Comprehensive Report Species - Cistothorus Platensis Page I of 19

Total Page:16

File Type:pdf, Size:1020Kb

Comprehensive Report Species - Cistothorus Platensis Page I of 19 Comprehensive Report Species - Cistothorus platensis Page I of 19 NatureServe () EXPLORER • '•rr•K•;7",,v2' <-~~~ •••'F"'< •j • ':'•k• N :;}• <"• Seach bot. the Dat -Abou-U Cot Chana eCrite «<Previous I Next»> Cistothorusplatensis - (Latham, 1790) Google, Sedge Wren Search for Images on Google Spanish Common Names: Chivirin Sabanero, Chercan de las Vegas French Common Names: Troglodyte & bec court Other Common Names: Curruira-do-Campo Unique Identifier: ELEMENTGLOBAL.2.105322 Element Code: ABPBG10010 Informal Taxonomy: Animals, Vertebrates - Birds - Perching Birds Kingdom Phylum Class Order Family Genus Animalia Craniata Aves Passeriformes Troglodytidae Cistothorus Genus Size: B - Very small genus (2-5 species) Check this box to expand all report sections: Concept Reference 0 Concept Reference: American Ornithologists' Union (AOU). 1998. Check-list of North American birds. Seventh edition. American Ornithologists' Union, Washington, DC. 829 pp. Concept Reference Code: B98AOU01NAUS Name Used in Concept Reference: Cistothorusplatensis Taxonomic Comments: Formerly known as Short-billed Marsh-Wren. Composed of three groups: STELLARIS (Sedge Wren), PLATENSIS (Western Grass-Wren), and POLYGLOTTUS (Eastern Grass-Wren) (AOU 1998). Constitutes a superspecies with C. MERIDAE and C. APOLINARI (AOU 1998). Conservation Status 0 NatureServe Status Global Status: G5 Global Status Last Reviewed: 03Dec1996 Global Status Last Changed: 03Dec1996 Rounded Global Status: G5 - Secure Nation: United States National Status: N4B,N5N Nation: Canada National Status:N5B (09Aug2000) http://www.natureserve.org/explorer/servlet/NatureServe?searchName=Cistothorus+plat... 1/23/2008 Comprehensive Report Species - Cistothorus platensis Page 2 of 19 (SNRB), Ohio (S2), Oklahoma (S2N), Pennsylvania (S1B), South Carolina (SUB), South Dakota (S4B), Tennessee (S3N), Texas (S4), Vermont (S1B), Virginia (S1 B,S1S2N), West Virginia (S1B), Wisconsin (S4B) ECanada II(S5B)IAlberta (S2), Manitoba (S5B), New Brunswick (S1B), Ontario (S4B), Quebec (S2), Saskatchewan Other Statuses Committee on the Status of Endangered Wildlife in Canada (COSEWIC): Not at Risk (OlAprI993) IUCN Red List Category: LC - Least concern NatureServe Conservation Status Factors Global Short Term Trend Comments: Termination of the USDA Conservation Reserve Program and a return of enrolled land to cultivation are expected to cause a population decline of 26% in North Dakota (Johnson and IgI .1995). Data from North American Breeding Bird Survey (BBS) routes (Robbins et al..1986) indicate that populations across the U.S. showed no significant trends from 1966-89 (n = 282 routes), although more routes (P <.0.01) had decreasing populations (0.60) than increasing populations (0.38). In the eastern U.S., populations remained stable during the period 1966-89 (n = 224 routes), although a significantly (P < 0.01) greater proportion of routes had decreasing populations (0.60) than increasing (0.36). In the Northeast Region (U.S. Fish'and Wildlife Service Region 5), populations declined -1.47% annually from 1966-90 (P < 0.05, n = 31). Data were too few, however, to assess populations in any state in the northeastern U.S., except New York. The status of the wren as a breeding species in the northeastern U.S. is precarious. Breeding populations in all states are very sparse, sporadic, and local (or extirpated). Populations in all states have evidently undergone substantive declines during this century. Furthermore, the habitat base has deteriorated and continues to decline throughout the region. Populations in the northeastern U.S. may have waxed and waned over a 200-year period in response to changes wrought upon the landscape by humans. Prior to the arrival of Europeans, the East Coast was heavily forested and probably provided scant nesting habitat, although the bird likely bred in tidal marshes, sedge meadows along water courses, old beaver meadows, and sedgy areas of bogs and other wetlands throughout the region. In response to massive deforestation and the creation of fields and pasturelands during the late 1700s to mid-1800s, however, populations probably expanded over much of the region. It is notable that sedge wrens were scarcely known