Rapa, a Bacterial Homolog of SWI2/SNF2, Stimulates RNA Polymerase Recycling in Transcription

Total Page:16

File Type:pdf, Size:1020Kb

Rapa, a Bacterial Homolog of SWI2/SNF2, Stimulates RNA Polymerase Recycling in Transcription Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press RapA, a bacterial homolog of SWI2/SNF2, stimulates RNA polymerase recycling in transcription Maxim V. Sukhodolets, Julio E. Cabrera, Huijun Zhi, and Ding Jun Jin1 Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA We report that RapA, an Escherichia coli RNA polymerase (RNAP)-associated homolog of SWI2/SNF2, is capable of dramatic activation of RNA synthesis. The RapA-mediated transcriptional activation in vitro depends on supercoiled DNA and high salt concentrations, a condition that is likely to render the DNA superhelix tightly compacted. Moreover, RapA activates transcription by stimulating RNAP recycling. Mutational analyses indicate that the ATPase activity of RapA is essential for its function as a transcriptional activator, and a rapA null mutant exhibits a growth defect on nutrient plates containing high salt concentrations in vivo. Thus, RapA acts as a general transcription factor and an integral component of the transcription machinery. The mode of action of RapA in remodeling posttranscription or posttermination complexes is discussed. [Key Words: RapA; SWI2/SNF2 homolog; transcriptional activation; RNA polymerase recycling; remodeling posttranscription complexes] Received August 10, 2001; revised version accepted October 17, 2001. In Escherichia coli, core RNA polymerase (RNAP), Muchardt and Yaniv 1999). These proteins are capable of ␣ ␤␤Ј which consists of subunits 2 , is capable of transcrip- altering the configuration of naked DNA, an activity tion elongation and termination at simple terminators. that may be responsible for their chromatin/nucleosome On a sigma factor binding to core RNAP, the resulting remodeling function (Havas et al. 2000; Gavin et al. RNAP holoenzyme can initiate transcription at promot- 2001). ers on a DNA template (Burgess et al. 1969, 1987). There We found that RapA binds to both core RNAP and are also multiple RNAP-associated proteins, such as RNAP holoenzyme, with a higher affinity for the former, NusA, GreA/GreB and ␻, which on binding to RNAP at the interface of the ␣ and ␤Ј subunits (Sukhodolets and (core and/or holoenzyme) affect various steps in the tran- Jin 2000). Like other members of the SWI2/SNF2 protein scription cycle or RNAP assembly (Greenblatt and Li family, RapA is an ATPase. The ATPase activity of RapA 1981; Friedman and Gottesman 1983; Sparkowski and is stimulated on binding to RNAP, indicating that RapA Das 1991; Borukhov et al. 1993; Altman et al. 1994; Feng interacts with RNAP both physically and functionally. et al. 1994; Hsu et al. 1995; Mukherjee and Chatterji However, we found no apparent effect of rapA on cell 1997; Minakhin et al. 2001). growth in vivo and observed only a marginal effect of Previously, we identified an E. coli RNAP-associated RapA on transcription in vitro (Sukhodolets and Jin protein named RapA (Sukhodolets and Jin 1998). This 1998). Furthermore, our results (Sukhodolets and Jin 110-kD protein (also known as HepA) was also reported 2000) indicated that rapA is not likely to be involved in independently by another group (Muzzin et al. 1998). DNA repair, contrary to a report that a mutation in the RapA is a member of the SWI/SNF superfamily of heli- gene causes UV sensitivity (Muzzin et al. 1998). case-like proteins, which share six evolutionarily con- To search for the function of RapA in transcription, we served regions (Carlson et al. 1984; Andrews and Her- reasoned that because RapA is a bacterial homolog of skowitz 1989; Lewis et al. 1992; Bork and Koonin 1993; SWI2/SNF2, it is conceivable that it may retain the in- Kolsto et al. 1993; Eisen et al. 1995). Eukaryotic mem- trinsic ability to modulate DNA conformation, leading bers of this superfamily are implicated in chromatin/ to regulation of transcription. It is possible that RapA nucleosome remodeling and gene expression (for re- prefers a particular DNA conformation to act on in tran- views, see Peterson 1996; Pazin and Kadonaga 1997; scription. It is known that salt concentration has dra- matic effects on the conformation of supercoiled DNA (Bednar et al. 1994; Rybenkov et al. 1997a,b). In this re- 1Corresponding author. port we have determined the effect of RapA on transcrip- E-MAIL [email protected]; FAX (301) 594-3611. Article and publication are at http://www.genesdev.org/cgi/doi/10.1101/ tion of supercoiled DNA at different salt concentrations gad.936701. and found that it greatly stimulates transcription at rela- 3330 GENES & DEVELOPMENT 15:3330–3341 © 2001 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/01 $5.00; www.genesdev.org Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press RNAP recycling in transcription by RapA tively high salt concentrations. Our results demonstrate of the stimulation was several-fold lower than that