University of Wollongong Research Online Faculty of Engineering and Information Faculty of Engineering and Information Sciences - Papers: Part B Sciences 2017 A psychoacoustic-based multiple audio object coding approach via intra- object sparsity Maoshen Jia Beijing University of Technology Jiaming Zhang Beijing University of Technology Changchun Bao Beijing University of Technology,
[email protected] Xiguang Zheng University of Wollongong, Dolby Laboratories,
[email protected] Follow this and additional works at: https://ro.uow.edu.au/eispapers1 Part of the Engineering Commons, and the Science and Technology Studies Commons Recommended Citation Jia, Maoshen; Zhang, Jiaming; Bao, Changchun; and Zheng, Xiguang, "A psychoacoustic-based multiple audio object coding approach via intra-object sparsity" (2017). Faculty of Engineering and Information Sciences - Papers: Part B. 882. https://ro.uow.edu.au/eispapers1/882 Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library:
[email protected] A psychoacoustic-based multiple audio object coding approach via intra-object sparsity Abstract Rendering spatial sound scenes via audio objects has become popular in recent years, since it can provide more flexibility for different auditory scenarios, such as 3D movies, spatial audio communication and virtual classrooms. To facilitate high-quality bitrate-efficient distribution for spatial audio objects, an encoding scheme based on intra-object sparsity (approximate k-sparsity of the audio object itself) is proposed in this paper. The statistical analysis is presented to validate the notion that the audio object has a stronger sparseness in the Modified Discrete Cosine Transform (MDCT) domain than in the Short Time Fourier Transform (STFT) domain.