north of Massachusetts and southern New Hampshire until the end of 1800s, but thereafter were reported with some regularity in northern Vermont, New Hampshire, Maine, and Quebec (Forbush 1929, Bagg and Eliot 1937, Palmer 1949), an expansion that may have followed an increase in the availability of abandoned farmland in northern regions. Habitat gains were subsequently lost during this century due to drainage and filling of shallow wetland areas, loss of grassland communities to vegetative succession, and a shift from low-intensity agriculture, which required extensive~areas of fields to be left fallow for two to three years, to high-intensity agriculture, which keeps land in continuous cultivation. Such a pattern of colonization and retreat has been exhibited in Ontario (Cadman et al. 1987). Populations are thought to have expanded into the province following the clearance of forests for agriculture more than 150 years ago, and the current distribution of Ontario Breeding Bird Atlas records closely follows the distribution of abandoned farmlands. Breeding records are remarkably few from portions that are intensively cultivated and subject to clean-farming (Cadman et al. 1987). It is plausible that heavy mortality, of both migrating and overwintering birds, during the severe weather of 1940 reduced already diminished populations in the Northeast to such low levels that populations were never able to recover (Griscom 1949, Griscom and Snyder 1955, Bond 1967). Although Griscom (1949) refers mainly to weather conditions in the southern U.S., climatological events in New England during 1940 included widespread "heavy to killing" frosts in late August, two hurricanes in September, an extremely heavy snowstorm in November, and severe cold during the first week of December (Noyes 1941), events that could have killed many late-breeding and migrating wrens in the northeastern states. Global Protection Needs: The U.S. Fish and Wildlife Service's responsibility for reviewing wildlife habitat attributes of properties foreclosed by the Farmers Home Administration (U.S. Department of Agriculture) presents an opportunity to acquire and preserve grassland habitats in the northeastern states (Gibbs and Melvin 1992). Threats: Decline presumably has been due to loss and degradation of wetlands (Ehrlich et al. 1992), caused by suburbanization, intensive agricultural development, and natural succession. These factors and drought have resulted in declines in the northwestern part of the range (Jalava 1993). Loss of nesting habitat may be the major cause of declines in populations. About 4.75 million acres (1.92 million ha) of palustrine emergent wetlands, which include wet meadows important to nesting, were lost in the U.S. between the mid-1950s and mid-1970s (Tiner 1984). Preferred wetlands, such as sedge/grass meadows with moist or saturated soils, are the most easily http://www~natureserve.org/explorer/servlet/NatureServe?searchName=Cistothorus+plat... 1/23/2008 Comprehensive Report Species - Cistothorus platensis Page,3 of 19 drained and filled and are the wetland type most frequently destroyed by agriculture and urbanization (Tiner 1984). Substantial losses of grassland habitats in the northeast to urbanization and vegetative succession are evident. In just ten years (late 1960s-70s) along woodcock survey routes in all northeastern states combined, the availability of abandoned and active fields declined by 23- 25%, whereas the amount of land in young forest increased by 63% and that in urban/industrial uses increased by 33% (Dwyer et al. 1983). Clean-farming of wet fields (i.e., establishment of crop monocultures) was suggested as a primary cause of declines in the midwest region (Tate and Tate 1982). Aside from direct habitat loss, habitat disturbance such as late-summe" burning of tidewater marshes in Maryland and livestock grazing (Walkinshaw 1935, Lingle and Bedell 1989) are considered threats to nesting. Regional reductions of the water table due to extensive urbanization in the Northeast may prevent occurrence of water "ponding" in fields, which creates the preferred wet-meadow habitat, and, also may increase rates of vegetative succession. Wetland loss often leads to drying processes on adjacent upland habitats, and may ruin nesting habitats for wrens, which prefer to nest at moist upland margins of wetland patches. Severe weather conditions during winter could result in heavy mortality and influence population levels (Griscom 1949). Considerable mortality of migrant wrens has been observed at television towers throughout the eastern U.S. (Taylor et al. 1983). In the Argentine Pampas, overgrazing by cattle, soil compaction, and fires have eliminated tall grass habitats and have led to severe declines in populations (Bucher and Nores 1988). No information is available concerning the extent to which disease, parasites, predation, competition, or contaminants may limit populations. Distribution 0 U.S. States and Canadian Provinces fi , j;y°° AX .