ob- that RapA is a general transcriptional activator impor- served with RapA. Thus, RapA is a potent transcrip- tant for RNAP recycling in transcription. tional activator at relatively high concentrations of NaCl. Similar results were obtained when KCl was used (Fig. 1B). Results Because potassium glutamate, rather than NaCl or KCl, is the major intracellular salt in E. coli (Cayley et al. RapA activates transcription in vitro 1991), the effect of this salt on the ability of RapA to We decided to investigate the effect of RapA on tran- activate transcription was determined (Fig. 1C). RapA scription as a function of salt concentration using a su- activated transcription of tac significantly only when po- percoiled DNA containing the tac promoter (pDJ631) as tassium glutamate concentrations were Ն400 mM, with DNA template (Fig. 1). We found that the magnitude of maximal stimulatory effects at ∼500 mM potassium glu- the effect of RapA on transcription is dramatically influ- tamate. The consistent behavior of RapA in the presence enced by salt concentration (Fig. 1A). Specifically, RapA of different kinds of salt indicates that RapA generally had a strong stimulatory effect when NaCl was higher requires a relatively high salt concentration to stimulate than 100 mM; the activation reached its maximum at transcription. 200 mM NaCl. At relatively low (Յ100 mM) or very high The ability of RapA to activate transcription depends (300 mM) salt concentrations, RapA had only a minimal on a supercoiled DNA template. When the same plasmid effect on transcription. In the absence of RapA, transcrip- DNA was linearized, transcription was more sensitive to tion from the tac promoter was also sensitive to salt salt concentration overall than that on supercoiled DNA concentration. The transcription was enhanced when (at Ն250 mM NaCl RNAP nearly ceased synthesis of the the NaCl concentration was increased up to 250 mM and tac transcript), and RapA exhibited an inhibitory effect then declined at 300 mM NaCl. However, the magnitude at all salt concentrations tested (Fig. 2). Figure 1. RapA stimulates transcription on supercoiled DNA in the presence of high con- centration of salts. in vitro transcription reac- tions were carried out as described in Materi- als and Methods. Autoradiographs of the in vitro transcription gels showing the termi- nated tac transcript are presented. The NTP concentrations (A/U/G/C) were 1/0.2/0.2/ 0.02 mM, respectively. The concentrations of RNAP holoenzyme, RapA (purified from the 1:1 RNAP holoenzyme–RapA complex), and supercoiled plasmid DNA template (pDJ631) were approximately 12 nM, 0.4 µM (when present), and 12 nM, respectively. The effect of RapA on transcription from the tac pro- moter as a function of: NaCl concentration (A), KCl concentration (B), and potassium glu- tamate (KGlu) concentration (C). The quanti- tated levels of the tac transcript in reactions with (solid symbols) or without (open sym- bols) RapA are shown at right. GENES & DEVELOPMENT 3331 Downloaded from genesdev.cshlp.org on October 4, 2021 - Published by Cold Spring Harbor Laboratory Press Sukhodolets et al. Figure 2. RapA fails to stimulate transcription on linear DNA. The experimental conditions were similar to those described in Figure 1A, ex- cept that the purified 1.2-kb BfaI DNA fragment of pDJ631 (the BfaI sites are located ∼900 bp up- stream and ∼300 bp downstream from the tac pro- moter in the plasmid) at the concentration of ∼5 nM was used as a DNA template. The quantitated levels of the tac transcript in reactions with (solid symbols) or without (open symbols) RapA are shown at right. To rule out the possibility that RapA-mediated tran- motif Ia RapA mutant) difference in the affinity of the scriptional activation was promoter-specific, we deter- two mutant enzymes to RNAP compared to recombi- mined the effect of RapA on several other promoters (Fig. nant wild-type RapA using a glycerol gradient ultracen- 3). RapA was capable of stimulating transcription at all trifugation-binding assay (Sukhodolets and Jin 2000). the promoters tested when a relatively high concentra- However, the affinity of recombinant wild-type RapA to tion of salt was present in the reaction (under the con- RNAP was reduced ∼5- to 10-fold compared to that of ditions used, RapA increased RNA synthesis 4- to 20- wild-type (endogenous) RapA purified from the 1:1 fold compared to RNAP alone), although each promoter RNAP–RapA complex (data not shown). had its own characteristic profile. In the case of the strin- We then tested the effects of the two mutant RapA gent promoters rrnB P1 or pyrBI, there was no transcrip- proteins on transcription in the presence of high concen- tion at 300 mM NaCl either in the presence or absence of trations of NaCl. For the recombinant wild-type RapA RapA, reflecting the intrinsic instability of initiation protein, it showed stimulatory effect on transcription of complexes on stringent promoters (Gourse 1988; Zhou tac at a molar ratio (RapA/RNAP) 1; the stimulatory ef- and Jin 1998).
