Cool Light Chemiluminescence SCIENTIFIC
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Understanding the Basics of Electron Transfer and Cyclic Voltammetry of Potassium Ferricyanide - an Outer Sphere Heterogeneous Electrode Reaction
Sayyar Muhammad et al., J.Chem.Soc.Pak., Vol. 42, No. 06, 2020 813 Understanding the Basics of Electron Transfer and Cyclic Voltammetry of Potassium Ferricyanide - An Outer Sphere Heterogeneous Electrode Reaction 1Sayyar Muhammad*, 1Ummul Banin Zahra, 1Aneela Ahmad, 2Luqman Ali Shah and 1Akhtar Muhammad 1Department of Chemistry, Islamia College Peshawar, Peshawar-25120, Pakistan. 2National Centre of Excellence in Physical Chemistry, University of Peshawar, Peshawar-25120, Pakistan. [email protected]* (Received on 5th December 2019, accepted in revised form 11th August 2020) Summary: Understanding and controlling the processes occurring at electrode/electrolyte interface are very important in optimizing energy conversion devices. Cyclic voltammetry is a very sophisticated and accurate electroanalytical method enables us to explore the mechanism of such electrode reactions. In this work, electrochemical experiments using cyclic voltammetry were performed in aqueous KCl solution containing potassium ferricyanide, K3[Fe(CN)6] at a glassy carbon disc working electrode and the mechanism of the reactions is highlighted. The CV 3− 4− measurements shows that the ferricyanide [Fe(CN)6] reduction to ferrocyanide [Fe(CN)6] and the reverse oxidation process follows an outer sphere electrode reaction mechanism. Voltammetry analysis further indicates that the reaction is reversible and diffusion controlled one electron transfer 4− electrochemical process. The peak currents due to [Fe(CN)6] oxidation and the peak current due to 3− [Fe(CN)6] reduction increase with increase of concentration and scan rate increase. The diffusion co-efficient was determined by applying Randles-Sevcik equation. The report could be helpful for university students to understand the basics of electron transfer in redox processes and cyclic voltammetry. -
Potassium Ferricyanide Safety Data Sheet According to Federal Register / Vol
Potassium Ferricyanide Safety Data Sheet according to Federal Register / Vol. 77, No. 58 / Monday, March 26, 2012 / Rules and Regulations Date of issue: 12/21/2004 Revision date: 01/31/2018 Supersedes: 01/31/2018 Version: 1.1 SECTION 1: Identification 1.1. Identification Product form : Substance Substance name : Potassium Ferricyanide CAS-No. : 13746-66-2 Product code : LC19040 Formula : K3FeC6N6 1.2. Recommended use and restrictions on use Use of the substance/mixture : For laboratory and manufacturing use only. Recommended use : Laboratory chemicals Restrictions on use : Not for food, drug or household use 1.3. Supplier LabChem Inc Jackson's Pointe Commerce Park Building 1000, 1010 Jackson's Pointe Court Zelienople, PA 16063 - USA T 412-826-5230 - F 724-473-0647 [email protected] - www.labchem.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 or 011-703-527-3887 SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Not classified 2.2. GHS Label elements, including precautionary statements Not classified as a hazardous chemical. Other hazards not contributing to the : None. classification 2.4. Unknown acute toxicity (GHS US) Not applicable SECTION 3: Composition/Information on ingredients 3.1. Substances Substance type : Mono-constituent Name Product identifier % GHS -US classification Potassium Ferricyanide (CAS-No.) 13746-66-2 100 Not classified (Main constituent) Full text of hazard classes and H-statements : see section 16 3.2. Mixtures Not applicable SECTION 4: First-aid measures 4.1. Description of first aid measures First-aid measures general : Never give anything by mouth to an unconscious person. -