- it[ yr1"[ j --CN' http://www.natureserve.org/explorer/servlet/NatureServe?searchName=Cistothorus+plat... 1/23/2008 Comprehensive Report Species - Cistothorus platensis Page 4 of 19 State/Province Conservation Status SX: Presumed • : Extirpated SH! Possibly Extirpated I Critically S $ :Imperiled S2: Imperiled f-7 S3: Vulnerable S4: ApparentlySecure-
Recommended publications
  • Nature Notes from Kankakee Sands
    Nature Notes from Kankakee Sands April 2019 © Jeff Timmons Where There’s a Willow, There’s a Way written by Alyssa Nyberg, Restoration Ecologist for The Nature Conservancy’s Kankakee Sands Project I was standing out in a 400-acre wet prairie just north of our Kankakee Sands office, placidly harvesting seeds when I hear the crackling, sizzling Zzzzap! like the sound of an electrical circuit shorting out. With exactly zero electric lines running through that particular prairie, what could have made that sound? Then I noticed a large willow patch… and where there is a willow patch at Kankakee Sands, there may be a sedge wren (Cistothorus platensis) singing its electrical sounding song. Sedge wrens are a rare treat to see and hear, because they are a shy and skittish bird. Unlike the chatty, boisterous, easily-viewed house wren, the sedge wren avoids being seen. Even when frightened, the sedge wren will rarely take flight. Instead, it will run on the ground beneath vegetation. It may take flight, but only briefly, before fluttering to the ground to escape notice. The sedge wren is an even more exciting find because it is state endangered in Indiana. Habitat loss and conversion are the main causes of its decline. However, at Kankakee Sands we have many acres of suitable, wet habitat with plenty of willows. And where there are willows, there is a way for the sedge wren to feed, mate, nest and raise young. Thanks to the restored habitat at Kankakee Sands, we get to enjoy its song during the months of April through October each year.
    [Show full text]
  • Additional Records of Passerine Terrestrial Gaits
    ADDITIONAL RECORDS OF PASSERINE TERRESTRIAL GAITS GEORGE A. CLARK, JR. The varied methods of locomotion in birds pose significant problems in behavior, ecology, adaptation, and evolution. On the ground birds progress with their legs moving either synchronously (hopping) or asynchronously (walking, running) as the extreme conditions. Relatively terrestrial species often have asynchronous gaits, whereas primarily arboreal species are typically synchronous on the ground. Particularly important earlier studies on passerines are Kunkels’ (1962) comparative behavioral survey and Riiggebergs’ (1960) analysis of the morphological correlates of gaits. Over several years I have noted gaits for 47 passerine species in the U.S., En- gland, and Kenya, and have examined many references. I here sum- marize behavioral records for families not mentioned by Kunkel (1962) and also for species with gaits markedly unlike those of confamilial species discussed by him. My supplementary review is selective rather than ex- haustive with the aim of indicating more fully the distribution of gaits among the passerine families. Regional handbooks, life history studies, and other publications contain numerous additional records, but I know of none that negate the conclusions presented here. J. S. Greenlaw (in prep.) has reviewed elsewhere the passerine double-scratch foraging be- havior that has at times previously been discussed in connection with gaits (e.g., in Hailman 1973). VARIATION WITHIN SPECIES Gaits often vary within a species (Kunkel 1962, Hailman 1973, Schwartz 1964, Gobeil 1968, Eliot in Bent 1968:669-670, this study). As an addi- tional example, I have seen Common Grackles (Quisc&s quiscula) hop in contrast to their usual walk.