Recommended publications
  • Chromatin Remodeling in Mice
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Supervised Undergraduate Student Research Chancellor’s Honors Program Projects and Creative Work Spring 5-2005 Chromatin Remodeling in Mice Stephen James Dolgner University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_chanhonoproj Recommended Citation Dolgner, Stephen James, "Chromatin Remodeling in Mice" (2005). Chancellor’s Honors Program Projects. https://trace.tennessee.edu/utk_chanhonoproj/843 This is brought to you for free and open access by the Supervised Undergraduate Student Research and Creative Work at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Chancellor’s Honors Program Projects by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. Chromatin Remodeling in Mice Stephen Dolgner Advisor: Dr. Sundaresan Venkatachalam May 2005 ABSTRACT Controlling gene regulation is an important aspect in the life of cells that provides them the ability to carry out their functional roles within an organism. Unregulated or misregulated gene expression can lead to cell immortalization or death. Chromatin remodeling functions as a regulator for many important DNA functions including transcription, the first step of gene expression in cells. The Chromodomain-Helicase­ DNA binding domain gene family (CHD) is evolutionarily conserved and has distinct structural motifs that indicate a role in chromatin remodeling and DNA repair. The CHD proteins have both helicase activity, allowing the winding and unwinding of DNA, and an effect on histone acetylation through their role of the Nucleosome Remodeling and Histone Deacetylation (NuRD) complex. The NuRD complex participates in the deacetylation of chromatin histones, in addition to orchestrating ATP-dependent remodeling of the the chromatin structure.
    [Show full text]
  • The Gene Repressor Complex Nurd Interacts with the Histone Variant H3.3
    Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press The gene repressor complex NuRD interacts with the histone variant H3.3 at promoters of active genes Daniel C. Kraushaar1,3,4, Zuozhou Chen2,4, Qingsong Tang1, Kairong Cui1, Junfang Zhang2,*, Keji Zhao1,* 1 Systems Biology Center, National Heart, Lung, and Blood Institute, NIH, MD 2 Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources (Shanghai Ocean University), Ministry of Education; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China. 3 Current address: Genomic and RNA Profiling Core, Baylor College of Medicine, TX 4These authors contributed equally to this work *Correspondence: Junfang Zhang ([email protected]); Keji Zhao ([email protected]) Key words: histone variant H3.3; chromatin modification; epigenetics; ChIP-seq; protein interaction; NuRD; histone modification 1 Downloaded from genome.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press Abstract The histone variant H3.3 is deposited across active genes, regulatory regions and telomeres. It remains unclear how H3.3 interacts with chromatin modifying enzymes and thereby modulates gene activity. In this study, we performed a co- immunoprecipitation-mass spectrometry analysis of proteins associated with H3.3-containing nucleosomes and identified the Nucleosome Remodeling and Deacetylase complex (NuRD) as a major H3.3-interactor. We show that the H3.3- NuRD interaction is dependent on the H3.3 lysine 4 residue and that NuRD binding occurs when lysine 4 is in its unmodified state.