Photography of Bloodstains Visualized by Luminol
J Forensic Sci, Oct. 1973, Vol. 18, No. 4 R. A. Zweidinger, ~ Ph.D., L. T. Lytle, 2 M.S., and C, G. Pitt, ~ Ph.D. Photography of Bloodstains Visualized by Luminol The chemical tests for blood currently in use depend upon the detection of hemoglobin or one of its derivatives [1]. Hemoglobin has several properties which make it suitable for this purpose. The most important, due to its sensitivity, is the peroxidase activity of hemo- globin heme which forms the basis of the benzidine, leuco-malachite green, phenol- phthalein, and luminol tests for blood. The luminol test, which is based on the visual observation of chemiluminescence, is particularly useful forensically because of its sensi- tivity; as a spray reagent, it also permits the detection and observation of the shape and fine structure of the bloodstains which would otherwise be invisible to the naked eye [2-51. While it is obviously desirable to be able to obtain a permanent record of luminol visualized bloodstains for court evidence, photography has previously been of little value because of the low intensity and short duration of the luminescence. However, recent advances in high speed film have justified a reappraisal, and here we describe experimental conditions which have been successfully employed to obtain a photographic record. Modifications of the Luminol Test Prior to photographic studies it was necessary to determine the optimum experimental conditions of the luminol test, in terms of intensity and duration of light emission. The standard luminol spray reagent [1] was taken as a point of reference for evaluating other formulations. -
Cyanotype Detailed Instructions
Cyanotype Detailed Instructions Cyanotype Formula, Mixing and Exposing Instructions 1. Dissolve 40 g (approximately 2 tablespoons) Potassium Ferricyanide in 400 ml (1.7 cups) water to create STOCK SOLUTION A. Allow 24 hours for the powder to fully dissolve. 2. Dissolve 100 g (approximately .5 cup) Ferric Ammonium Citrate in 400 ml (1.7 cups) water to create if you have Chemistry Open Stock START HERE STOCK SOLUTION B. Allow 24 hours for the powder to fully dissolve. If using the Cyanotype Sensitizer Set, simply fill each bottle with water, shake and allow 24 hours for the powders to dissolve. 3. In subdued lighting, mix equal parts SOLUTION A and SOLUTION B to create the cyanotype sensitizer. Mix only the amount you immediately need, as the sensitizer is stable just 2-4 hours. if you have the Sensitizer Set START HERE 4. Coat paper or fabric with the sensitizer and allow to air dry in the dark. Paper may be double-coated for denser prints. Fabric may be coated or dipped in the sensitizer. Jacquard’s Cyanotype Fabric Sheets and Mural Fabrics are pre-treated with the sensitizer (as above) and come ready to expose. 5. Make exposures in sunlight (1-30 minutes, depending on conditions) or under a UV light source, placing ob- jects or a film negative on the coated surface to create an image. (Note: Over-exposure is almost always preferred to under-exposure.) The fabric will look bronze in color once fully exposed. 6. Process prints in a tray or bucket of cool water. Wash for at least 5 minutes, changing the water periodically, if you have until the water runs clear. -
What Is the Cyanotype Process?
