Solutions of Conformal Gravity with Dynamical Mass Generation in the Solar System

Total Page:16

File Type:pdf, Size:1020Kb

Solutions of Conformal Gravity with Dynamical Mass Generation in the Solar System Solutions of Conformal Gravity with Dynamical Mass Generation in the Solar System A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Physics in the University of Canterbury by Joshua N. Wood University of Canterbury 2000 11 PHYSICAl.. SCIENCES LIBRARY Qc (1~ , W87() Abstract An investigation is made into the viability of the fourth-order conformal theory of gravity with dynamical mass generation. This is done by considering the analytical behaviour of the equations of motion and using this as a guide to producing numerical solutions to these equations. A review of some criticisms of the fourth-order gravity theory is included. Numerical solutions of the equations of motion are produced for the domain interior to the source and the exterior region within the solar system, with a variety of source conditions and under different formulations. These are analysed with consideration of reasonable physical and observational requirements, based on the well established solar system gravitational effects. The possibility of extra gravitational effects to explain anomalies in current gravitational theory is investigated. These effects include the possible anomalous acceleration of the Pioneer spacecraft, and could be extended to cover galaxy-scale phenomena such as galactic rotation curves. Conclusions are then drawn about what formulations and parameter sets are viable for good representation of the physics. The effects of the dynamical mass generation on observed phenomena are discussed, with reference to the potential resolution of gravitational anomalies. 1 4 zaU1 iv Contents 1 Introduction 1 1.1 Problems for General Relativity 2 1.2 Conformal Gravity Theories .. 4 1.2.1 Existing Work in Conformal Gravity 4 1.3 Current state of General Relativity 6 1.4 Aim of the Thesis 6 1.5 Conventions ... 8 2 The Conformal Field Equations 11 2.1 Weyl Field Equations. 11 2.1.1 Metric Forms . 12 2.1.2 Existing Solutions to the Field Equations. 15 2.2 Dynamical Mass Generation and Conformal Gravity. 17 2.2.1 Conformal Hydrostatic Equilibrium .... 19 2.2.2 Interior and Exterior Quadrature Solution 22 3 Conformal Geodesic Motion 25 3.1 Dynamical Geodesic Equations ........... 25 3.1.1 Coordinate Forms of the Geodesic Equations . 28 3.2 Application to Particle Motion. 33 3.2.1 Features ........ 33 3.2.2 Usage of the Orbital Equation 34 3.2.3 Higgs-Dependant Acceleration 37 3.2.4 Application to the Possible Anomalous Acceleration of Pioneer Spacecraft, et. al. 39 3.2.5 Analytic S Field Behaviour 40 3.3 Conformal Transformations and Observable Quantities 44 v vi Contents 4 Criticisms of Conformal Gravity 47 4.1 'Solution Matching in Weyl Gravity' - Perlick & Xu 47 4.2 Wood & Nemiroff 1991 50 4.3 Other Concerns .... 51 5 Implementation of a Numerical Solution to Conformal Gravity 53 5 .1 Numerical Techniques ..... 54 5.1.1 Extrapolation Methods. 55 5.1.2 Newton-Raphson Methods 58 5.1.3 Stability Issues . 59 5.1.4 Computational Accuracy. 61 5.2 Boundary Conditions ...... 63 5.2.1 Photospheric Boundary Condition Data 64 5.2.2 Boundary Conditions at the Origin 65 5.3 Implementation ........ 67 5.3.1 Numerical Requirements 67 6 Numerical Results 73 6.1 Exterior Solutions. 73 6.2 Interior Solutions . 83 6.2.1 Full Interior Solution 86 6.2.2 Interior Solution in band S 103 6.3 Consistent Interior/Exterior Solutions. 112 6.4 Discussion of the Methods ...... 116 7 Conclusion 121 7.1 Suggestions for Further Work 125 7.2 Acknowledgments ...... 126 A Algorithms of Extrapolation Methods 127 A.1 Runge-Kutta Methods . 127 A.2 Burlisch-Stoer Methods. 128 B Algorithms of Relaxation Methods 131 C Numerical Engine Code 135 D Effects of Numerical Limitations on Solutions 173 Contents vii E Field Equation Derivation 177 F Scalar Field Conservation Identity 181 References 183 Vlll Contents Chapter 1 Introduction Theoretical physics has made great advances in this century towards explaining the nature of the fundamental interactions and particles that make up the universe we live in. The essential method in this proceeding explanation of our reality is the unification of the fundamental forces - namely, the strong and weak nuclear forces, the electromagnetic force, and the gravitational force. It is a kind of holy grail for theorists to produce a 'theory of everything' which can include all these forces within a single framework. The nature of the fundamental forces has been explored via theories of fields, which have developed in ways peculiar to the forces being described. Gravitation is essentially and intrinsically linked to the properties and contents of the space­ time in which it is acting, and so is described in terms of metric field tensor 9J-Lv by Einstein's general relativity. This field describes the distances and curvatures of space and time, leading to a beautifully symmetric theory in which the mass and energy