    [Show full text]
  • EZH2 Reduction Is an Essential Mechanoresponse for The
    Li et al. Cell Death and Disease (2020) 11:757 https://doi.org/10.1038/s41419-020-02963-3 Cell Death & Disease ARTICLE Open Access EZH2 reduction is an essential mechanoresponse for the maintenance of super-enhancer polarization against compressive stress in human periodontal ligament stem cells Qian Li1,XiwenSun2,YunyiTang2, Yanan Qu2, Yanheng Zhou1 and Yu Zhang2 Abstract Despite the ubiquitous mechanical cues at both spatial and temporal dimensions, cell identities and functions are largely immune to the everchanging mechanical stimuli. To understand the molecular basis of this epigenetic stability, we interrogated compressive force-elicited transcriptomic changes in mesenchymal stem cells purified from human periodontal ligament (PDLSCs), and identified H3K27me3 and E2F signatures populated within upregulated and weakly downregulated genes, respectively. Consistently, expressions of several E2F family transcription factors and EZH2, as core methyltransferase for H3K27me3, decreased in response to mechanical stress, which were attributed to force-induced redistribution of RB from nucleoplasm to lamina. Importantly, although epigenomic analysis on H3K27me3 landscape only demonstrated correlating changes at one group of mechanoresponsive genes, we observed a genome-wide destabilization of super-enhancers along with aberrant EZH2 retention. These super- enhancers were tightly bounded by H3K27me3 domain on one side and exhibited attenuating H3K27ac deposition fl 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; and attening H3K27ac peaks along with compensated EZH2 expression after force exposure, analogous to increased H3K27ac entropy or decreased H3K27ac polarization. Interference of force-induced EZH2 reduction could drive actin filaments dependent spatial overlap between EZH2 and super-enhancers and functionally compromise the multipotency of PDLSC following mechanical stress. These findings together unveil a specific contribution of EZH2 reduction for the maintenance of super-enhancer stability and cell identity in mechanoresponse.
    [Show full text]
  • Chromatin Accessibility and the Regulatory Epigenome
    REVIEWS EPIGENETICS Chromatin accessibility and the regulatory epigenome Sandy L. Klemm1,4, Zohar Shipony1,4 and William J. Greenleaf1,2,3* Abstract | Physical access to DNA is a highly dynamic property of chromatin that plays an essential role in establishing and maintaining cellular identity. The organization of accessible chromatin across the genome reflects a network of permissible physical interactions through which enhancers, promoters, insulators and chromatin-binding factors cooperatively regulate gene expression. This landscape of accessibility changes dynamically in response to both external stimuli and developmental cues, and emerging evidence suggests that homeostatic maintenance of accessibility is itself dynamically regulated through a competitive interplay between chromatin- binding factors and nucleosomes. In this Review , we examine how the accessible genome is measured and explore the role of transcription factors in initiating accessibility remodelling; our goal is to illustrate how chromatin accessibility defines regulatory elements within the genome and how these epigenetic features are dynamically established to control gene expression. Chromatin- binding factors Chromatin accessibility is the degree to which nuclear The accessible genome comprises ~2–3% of total Non- histone macromolecules macromolecules are able to physically contact chroma­ DNA sequence yet captures more than 90% of regions that bind either directly or tinized DNA and is determined by the occupancy and bound by TFs (the Encyclopedia of DNA elements indirectly to DNA. topological organization of nucleosomes as well as (ENCODE) project surveyed TFs for Tier 1 ENCODE chromatin- binding factors 13 Transcription factor other that occlude access to lines) . With the exception of a few TFs that are (TF). A non- histone protein that DNA.