Home What is the Cyanotype Process? The Cyanotype process, originally created by Sir John Herschel in 1842, is also known as a "blueprint" process. The final print is characteristically blue in color. The print is typically has a short-scale tonal range, making it somewhat "contrasty." The cyanotype print is also known as a "non-silver" process, since it employs ferric (iron) salts for its photosensitivity, from a combination of two solutions, one containing ferric ammonium citrate and the other solution containing potassium ferricyanide. Combining these complete solutions in equal parts creates a sensitizing solution which is then brushed or painted onto the surface of a substrate like cloth or hot-press watercolor paper. back home next http://www.cistercian.org/school/faculty/Fr-Mark/cyan/home.htm [3/17/2004 9:17:51 PM] Chem 1 Basic Chemistry of Cyanotyping (1) When iron ( Fe, from the Latin "Ferrum") is chemically combined with other elements, its atoms acquire a positive charge by transferring two or three of their orbiting negative electrons onto atoms of other elements. So each iron atom ends up in one of two states: "ferrous" iron - also called iron (II) or Fe2+ for short, "ferric" iron - also called iron (III) or Fe3+. This number 2+ or 3+ is called the oxidation state of the iron, and signifies the positive electric charge that the iron atom has acquired in the reaction. Oxidation makes an atom or molecule more positive (or less negative) in the electrical sense. So when iron forms compounds, it is oxidized. Reduction is the converse: making an atom or molecule less positive (or more negative). -
Cyanotype Faqs
Cyanotype FAQs FAQs What is cyanotype? Cyanotype is an antique photographic printing process distinctive for producing Prussian blue monochromatic prints. Developed in the mid-19th century, cyanotype was quickly embraced as an inexpensive method for reproducing photo- graphs, documents, maps and plans (hence the enduring architectural term “blueprint”). Famously, it was also used by Anna Atkins and other field biologists for indexing plant specimens—the first photograms ever made! Cyanotype is an extremely forgiving photographic process, easy to do, safe and inexpensive. As one of the earliest photographic pro- cesses ever developed, it is still favored among alternative process enthusiasts and is often the first chemistry explored in alternative photo classes. Is it permanent? Yes, cyanotype prints are archival. However, yellowing may occur if prints are exposed to phosphates or alkaline environ- ments so, cyanotype fabrics must be laundered in cold water using non-phosphate detergents. Over-washing may also cause the print to fade. Use care while handling cyanotype prints, as sweat and hand oils may also cause discoloration. If fading occurs over time, washing the print in a dilute bath of hydrogen peroxide can usually restore it to its original intensity. Is Jacquard’s Pretreated Cyanotype Fabric sided? Prints can be made on either side of Jacquard’s Pretreated Cyanotype Fabrics. However, being a cotton sateen, the sides are different. One side of the fabric is slightly reflective and shiny. This is the print side. Look closely at the fabric to determine which side is the print side. Can I make cyanotype prints on paper and fabric? How about wood? Yes, any natural surface can be treated with the cyanotype sensitizer, including silk, cotton, wool, hemp, linen, canvas, paper, leather and wood. -
Chemiluminescence: Determining the Efficiency of Light Production by Luminol
CALIFORNIA STATE SCIENCE FAIR 2004 PROJECT SUMMARY Name(s) Project Number Andre Maranhao S1514 Project Title Chemiluminescence: Determining the Efficiency of Light Production by Luminol Abstract Objectives/Goals In my experiment, I will determine efficiency of light production by luminol in an aqueous solution with hydrogen peroxide as the oxygen donor and iron as a catalyst in the form of potassium ferricyanide. Methods/Materials METHOD: I produced luminol in my high school lab. Then I divided the luminol into 2 equal amounts for two separate reactions. The first reaction took place in a calorimeter and measured the total energy evolved. The second reaction took place in a glass beaker in a totally dark room and measured the illuminescence of the reaction. Once illuminescence was converted to light energy, the light energy was divided by the total energy evolved by luminol resulting in the efficiency of light production. MATERIALS: 3-nitrophthalic anhydride Hydrazine sulfate Hydrated sodium acetate Glycerol Boiling chip Thermometer NaOH (10% solution) Sodium hydrosulfate Glacial acetic acid Potassium ferricyanide [K3Fe(CN)6] Hydrogen peroxide (3%) (commonly obtained) HCl Laptop Vernier Lab Equipment (Lab Pro, digital thermometer, light meter) Results According to my results approximately .0180% of the energy generated by luminol will escape the system as light. There may be more light created, but it will only heat the solution of the system or be absorbed or transformed into heat somehow. Conclusions/Discussion I feel that I learned a lot from this experiment not only about chemiluminescence and light conversion, but also about how to do a better experiment. -