content of the universe defines how space is curved, which in turn defines how the mass and energy will move. Developed in 1916, the General Theory of Relativity [1] has been spectacularly successful in describing the gravitational phenomena in the solar system, to the limits of definition of our observations. Some time after the development of general relativity (GR), quantum field theory (QFT) began to be considered as a good description of the fundamental particles. The theory has considerable initial difficulties, such as the possibility of particles with infinite amounts of energy. These were overcome with the advent of renormalisable theories, which through a redefinition of the idea of what a particle is, allow such infinities to be neatly removed from the theory. Particles are now being treated in a more dynamic way, as being the excitations of a field through­ out space-time, rather than being kinematic constructs. Concepts of symmetry invariance, when applied to quantum field theory, allowed the development of the theory of dynamical mass generation by Weinberg, Glashow and Salaam, which 1 2 Chapter 1. Introduction unified the weak nuclear and electromagnetic forces. This theory of dynamical mass generation by 'spontaneously broken sym­ metry' (SBS) was a revolutionary concept and took some time to be accepted (see Weinberg's book, 'Dreams of a final theory' [2]), but with the experimental discovery of the Wand Z particles at the CERN facility in Switzerland, the theory gained strong credence. It has since been expanded to include the strong nuclear force in the same theoretical framework (quantum chromodynamics, QCD ), and is so accepted today that this is referred to as the 'standard model'. However, the final unification of the four forces remains elusive. The nature of the formulation of general relativity considers matter kinematically, not dynam­ ically. A space-time containing dynamically generated matter is, to Einstein's field equations, essentially a space-time containing nothing. Despite both general relativity and quantum field theory being generally accepted, efforts towards final unification are often in essentially different theories such as superspace or string theories. 1.1 Problems for General Relativity Despite it's wide acceptance and excellent observational verification in solar sys­ tem tests, the general theory of relativity is not without it's own foils. Possibly the most obvious difficulty is the 'missing mass' problem, in it's various forms. This is perhaps most easily described in terms of galaxy dynamics. By measuring the Doppler shift of the frequency of light emitted by a galaxy that is near edge-on to our line of sight here on Earth, the relative velocity of the different parts of such a galaxy can be determined. It is found that the rotational velocity of the stars in the spiral arms of galaxies increase in a way which is not in agreement with the predictions of general relativity. Given the apparent success of GR on local scales, such as within the solar system, the usually presented argument is that the extra gravitational attraction required is provided by 'dark matter' of some kind which is not observed - i.e. there is something out there which we cannot see or detect which is responsible for fixing up the anomalous results. For reasons to do with stability of the rotation of the galaxy, the average spiral galaxy requires about nine times as much dark matter as luminous, observed matter, distributed in a spherical 'halo' around the spiral. The exact composition of the dark matter is speculative, ranging from unknown, exotic fundamental particles that we are currently unaware of, to small stellar 1.1. Problems for General Relativity 3 bodies similar to the familiar galactic bodies, but of very low luminosity and profusely distributed. Another serious question for general relativity is the expansion of the uni­ verse. This has always been a slightly nebulous issue, as the end result of the expansion depends on the density of the universe, something not yet determined. Currently, with only considering the observed luminous sources, the expansion of the universe will continue indefinitely as there is not enough matter to reverse the expansion through gravitational attraction. As this has been regarded as an undesirable destiny, mechanisms to retard the expansion have been devised. The most famous is the cosmological constant A, an 'ad hoc' term originally added to Einstein's field equations as a 'negative pressure' to augment the gravitational contraction of the universe. The exact value of A is arguably the least specified constant in any theory, as arguments from gravitational theories can be made for it to be zero, whilst from particle theory arguments it could be required to be of order 10 60 or larger. Recent developments have only exacerbated this problem. Measurements have been made of very distant high redshift type 1a supernovae, the furthest away and thus most ancient of the objects for which we can calculate distances ([3, 4]).