    [Show full text]
  • Nucleosome Eviction and Activated Transcription Require P300 Acetylation of Histone H3 Lysine 14
    Nucleosome eviction and activated transcription require p300 acetylation of histone H3 lysine 14 Whitney R. Luebben1, Neelam Sharma1, and Jennifer K. Nyborg2 Department of Biochemistry and Molecular Biology, Campus Box 1870, Colorado State University, Fort Collins, CO 80523 Edited by Mark T. Groudine, Fred Hutchinson Cancer Research Center, Seattle, WA, and approved September 9, 2010 (received for review July 6, 2010) Histone posttranslational modifications and chromatin dynamics include H4 acetylation-dependent relaxation of the chromatin are inextricably linked to eukaryotic gene expression. Among fiber and recruitment of ATP-dependent chromatin-remodeling the many modifications that have been characterized, histone tail complexes via acetyl-lysine binding bromodomains (12–17). acetylation is most strongly correlated with transcriptional activa- However, the mechanism by which histone tail acetylation elicits tion. In Metazoa, promoters of transcriptionally active genes are chromatin reconfiguration and coupled transcriptional activation generally devoid of physically repressive nucleosomes, consistent is unknown (6). with the contemporaneous binding of the large RNA polymerase II In recent years, numerous high profile mapping studies of transcription machinery. The histone acetyltransferase p300 is also nucleosomes and their modifications identified nucleosome-free detected at active gene promoters, flanked by regions of histone regions (NFRs) at the promoters of transcriptionally active genes hyperacetylation. Although the correlation
    [Show full text]
  • Chromatin-Remodeling and the Initiation of Transcription
    PERSPECTIVE Chromatin-remodeling and the initiation of transcription Yahli Lorch* and Roger D. Kornberg Department of Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA Quarterly Reviews of Biophysics (2015), 48(4), pages 465–470 doi:10.1017/S0033583515000116 Abstract. The nucleosome serves as a general gene repressor by the occlusion of regulatory and promoter DNA sequences. Repression is relieved by the SWI/SNF-RSC family of chromatin-remodeling complexes. Research reviewed here has revealed the essential features of the remodeling process. Key words: RSC, nucleosome, nucleosome-free region. Introduction The intricate regulation of transcription underlies develop- are unable to form complexes with promoter DNA in nucleo- mental and cellular control. Transcriptional regulation somes. Relief of repression has long been attributed to the re- occurs at many levels, including the exposure of promoters moval of nucleosomes. This view was based on the classical in chromatin, and the association of promoters with the finding of DNase I ‘hypersensitive’ sites associated with the transcriptional machinery. Early evidence for regulation at enhancers and promoters of active genes (Wu et al. 1979). the level of chromatin came from the effect of the major These sites are typically several hundred base pairs in extent, chromatin proteins, the histones, upon transcription in and are exposed to attack by all nucleases tested. vitro (reviewed in (Kornberg & Lorch, 1999)). The wrapping The classical view was challenged by results of protein–DNA of promoter DNA around a histone octamer in the nucleo- cross-linking, which demonstrated the persistence of histones some represses the initiation of transcription by purified at the promoters of active genes.
    [Show full text]
  • PRC2-Mediated Repression of SMARCA2 Predicts EZH2 Inhibitor Activity in SWI/SNF Mutant Tumors
    PRC2-mediated repression of SMARCA2 predicts EZH2 inhibitor activity in SWI/SNF mutant tumors Thomas Januarioa,1, Xiaofen Yea,1, Russell Bainerb, Bruno Alickec, Tunde Smitha, Benjamin Haleyd, Zora Modrusand, Stephen Gouldc, and Robert L. Yaucha,2 aDepartment of Discovery Oncology, Genentech, Inc., South San Francisco, CA 94080; bDepartment of Bioinformatics, Genentech, Inc., South San Francisco, CA 94080; cDepartment of Translational Oncology, Genentech, Inc., South San Francisco, CA 94080; and dDepartment of Molecular Biology, Genentech, Inc., South San Francisco, CA 94080 Edited by Joan S. Brugge, Harvard Medical School, Boston, MA, and approved October 3, 2017 (received for review March 8, 2017) Subunits of the SWI/SNF chromatin remodeling complex are fre- of the ovary, hypercalcemic-type (SCCOHT) (3, 7–9). Although the quently mutated in human cancers leading to epigenetic dependen- mechanisms underlying tumorigenesis in these specific contexts cies that are therapeutically targetable. The dependency on the have yet to be fully elucidated, data are further supportive of a polycomb repressive complex (PRC2) and EZH2 represents one such tumor-suppressive function (10, 11). vulnerability in tumors with mutations in the SWI/SNF complex Efforts to therapeutically target SWI/SNF-defective cancers subunit, SNF5; however, whether this vulnerability extends to other have focused on identifying novel vulnerabilities that may be a SWI/SNF subunit mutations is not well understood. Here we show consequence of the altered chromatin state caused by muta- that a subset of cancers harboring mutations in the SWI/SNF ATPase, tions in BAF complex subunits. One such described vulnera- bility was based on the initial discovery in Drosophila of an SMARCA4, is sensitive to EZH2 inhibition.
