Processes affecting recent and future evolution of the Xylokastro beach zone (Gulf of Corinth, Greece) Andreas Valaouris1 1Department of Geography & Climatology, 1 Serafim Poulos * Faculty of Geology & Geoenvironment, 1 Stelios Petrakis University of Athens, Panepistimioupolis, 2 George Alexandrakis Zografou, 15784, Greece Emmanuel Vassilakis1 2Institute of Applied & Computational Mathematics, Foundation for Research and Technology, Hellas, N. Plastira 100, Vassilika Vouton, 70013 Heraklion, Crete, Greece *Corresponding author: tel: +30 210 72 74 143 fax: +30 210 72 74 143 e-mail:
[email protected] ABSTRACT The aim of the present study is to investigate the morphodynamic regime of the coastal area of Xylokastro (north coast of Peloponnese), in order to identify and evaluate the processes controlling its formation and evolution. Within this concept, the following factors have been considered and evaluated: near-shore morphometry and granulometry along shore-normal profiles, the direction and potential volumes of long- and cross-shore, induced by the incoming offshore waves, the decadal and future trends of coastline displacement, the available information for terrestrial sediment influx and the geological processes operating in the broader coastal region of Xylokastro (i.e. subaqueous slides) and the human interference. On the basis of these results, the formation and evolution of this coastal stretch seems to be governed primarily by the neotectonic activity and the relative change of sea level rise, and secondarily by the wave-induced near-shore sediment transport; the role of the latter could be enhanced substantially by the human intervention (i.e. construction of marina, seafront walls). Moreover, the expected eustatic increase in sea level by the year 2100, could cause a coastline retreat up to 9 m (SLR=0.38 m) or >19 m (SLR≥1 m).