    [Show full text]
  • Supplemental Information for the Marian's Marsh Wren Biological
    Supplemental Information for the Marian’s Marsh Wren Biological Status Review Report The following pages contain peer reviews received from selected peer reviewers, comments received during the public comment period, and the draft report that was reviewed before the final report was completed March 31, 2011 Table of Contents Peer review #1 from Tylan Dean ................................................................................... 3 Peer review #2 from Paul Sykes.................................................................................... 4 Peer review #3 from Sally Jue ....................................................................................... 5 Peer review #4 from Don Kroodsman ........................................................................... 9 Peer review #5 from Craig Parenteau ........................................................................ 10 Copy of the Marian’s Marsh Wren BSR draft report that was sent out for peer review ........................................................................................................................... 11 Supplemental Information for the Marian’s Marsh Wren 2 Peer review #1 from Tylan Dean From: [email protected] To: Imperiled Cc: Delany, Michael Subject: Re: FW: Marian"s marsh wren BSR report Date: Thursday, January 27, 2011 10:38:25 PM Attachments: 20110126 Dean Peer Review of Draft Worthington"s Marsh Wren Biological Status Review.docx 20110126 Dean Peer Review of Draft Marian"s Marsh Wren Biological Status Review.docx Here are both of my
    [Show full text]
  • House Wren Vs. House Sparrow
    NEST BOX DRAMA: HOUSE WREN VS. HOUSE SPARROW GARTH NELSON, 529 Dalhousie Crescent, Saskatoon, SK S7H 3S5 Figure 1. The disputed birdhouse and its contents, fall 1999 Garth Nelson In 1997, we were seeking a tenant for since. We did see a House Wren go in our birdhouse. We were hoping to and inspect it early last week. attract a House Wren, but ended up with a House Sparrow. And so, the following June 5,1998 : Earlier this week we saw year, I altered the “doorway” of the House Sparrows starting a nest on top birdhouse, so that only a wren would be of the birdhouse, wedged between the able to get inside. Needless to say, slanted roof of the birdhouse and the although the wrens were happy with this eaves of the garage. I took it down from renovation, the sparrows were furious. the garage and relocated it in the crab What followed was nothing less than a apple tree. Today, House Wrens were in pitched battle. and out of it with nesting material. They were singing in our yard this evening. May 24,1998 : House Sparrows are still trying to get into our birdhouse. About June 6, 1998 : Some interesting bird a week ago I put up the birdhouse under dynamics today! After breakfast, we the eaves of the garage. I had altered it noticed the male House Sparrow so that the hole is 1 inch in diameter frantically trying to get into the birdhouse instead of VA inches, hoping to keep while the House Wren fretted nearby, out the House Sparrows and attract a watching him intently.
    [Show full text]
  • First Documented Observation of Sedge Wren in Arizona Accepted
    Arizona Birds - Journal of Arizona Field Ornithologists Volume 2011 FIRST DOCUMENTED OBSERVATION OF SEDGE WREN (Cistothorus platensis) IN ARIZONA Alan Schmierer, PO Box 626, Patagonia, AZ 85624 ([email protected]) Photos by the author. On 27 November 2010 the author discovered and photographed a Sedge Wren (Cistothorus platensis) on the shores of Peña Blanca Lake, Santa Cruz County, Arizona. This sighting was the first documented record of this species for Arizona. INITIAL DISCOVERY AND CONTINUED SIGHTINGS The initial discovery of this bird was a very brief encounter. At about mid-morning I was birding the south shore of the cove (informally called Thumb Rock Cove; see Figure 2) that is just north of the Upper Thumb Rock Picnic Area parking lot. Several double-chip notes, some- what reminiscent of those of the Pacific and Winter Wrens (Troglodytes pacificus and heimalis) alerted me to a potentially interesting bird be- ing present, followed by a 15 second look at the bird with binoculars (at about a two meter dis- tance), two quick photos (a lesson for photogra- phers to keep their cameras handy for such “bird emergencies”) and then the bird was gone. The wren was seen while it was about 1.5 m up in bare branches close to the trunk of a small deciduous tree at the water’s edge, and it then flew across the cove to a grassy edge of the op- posite shore. That brief view was enough for me to identify it as a Sedge Wren. Even as a new- comer to Arizona I knew that it was likely a very Figure 1: SEDGE WREN (27 November 2010) at initial sighting.