    [Show full text]
  • Fission Yeast Tup1-Like Repressors Repress Chromatin Remodeling at the Fbp1؉ Promoter and the Ade6-M26 Recombination Hotspot
    Copyright 2003 by the Genetics Society of America Fission Yeast Tup1-Like Repressors Repress Chromatin Remodeling at the fbp1؉ Promoter and the ade6-M26 Recombination Hotspot Kouji Hirota,* Charles S. Hoffman,† Takehiko Shibata‡ and Kunihiro Ohta*,‡,§,1 *Genetic Dynamics Research Unit-Laboratory, The Institute of Physical and Chemical Research (RIKEN), Wako-shi, Saitama 351-0198, Japan, †Biology Department, Boston College, Chestnut Hill, Massachusetts 02467 and ‡Cellular and Molecular Biology Laboratory, The Institute of Physical and Chemical Research (RIKEN)/CREST of Japan Science and Technology Corporation, Wako-shi, Saitama 351-0198, Japan ABSTRACT Chromatin remodeling plays crucial roles in the regulation of gene expression and recombination. Transcription of the fission yeast fbp1ϩ gene and recombination at the meiotic recombination hotspot ade6-M26 (M26) are both regulated by cAMP responsive element (CRE)-like sequences and the CREB/ ATF-type transcription factor Atf1•Pcr1. The Tup11 and Tup12 proteins, the fission yeast counterparts of the Saccharomyces cerevisiae Tup1 corepressor, are involved in glucose repression of the fbp1ϩ transcription. We have analyzed roles of the Tup1-like corepressors in chromatin regulation around the fbp1ϩ promoter and the M26 hotspot. We found that the chromatin structure around two regulatory elements for fbp1ϩ was remodeled under derepressed conditions in concert with the robust activation of fbp1ϩ transcription. Strains with tup11⌬ tup12⌬ double deletions grown in repressed conditions exhibited the chromatin state associated with wild-type cells grown in derepressed conditions. Interestingly, deletion of rst2ϩ, encoding a transcription factor controlled by the cAMP-dependent kinase, alleviated the tup11⌬ tup12⌬ defects in chromatin regulation but not in transcription repression.
    [Show full text]
  • P300-Mediated Acetylation Facilitates the Transfer of Histone H2A–H2B Dimers from Nucleosomes to a Histone Chaperone
    Downloaded from genesdev.cshlp.org on October 3, 2021 - Published by Cold Spring Harbor Laboratory Press p300-Mediated acetylation facilitates the transfer of histone H2A–H2B dimers from nucleosomes to a histone chaperone Takashi Ito,1,3 Tsuyoshi Ikehara,1 Takeya Nakagawa,1 W. Lee Kraus,2 and Masami Muramatsu1 1Department of Biochemistry, Saitama Medical School, Morohongo, Moroyama-cho, Iruma-gun, Saitama 350-0495 Japan; 2Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853 We have used a purified recombinant chromatin assembly system, including ACF (Acf-1 + ISWI) and NAP-1, to examine the role of histone acetylation in ATP-dependent chromatin remodeling. The binding of a transcriptional activator (Gal4–VP16) to chromatin assembled using this recombinant assembly system dramatically enhances the acetylation of nucleosomal core histones by the histone acetyltransferase p300. This effect requires both the presence of Gal4-binding sites in the template and the VP16-activation domain. Order-of-addition experiments indicate that prior activator-meditated, ATP-dependent chromatin remodeling by ACF is required for the acetylation of nucleosomal histones by p300. Thus, chromatin remodeling, which requires a transcriptional activator, ACF and ATP, is an early step in the transcriptional process that regulates subsequent core histone acetylation. Glycerol gradient sedimentation and immunoprecipitation assays demonstrate that the acetylation of histones by p300 facilitates the transfer of H2A–H2B from nucleosomes
    [Show full text]
  • The Key Role of DNA Methylation and Histone Acetylation in Epigenetics of Atherosclerosis
    J Lipid Atheroscler. 2020 Sep;9(3):419-434 Journal of https://doi.org/10.12997/jla.2020.9.3.419 Lipid and pISSN 2287-2892·eISSN 2288-2561 Atherosclerosis Review The Key Role of DNA Methylation and Histone Acetylation in Epigenetics of Atherosclerosis Han-Teo Lee ,1,2,* Sanghyeon Oh ,1,2,* Du Hyun Ro ,1,2,3,* Hyerin Yoo ,1,2 Yoo-Wook Kwon 4,5 1Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Korea 2Interdisciplinary Program in Stem Cell Biology, Graduate School of Medicine, Seoul National University, Seoul, Korea 3Department of Orthopedic Surgery, Seoul National University Hospital, Seoul, Korea 4Strategic Center of Cell and Bio Therapy for Heart, Diabetes & Cancer, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea Received: May 8, 2020 5Department of Medicine, College of Medicine, Seoul National University, Seoul, Korea Revised: Sep 14, 2020 Accepted: Sep 15, 2020 Correspondence to ABSTRACT Yoo-Wook Kwon Biomedical Research Institute, Seoul National Atherosclerosis, which is the most common chronic disease of the coronary artery, constitutes University Hospital, 103 Daehak-ro, Jongno- a vascular pathology induced by inflammation and plaque accumulation within arterial vessel gu, Seoul 03080, Korea. E-mail: [email protected] walls. Both DNA methylation and histone modifications are epigenetic changes relevant for atherosclerosis. Recent studies have shown that the DNA methylation and histone *Han-Teo Lee, Sanghyeon Oh and Du Hyun Ro modification systems are closely interrelated and mechanically dependent on each other. contributed equally to this work. Herein, we explore the functional linkage between these systems, with a particular emphasis Copyright © 2020 The Korean Society of Lipid on several recent findings suggesting that histone acetylation can help in targeting DNA and Atherosclerosis.