Recommended publications
  • Testing General Relativity Through the Computation of Radiative Terms And
    TESTING GENERAL RELATIVITY THROUGH THE COMPUTATION OF RADIATIVE TERMS AND WITHIN THE NEUTRON STAR STRONG-FIELD REGIME by Alexander Saffer A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics MONTANA STATE UNIVERSITY Bozeman, Montana April 2019 ©COPYRIGHT by Alexander Saffer 2019 All Rights Reserved ii DEDICATION Dedicated to my family, who provided me with their unconditional love and support. iii ACKNOWLEDGEMENTS I would like to acknowledge the hard work of my advisor Dr. Nicolás Yunes, whose dedication and compassion for physics and those in this field has taught me more than classes ever could. I would also like to thank the Dr. Kent Yagi and Dr. Hector Okada da Silva for their willingness to always help me no matter what I asked and for having the patience to put up with me whenever I struggled. In addition, I would like to thank Dr. Neil Cornish and the rest of the eXtreme Gravity Institute for providing an environment conducive to success. Lastly, I would like to thank my family and friends both within and outside of the MSU physics department who provided their support and guidance over these past 6 years, especially Meg. iv TABLE OF CONTENTS 1. INTRODUCTION ................................................................................................ 1 2. THE GRAVITATIONAL WAVESTRESS-ENERGY (PSEUDO)-TENSOR IN MODIFIED GRAVITY ...................................................................................12 Contribution of Authors and Co-Authors...............................................................12
    [Show full text]
  • Professor John W. Norbury
    GENERAL RELATIVITY & COSMOLOGY for Undergraduates Professor John W. Norbury Physics Department University of Wisconsin-Milwaukee P.O. Box 413 Milwaukee, WI 53201 1997 Contents 1 NEWTONIAN COSMOLOGY 5 1.1 Introduction ............................ 5 1.2 Equation of State ......................... 5 1.2.1 Matter ........................... 6 1.2.2 Radiation ......................... 6 1.3 Velocity and Acceleration Equations .............. 7 1.4 Cosmological Constant ...................... 9 1.4.1 Einstein Static Universe ................. 11 2 APPLICATIONS 13 2.1 Conservation laws ........................ 13 2.2 Age of the Universe ....................... 14 2.3 Ination .............................. 15 2.4 Quantum Cosmology ....................... 16 2.4.1 Derivation of the Schrodinger equation ......... 16 2.4.2 Wheeler-DeWitt equation ................ 17 2.5 Summary ............................. 18 2.6 Problems ............................. 19 2.7 Answers .............................. 20 2.8 Solutions ............................. 21 3 TENSORS 23 3.1 Contravariant and Covariant Vectors .............. 23 3.2 Higher Rank Tensors ....................... 26 3.3 Review of Cartesian Tensors ................... 27 3.4 Metric Tensor ........................... 28 3.4.1 Special Relativity ..................... 30 3.5 Christoel Symbols ........................ 31 1 2 CONTENTS 3.6 Christoel Symbols and Metric Tensor ............. 36 3.7 Riemann Curvature Tensor ................... 38 3.8 Summary ............................. 39 3.9 Problems ............................