    [Show full text]
  • Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee
    Biodiversity: the UK Overseas Territories Compiled by S. Oldfield Edited by D. Procter and L.V. Fleming ISBN: 1 86107 502 2 © Copyright Joint Nature Conservation Committee 1999 Illustrations and layout by Barry Larking Cover design Tracey Weeks Printed by CLE Citation. Procter, D., & Fleming, L.V., eds. 1999. Biodiversity: the UK Overseas Territories. Peterborough, Joint Nature Conservation Committee. Disclaimer: reference to legislation and convention texts in this document are correct to the best of our knowledge but must not be taken to infer definitive legal obligation. Cover photographs Front cover: Top right: Southern rockhopper penguin Eudyptes chrysocome chrysocome (Richard White/JNCC). The world’s largest concentrations of southern rockhopper penguin are found on the Falkland Islands. Centre left: Down Rope, Pitcairn Island, South Pacific (Deborah Procter/JNCC). The introduced rat population of Pitcairn Island has successfully been eradicated in a programme funded by the UK Government. Centre right: Male Anegada rock iguana Cyclura pinguis (Glen Gerber/FFI). The Anegada rock iguana has been the subject of a successful breeding and re-introduction programme funded by FCO and FFI in collaboration with the National Parks Trust of the British Virgin Islands. Back cover: Black-browed albatross Diomedea melanophris (Richard White/JNCC). Of the global breeding population of black-browed albatross, 80 % is found on the Falkland Islands and 10% on South Georgia. Background image on front and back cover: Shoal of fish (Charles Sheppard/Warwick
    [Show full text]
  • House Wren Monitoring
    House Wren Intern Summary By: Jon Van Arragon Summer 2020 The Beaverhill Bird Observatory keeps record of the nesting success of House Wrens in man-made nest boxes throughout the Beaverhill Natural Area. There are 4 House Wren nest box grids labeled A-D, the boxes are arranged in a 5x5 square in grids A, C, and D; grid B is arranged in a 3x8 manner. These grids are located in mature stands of aspen and poplar forest. There are 99 House Wren boxes in total throughout the natural area. The nest boxes in all 4 grids were checked weekly from May 23 to July 21, 2020. On each visit I recorded the extent of construction for each nest, the number of eggs, the number and ages of any nestlings, and the presence of any adult birds nearby. The House Wren boxes are also frequently used by Tree Swallows, swallow nests were also monitored according to the same protocol. 51 of the 99 nest boxes in the House Wren grids were occupied during the survey period. 35 of those boxes were occupied by House Wrens; the remaining 16 nest boxes were occupied by Tree Swallows. House Wrens nesting in the grids had an average clutch size of 6.44 eggs; Tree Swallows in the same grids had an average clutch size of 4.62 eggs. The average number of nestlings in House Wren nests was 5.08; the average number of Tree Swallow nestlings in the grids was 3.83. Of the 35 House Wren nests constructed, 11 had young that successfully fledged, giving what appears to be a success rate of 31%.
