous mea- homeostasis, acid production must balance the neutraliza- surements of arterial pH and plasma electrolytes, as well as tion or excretion. The lungs and kidneys are the main reg- knowledge of compensatory physiologic mechanisms. ulators of acid-base homeostasis. The lungs release CO2, an In this article, we’ll review normal acid-base physiol- end product of carbonic acid (H2CO3). The renal tubules, - ogy, acid-base disturbances, and lab techniques and math- with the regulation of bicarbonate (HCO3 ), excrete other ematical calculations used to identify the cause of acid-base acids produced from the metabolism of proteins, carbohy- derangements. Lastly, we’ll discuss potential treatments for drates, and fats.1 acid-base disturbances. M Compensating for changes What’s normal? The body has three compensatory mechanisms to handle A normal range for arterial pH is 7.35 to 7.45. Acidosis is changes in serum pH: a pH less than 7.35; alkalosis is a pH greater than 7.45.
    [Show full text]
  • Fluid, Electrolyte, and Acid-Base Balance
    Fluid, Electrolyte, and Acid-Base Balance Dr. Ali Ebneshahidi © 2009 Ebneshahidi Body Fluids . A typical adult body contains about 40 L of body fluids. 25 L of fluids (or 63%) are located inside body cells, called intracellular fluid (ICF). 15 L of fluids (or 37%) are located outside of body cells, called extracellular fluid (ECF). 80% of ECF is interstitial fluid (which includes lymph, synovial fluid, cerebrospinal fluid, GI tract fluids, and fluids in the eyes and ears), and 20% of ECF is blood plasma. + ++ 2- 2- . ICF is mostly water and is rich in K , Mg , HPO4 , SO4 , and protein anions. + - - ++ . ECF contains more Na , Cl , HCO3 , and Ca . © 2009 Ebneshahidi © 2009 Ebneshahidi © 2009 Ebneshahidi . Concentrations of substances dissolved in ICF and ECF are constantly different because the cell membrane is selectively permeable, which maintains a relatively unchanged distribution of substances in different body fluids. Fluid balance refers to the proper levels of water and electrolytes being in the various body compartments according to their needs. Osmotic pressure (created by the dissolved electrolytes in body fluids) and hydrostatic pressure (created by the water in body fluids) are the main forces behind any molecular movement between body compartments. © 2009 Ebneshahidi Water balance . Water is the most abundant constituent in the body, varying from 45% to 75% of body weight. Water balance occurs when water intake equals water output. A normal adult consumes about 2,500 ml of water daily 1,500 ml in beverages, 750 ml in food, and 250 ml from cellular respiration and anabolic metabolism. At the same time, this adult is releasing about 2,500 ml of water daily -- 1,500 ml in urine, 700 ml by evaporation (through the skin and lungs), 100 ml in the feces, and 200 ml in sweating.
    [Show full text]