    [Show full text]
  • Scalar-Tensor Black Holes Embedded in an Expanding Universe
    Review Scalar-Tensor Black Holes Embedded in an Expanding Universe Daria Tretyakova 1,* ID and Boris Latosh 2 ID 1 Department Theoretical Physics, Ural Federal University, Ekaterinburg 620075, Russia 2 Department of Physics & Astronomy, University of Sussex, Brighton BN1 9RH, UK; [email protected] * Correspondence: [email protected] Received: 22 November 2017; Accepted: 27 December 2017; Published: 6 February 2018 Abstract: In this review, we focus our attention on scalar-tensor gravity models and their empirical verification in terms of black hole and wormhole physics. We focus on black holes, embedded in an expanding universe, describing both cosmological and astrophysical scales. We show that in scalar-tensor gravity it is quite common that the local geometry is isolated from the cosmological expansion, so that it does not backreact on the black hole metric. We try to extract common features of scalar-tensor black holes in an expanding universe and point out the issues that are not fully investigated. Keywords: scalar-tensor gravity; black holes; cosmology; modified gravity; Brans–Dicke; Horndeski; de Sitter space 1. Introduction General Relativity (GR) is nowadays the most successful theory of gravity providing the best fit for all the observed gravitational phenomena. For a century, GR was only tested in the weak field regime [1–3] until the recent detection of gravitational waves [4–6] that provided a completely new way to study strong-field gravity [7–10] via optical and gravitational channels [11,12]. Furthermore, constantly increasing resolution of satellite and terrestrial observational facilities gives one hope to resolve the SgrA* in the near future [13,14].
    [Show full text]
  • Arxiv:1512.05453V1 [Gr-Qc] 17 Dec 2015 the Black Hole Spacetime
    Extremal Black Holes in Dynamical Chern-Simons Gravity Robert McNees,1 Leo C. Stein,2 and Nicolás Yunes3 1Loyola University Chicago, Department of Physics, Chicago, IL 60660, USA. 2TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA 3Department of Physics, Montana State University, Bozeman, MT 59717, USA. (Dated: December 18, 2015) Rapidly rotating black hole solutions in theories beyond general relativity play a key role in experimental gravity, as they allow us to compute observables in extreme spacetimes that deviate from the predictions of general relativity (GR). Such solutions are often difficult to find in beyond- GR theories due to the inclusion of additional fields that couple to the metric non-linearly and non-minimally. In this paper, we consider rotating black hole solutions in one such theory, dynamical Chern-Simons gravity, where the Einstein-Hilbert action is modified by the introduction of a dynamical scalar field that couples to the metric through the Pontryagin density. We treat dynamical Chern- Simons gravity as an effective field theory and thus work in the decoupling limit, where corrections are treated as small perturbations from general relativity. We perturb about the maximally-rotating Kerr solution, the so-called extremal limit, and develop mathematical insight into the analysis techniques needed to construct solutions for generic spin. First we find closed-form, analytic expressions for the extremal scalar field, and then determine the trace of the metric perturbation, giving both in terms of Legendre decompositions. Retaining only the first three and four modes in the Legendre representation of the scalar field and the trace respectively suffices to ensure a fidelity of over 99% relative to full numerical solutions.
    [Show full text]
  • Propagation of Scalar Fields in a Plane Symmetric Spacetime
    Braz J Phys (2016) 46:784–792 DOI 10.1007/s13538-016-0458-8 PARTICLES AND FIELDS Propagation of Scalar Fields in a Plane Symmetric Spacetime Juliana Celestino1 · Marcio´ E. S. Alves2 · F. A. Barone 3 Received: 6 June 2016 / Published online: 3 October 2016 © Sociedade Brasileira de F´ısica 2016 Abstract The present article deals with solutions for a min- for the scalar field in terms of the Kummer and Tricomi imally coupled scalar field propagating in a static plane confluent hypergeometric functions. symmetric spacetime. The considered metric describes the curvature outside a massive infinity plate and exhibits an Keywords Gravitational waves · Taub metric · Scalar field intrinsic naked singularity (a singular plane) that makes the accessible universe finite in extension. This solution can be interpreted as describing the spacetime of static domain 1 Introduction walls. In this context, a first solution is given in terms of zero order Bessel functions of the first and second kind and A variety of theories of fundamental physics predict the presents a stationary pattern which is interpreted as a result existence of scalar fields [1]. In cosmology, scalar fields are of the reflection of the scalar waves at the singular plane. central to the implementation of the inflationary models [2, This is an evidence, at least for the massless scalar field, of 3], and also in the development of alternatives to solve the an old interpretation given by Amundsen and Grøn regard- puzzle of the present accelerated cosmic expansion [4, 5]. ing the behaviour of test particles near the singularity. A All these subjects together with the recent discovery of the second solution is obtained in the limit of a weak gravita- Higgs boson have been motivated a better understanding of tional field which is valid only far from the singularity.