We Have Seen That Back in the Early Days of Scientific Photographic
We have seen that back in the early days of scientific photographic progression people were constantly experimenting in ways of capturing a permanent image using chemicals. The Cyanotype process is one of them. There are two main chemicals required for making a Cyanotype image, Ammonium Ferric Citrate (light sensitive iron salt) and Potassium Ferricyanide (red salt). This is the same formula developed by Sir John Herschel. In fact, he discovered sodium thiosulfate to be a solvent of silver halides in 1819, and informed Talbot and Daguerre of his discovery that this "hyposulphite of soda" ("hypo") could be used as a photographic fixer, to "fix" pictures and make them permanent, after experimentally applying it thus in early 1839. The blue color of the cyanotype print is the result of the reaction of ferrous ions to the photo reduction of ferric ammonium citrate in combination with potassium ferricyanide. Cyanotype is based on the sensitivity of ferrous salts to light. The sensitive layer contains iron ammonium citrate and potassium hexacyanoferrate(II)). Daylight contains a certain portion of UV radiation and this reduces the iron(III) ions in these compounds to iron (II) ions. This produces compounds of blue – on the one hand Prussian blue – iron (III) hexacyanoferrate (II), and on the other Turnbull's blue – ferrous ferricyanide. Both these colors are bright blue and the picture is made up of their combination in the given ratio. When iron ( Fe, from the Latin "Ferrum") is chemically combined with other elements, its atoms acquire a positive charge by transferring two or three of their orbiting negative electrons onto atoms of other elements. -
Nomination Background: Ethyl Cyanoacrylate (CASRN: 7085-85-0)
i' ETHYL CYANOACRYLATE CAS Number: 7085-85-0 NTP Nomination History and Review NCI summary of·oata for Chemical Selection Ethyl cyanoacrylate 7085-85-0 NTP NOMINATION HISTORY AND REVIEW A. Nomination History 1. Source: National Cancer Institute 2. Reco~endation: -Carcinogenicity (Inhalation) -Neurotoxicity -Reproductive and developmental effects 3. Rationale/Remarks: -Widespread use as a consumer instant adhesive -Lack of toxicity data -Potential biological activity 4. Priority: High 5. Date of Nomination: 5/91 B. Chemical Evaluation Committee Review 1. Date of Review: 2. Recommendations: 3. Priority: 4. NTP Chemical Selection Principles: 5. Rationale/Remarks: c. Board of Scientific Counselors Review 1. Date of Review: 2. Recommendations: 3. Priority: 4. Rationale/Remarks: D. Executive Committee Review 1. Date of Review: 2. Decision: . \ ,. 7085-85-0 Ethyl cyanoacrylate SUMMARY OF DATA FOR CHEMICAL SELECTION CHEMICAL IDENTIFICATION CAS Registry Number: 7085-85-0 Chern. Abstr. Name: 2-Cyano-2-propenoic acid, ethyl ester Synonyms & Trade Names: 910EM; ACE-EE; ACE-E SO; acrylic acid, 2-cyano-, ethyl ester; adhesive 502; Aron Alpha D; Black Max; CA 3; CA 3 (adhesive); CA 8-3A; CN 2; CN 4; Cemedine 3000RP; Cemedine 3000RP Type-II; Cemedine 3000RS; Cemedine 3000RS Type-11; Cyanobond W 100; Cyanobond W 300; Cyanolite 20 1; Cyan on 5MSP; DA 737S; ethyl Q-cyanoacrylate; ethyl 2-cyanoacrylate; Krazy Glue; N 135; Permabond 105; Permabond 200; Permabond 268; Pro Grip 4000; PTR-E 3; PTR-E 40; Super 3-1000; Superbonder 420; Super Glue; TK. 200; TK 201 Structure. Molecular Formula and Molecular Weight Mol. wt.: 125.13 Chemical and Physical Properties [From Coover eta/. -
United States Patent Office Patented June 26, 1973 2 Preferably the Alkali Metal Ferricyanide Is Added to the 3,741,767 Emulsion After Emulsification Step