    [Show full text]
  • B a N I S T E R I A
    B A N I S T E R I A A JOURNAL DEVOTED TO THE NATURAL HISTORY OF VIRGINIA ISSN 1066-0712 Published by the Virginia Natural History Society The Virginia Natural History Society (VNHS) is a nonprofit organization dedicated to the dissemination of scientific information on all aspects of natural history in the Commonwealth of Virginia, including botany, zoology, ecology, archaeology, anthropology, paleontology, geology, geography, and climatology. The society’s periodical Banisteria is a peer-reviewed, open access, online-only journal. Submitted manuscripts are published individually immediately after acceptance. A single volume is compiled at the end of each year and published online. The Editor will consider manuscripts on any aspect of natural history in Virginia or neighboring states if the information concerns a species native to Virginia or if the topic is directly related to regional natural history (as defined above). Biographies and historical accounts of relevance to natural history in Virginia also are suitable for publication in Banisteria. Membership dues and inquiries about back issues should be directed to the Co-Treasurers, and correspondence regarding Banisteria to the Editor. For additional information regarding the VNHS, including other membership categories, annual meetings, field events, pdf copies of papers from past issues of Banisteria, and instructions for prospective authors visit http://virginianaturalhistorysociety.com/ Editorial Staff: Banisteria Editor Todd Fredericksen, Ferrum College 215 Ferrum Mountain Road Ferrum, Virginia 24088 Associate Editors Philip Coulling, Nature Camp Incorporated Clyde Kessler, Virginia Tech Nancy Moncrief, Virginia Museum of Natural History Karen Powers, Radford University Stephen Powers, Roanoke College C. L. Staines, Smithsonian Environmental Research Center Copy Editor Kal Ivanov, Virginia Museum of Natural History Copyright held by the author(s).
    [Show full text]
  • House Wren Troglodytes Aedon
    House Wren Troglodytes aedon House Wrens are small, plain, brown birds, more distinguished for their exuberant, me­ lodious voices and frenetic behavior than for their outward appearance. Although far from abundant, House Wrens are among the more familiar inhabitants of yards, gar­ dens, and farm hedgerows in the warmer ! parts of Vermont. They are cavity nesters, taking readily to birdhouses and utilizing a wide variety of natural and artificial cavities. ~! House Wrens forage near the ground and thus prefer the cover provided by thick, brushy vegetation. These birds are not al­ dates for Vermont, determined from 10 ways associated with human habitation; iso­ clutches, range from May 18 to July 16. lated pairs may be found nesting in a variety Records of 17 nests containing young in­ of locales, including beaver ponds, swamps, clude dates from June 10 to August 2; six hedgerows, and streamside thickets. dates for recently fledged young range from Male House Wrens return to Vermont in June 24 to August 8. Late fledgling dates late April and early May; most are back by suggest that eggs are sometimes laid as late the first week of May. They immediately set as the first week of July. Although House about establishing territories by sounding Wrens are usually double-brooded, in north­ their distinctive loud, bubbling warble, and ern Vermont most pairs probably only man­ begin claiming all available nest sites within age a single brood. The species' autumn their territories by building stick "nests" in migration is inconspicuous, probably peak­ all nearby cavities. Nest sites are generally ing in September.
    [Show full text]
  • Neotropical News Neotropical News
    COTINGA 1 Neotropical News Neotropical News Brazilian Merganser in Argentina: If the survey’s results reflect the true going, going … status of Mergus octosetaceus in Argentina then there is grave cause for concern — local An expedition (Pato Serrucho ’93) aimed extinction, as in neighbouring Paraguay, at discovering the current status of the seems inevitable. Brazilian Merganser Mergus octosetaceus in Misiones Province, northern Argentina, During the expedition a number of sub­ has just returned to the U.K. Mergus tropical forest sites were surveyed for birds octosetaceus is one of the world’s rarest — other threatened species recorded during species of wildfowl, with a population now this period included: Black-fronted Piping- estimated to be less than 250 individuals guan Pipile jacutinga, Vinaceous Amazon occurring in just three populations, one in Amazona vinacea, Helmeted Woodpecker northern Argentina, the other two in south- Dryocopus galeatus, White-bearded central Brazil. Antshrike Biata s nigropectus, and São Paulo Tyrannulet Phylloscartes paulistus. Three conservation biologists from the U.K. and three South American counter­ PHIL BENSTEAD parts surveyed c.450 km of white-water riv­ Beaver House, Norwich Road, Reepham, ers and streams using an inflatable boat. Norwich, NR10 4JN, U.K. Despite exhaustive searching only one bird was located in an area peripheral to the species’s historical stronghold. Former core Black-breasted Puffleg found: extant areas (and incidently those with the most but seriously threatened. protection) for this species appear to have been adversely affected by the the Urugua- The Black-breasted Puffleg Eriocnemis í dam, which in 1989 flooded c.80 km of the nigrivestis has been recorded from just two Río Urugua-í.