    [Show full text]
  • A Role for ATP-Dependent Chromatin Remodeling in the Hierarchical Cooperativity Between Noninteracting Transcription Factors Denis Michel
    A role for ATP-dependent chromatin remodeling in the hierarchical cooperativity between noninteracting transcription factors Denis Michel To cite this version: Denis Michel. A role for ATP-dependent chromatin remodeling in the hierarchical cooperativ- ity between noninteracting transcription factors. Journal of Theoretical Biology, Elsevier, 2011, 10.1016/j.jtbi.2011.07.020. hal-01211233 HAL Id: hal-01211233 https://hal.archives-ouvertes.fr/hal-01211233 Submitted on 4 Oct 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A role for ATP-dependent chromatin remodeling in the hierarchical cooperativity between noninteracting transcription factors Denis Michel Universite de Rennes1. Campus de Beaulieu Bat.13. 35042 Rennes France. E.mail: [email protected] Abstract through classical multimeric cooperativity (Bolouri and Davidson, 2002; Michel, 2010). The role of nucleosomes Chromatin remodeling machineries are abundant and has also been examined from the micro-reversible per- diverse in eukaryotic cells. They have been involved spective (Dodd et al., 2007; Segal and Widom, 2009; in a variety of situations such as histone exchange and Mirny, 2010). The rapid equilibration of these thermally- DNA repair, but their importance in gene expression driven phenomena, relatively to the slow changes of remains unclear.
    [Show full text]
  • High-Resolution, Genome-Wide Mapping of Positive Supercoiling in Chromosomes Monica S Guo1†*, Ryo Kawamura2, Megan L Littlehale1, John F Marko2,3, Michael T Laub1,4*
    RESEARCH ARTICLE High-resolution, genome-wide mapping of positive supercoiling in chromosomes Monica S Guo1†*, Ryo Kawamura2, Megan L Littlehale1, John F Marko2,3, Michael T Laub1,4* 1Department of Biology, Massachusetts Institute of Technology, Cambridge, United States; 2Department of Molecular Biosciences, Northwestern University, Evanston, United States; 3Department of Physics and Astronomy, Northwestern University, Evanston, United States; 4Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, United States Abstract Supercoiling impacts DNA replication, transcription, protein binding to DNA, and the three-dimensional organization of chromosomes. However, there are currently no methods to directly interrogate or map positive supercoils, so their distribution in genomes remains unknown. Here, we describe a method, GapR-seq, based on the chromatin immunoprecipitation of GapR, a bacterial protein that preferentially recognizes overtwisted DNA, for generating high-resolution maps of positive supercoiling. Applying this method to Escherichia coli and Saccharomyces cerevisiae, we find that positive supercoiling is widespread, associated with transcription, and particularly enriched between convergently oriented genes, consistent with the ‘twin-domain’ model of supercoiling. In yeast, we also find positive supercoils associated with centromeres, *For correspondence: cohesin-binding sites, autonomously replicating sites, and the borders of R-loops (DNA-RNA [email protected] (MSG); hybrids). Our results suggest that GapR-seq is a powerful approach, likely applicable in any [email protected] (MTL) organism, to investigate aspects of chromosome structure and organization not accessible by Hi-C or other existing methods. Present address: †Department of Microbiology, University of Washington School of Medicine, Seattle, United States Introduction Competing interest: See The DNA inside every cell can adopt a wide range of topologies.
    [Show full text]