3,741,767 United States Patent Office Patented June 26, 1973 2 Preferably the alkali metal ferricyanide is added to the 3,741,767 emulsion after emulsification step. PHOTOGRAPHIC EMULSIONS CONTAINING The preferred alkali metal ferricyanide is potassium ALKAL METAL FERRCYANDES ferricyanide. Most preferably the alkali metal ferricyanide John Harold Baylis and Anthony John Bond, Ilford, Eng is added to the emulsion as an aqueous solution. land, assignors to Ilford Limited, Ilford, England 5 No Drawing. Filed June 22, 1971, Ser. No. 155,611 It is thought that the step of adding the alkali metal Claims priority, application Great Britain, June 26, 1970, ferricyanide to the emulsion has the effect of reducing 31,166/70 the number of internal sensitivity centres which are formed at C. G03c 1/02 during the physical ripening stage. Thus, the process of U.S. C. 96-94 7 Claims the present invention leads to emulsions having reduced O internal sensitivity and in some cases yields emulsions having improved properties in regard to speed and/or contrast. However, in photographic emulsions wherein the ABSTRACT OF THE DISCLOSURE ratio of internal sensitivity to external sensitivity is normal According to the present invention an alkali metal ly very low, it is very difficult to show any improvement ferricyanide is added to a gelatin silver halide emulsion 15 because the reduction in the internal sensitivity of the prior to flocculation. Emulsions having reduced internal emulsion is of little practical importance. sensitivity are obtained. Therefore, in -
Cyanotype Process 15
CYANOTYPE Dusan C. Stulik | Art Kaplan The Atlas of Analytical Signatures of Photographic Processes Atlas of The © 2013 J. Paul Getty Trust. All rights reserved. The Getty Conservation Institute works internationally to advance conservation practice in the visual arts—broadly interpreted to include objects, collections, architecture, and sites. The GCI serves the conservation community through scientific research, education and training, model field projects, and the dissemination of the results of both its own work and the work of others in the field. In all its endeavors, the GCI focuses on the creation and delivery of knowledge that will benefit the professionals and organizations responsible for the conservation of the world’s cultural heritage. The Getty Conservation Institute 1200 Getty Center Drive, Suite 700 Los Angeles, CA 90049-1684 United States Telephone: 310 440-7325 Fax: 310 440-7702 Email: [email protected] www.getty.edu/conservation The Atlas of Analytical Signatures of Photographic Processes is intended for practicing photograph conservators and curators of collections who may need to identify more unusual photographs. The Atlas also aids individuals studying a photographer’s darkroom techniques or changes in these techniques brought on by new or different photographic technologies or by the outside influence of other photographers. For a complete list of photographic processes available as part of the Atlas and for more information on the Getty Conservation Institute’s research on the conservation of photographic materials, visit the GCI’s website at getty.edu/conservation. ISBN number: 978-1-937433-08-6 (online resource) Front cover: Cyanotype photograph, 1909. Photographer unknown. Every effort has been made to contact the copyright holders of the photographs and illustrations in this work to obtain permission to publish. -
Luminol, a Chemiluminescent Substance
Luminol, a Chemiluminescent Substance Some of the most impressive and aesthetically pleasing chemical reactions known are those that result in the phenomenon of chemiluminescence. While exothermic reactions usually release energy in the form of heat, some produce little or no heat and release their energy by the emission of light. These “glowing” reactions are generally oxidations, and a good example is the oxidation of 5-aminophthalhydrazide, or luminol, which produces a brilliant blue-green light. In neutral solution, luminol is zwitterionic: + — NH3 O N NH O When dissolved in a basic solution, luminol becomes dianionic: — NH2 O N N O— The dianion can be oxidized to form a peroxide of unknown structure. This peroxide decomposes, releasing nitrogen gas and producing the 3-aminophthalate ion, which exists in an excited state. As this molecule relaxes to the lower energy (ground) state, a photon of visible light is emitted resulting in the observed chemiluminescence. NH2 NH2 COO— COO— + hν COO— COO— Excited state Ground state Bring this procedure with you to the last lab period In a 150 mL beaker labeled A, dissolve 0.1 g of luminol in 5 mL of 3 M sodium hydroxide solution and 45 mL of water. In a 250 mL beaker labeled B, combine 10 mL of 3% aqueous potassium ferricyanide with 10 mL of 3% hydrogen peroxide and 80 mL of water. Now, in a dark area of the laboratory, pour the solution in beaker A and the solution in beaker B simultaneously into a funnel resting in the neck of a 250 mL Erlenmeyer flask.