    [Show full text]
  • House Wren Nest-Destroying Behavior’
    The Condor 88:190-193 0 The Cooper Ornithological Society 1986 HOUSE WREN NEST-DESTROYING BEHAVIOR’ JEAN-CLAUDE BELLES-ISLES AND JAROSLAV PICMAN Department of Biology, Universityof Ottawa, Ottawa KIN 6N5, Canada Abstract. House Wren (Troglodytesaedon) nest-destroying behavior was studied by experi- mentally offering 38 wrens nestswith eggs(or nestlings)throughout the nesting season.Individuals of both sexespecked all six types of eggspresented, regardless of the nest type and location. House Wrens also attacked conspecificyoung. Older nestlings(nine days old) were less vulnerable than three-day-old young. Our resultssuggest that nest-destroyingbehavior is inherent in all adult House Wrens but is inhibited in mated males and breeding females. It is suggestedthat nest destruction may have evolved as an interference mechanism reducing intra- and interspecific competition. Key words: House Wren; Troglodytes aedon; infanticide;nest destruction; competition. INTRODUCTION specificnestlings? (3) Is this behavior exhibited Destruction of eggs by small passerinesis a throughout the breeding season?(4) Do indi- relatively rare phenomenon which has been vidual House Wrens destroy neststhroughout observed mainly in members of two families, their breeding cycle? (5) How widespread is the Troglodytidae and Mimidae. Species this behavior among individuals from a pop- known to destroy eggsinclude the Marsh Wren ulation? (6) Is this behavior a local phenom- (Cistothoruspalustris; Allen 19 14); House enon or is it characteristic of all House Wren Wren (Troglodytesaedon; Sherman 1925, populations?(7) What is the adaptive value of Kendeigh 194 1); Cactus Wren (Campylorhyn- this behavior? thusbrunneicapillus; Anderson and Anderson METHODS 1973); SedgeWren (Cistothorusplatensis; Pic- man and Picman 1980); Bewick’s Wren This study was conducted at Presqu’ile Pro- (Thryomanesbewickii; J.
    [Show full text]
  • Breeding Biology of the Long-Billed Marsh Wren
    Vol. 67 BREEDING BIOLOGY OF THE LONG-BILLED MARSH WREN BY JARED VERNER Although much of the life history of the Long-billed Marsh Wren (Telmatodytes pulustris) has been described (see especially Welter, 1935 ; Bent, 1948; and Kale, MS), most aspects have not been quantified adequately to permit analysis of geo- graphical variation between populations, Such variation often leads to insights into the ecology of a species which would otherwise be impossible. This paper presents comparative data on birds from two populations in Washington State, one (T. p. paludicola) at Seattle, the other (T. p. plesius) at Turnbull National Wildlife Refuge, 15 miles south of Spokane and 22.5 miles due east of Seattle (fig. 1). Other aspects of this study are treated elsewhere (Verner, 1964; also MS, 1963). ACKNOWLEDGMENTS It is a pleasure to acknowledge the numerous helpful suggestions and criticisms of Drs. Frank Richardson and Gordon H. Orians throughout the course of this study. Dr. R. C. Snyder kindly read the manuscript. Many colleagues assisted with field work and were helpful in discussions of the data; in this regard I would especially like to thank T. H. Frazzetta, M. E. Kriebel, K. P. Mauzey, E. R. Pianka, C. C. Smith, L. W. Spring, and M. F. Willson. My wife, Marlene, processed many of the raw field data and was responsible for lettering most of the figures. Working facilities were provided by the Department of Zoology, University of Washington, and financial assistance was provided by National Science Foundation predoctoral fellowships (1960-1963). STUDY AREAS At Seattle, two marshes (Red, 6.3 acres, and Blue, 3.3 acres) in the University of Washington Arboretum were studied in 1961.
    [Show full text]