    [Show full text]
  • Geometrization Conditions for Perfect Fluids, Scalar Fields, and Electromagnetic Fields D
    Geometrization conditions for perfect fluids, scalar fields, and electromagnetic fields D. S. Krongos and C. G. Torre Citation: Journal of Mathematical Physics 56, 072503 (2015); doi: 10.1063/1.4926952 View online: http://dx.doi.org/10.1063/1.4926952 View Table of Contents: http://scitation.aip.org/content/aip/journal/jmp/56/7?ver=pdfcov Published by the AIP Publishing Articles you may be interested in A fully covariant information-theoretic ultraviolet cutoff for scalar fields in expanding Friedmann Robertson Walker spacetimes J. Math. Phys. 54, 022301 (2013); 10.1063/1.4790482 FRW cosmology in Finsler geometry with extra dimensions AIP Conf. Proc. 1444, 438 (2012); 10.1063/1.4715472 Bianchi type-I cosmological model for perfect fluid distribution in Lyra geometry J. Math. Phys. 49, 032502 (2008); 10.1063/1.2898477 Decoupling of the general scalar field mode and the solution space for Bianchi type I and V cosmologies coupled to perfect fluid sources J. Math. Phys. 47, 042505 (2006); 10.1063/1.2188210 The Einstein‐Vlasov System with a scalar field AIP Conf. Proc. 751, 217 (2005); 10.1063/1.1891557 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 129.123.126.217 On: Thu, 20 Aug 2015 20:45:14 JOURNAL OF MATHEMATICAL PHYSICS 56, 072503 (2015) Geometrization conditions for perfect fluids, scalar fields, and electromagnetic fields D. S. Krongos and C. G. Torre Department of Physics, Utah State University, Logan, Utah 84322-4415, USA (Received 21 March 2015; accepted 30 June 2015; published online 22 July 2015) Rainich-type conditions giving a spacetime “geometrization” of matter fields in general relativity are reviewed and extended.
    [Show full text]
  • Research Article Long-Range Scalar Forces in Five-Dimensional General Relativity
    Hindawi Advances in Mathematical Physics Volume 2020, Article ID 9305187, 16 pages https://doi.org/10.1155/2020/9305187 Research Article Long-Range Scalar Forces in Five-Dimensional General Relativity L. L. Williams Konfluence Research Institute, Manitou Springs, Colorado, USA Correspondence should be addressed to L. L. Williams; lance@konfluence.org Received 25 July 2020; Revised 1 October 2020; Accepted 6 October 2020; Published 9 November 2020 Academic Editor: Eugen Radu Copyright © 2020 L. L. Williams. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. We present new results regarding the long-range scalar field that emerges from the classical Kaluza unification of general relativity and electromagnetism. The Kaluza framework reproduces known physics exactly when the scalar field goes to one, so we studied perturbations of the scalar field around unity, as is done for gravity in the Newtonian limit of general relativity. A suite of interesting phenomena unknown to the Kaluza literature is revealed: planetary masses are clothed in scalar field, which contributes 25% of the mass-energy of the clothed mass; the scalar potential around a planet is positive, compared with the negative gravitational potential; at laboratory scales, the scalar charge which couples to the scalar field is quadratic in electric charge; a new length scale of physics is fi μ 2 encountered for the static scalar eld around an electrically-charged mass, Ls = 0Q /M; the scalar charge of elementary particles is proportional to the electric charge, making the scalar force indistinguishable from the atomic electric force.
    [Show full text]
  • Aspects of Galileons and Generalised Scalar-Tensor Theories
    Aspects of Galileons and Generalised Scalar-Tensor Theories Vishagan Sivanesan Thesis submitted to The University of Nottingham for the degree of Doctor of Philosophy, Sep 2013 For my Mum and Dad i Contents 1 Introduction 2 2 An Outline of Scalar-Tensor Theories of Gravity 11 2.1 Introduction . 11 2.2 Uniqueness of Einstein field equations . 12 2.2.1 Gauge Redundancy in massless field operators . 12 2.2.2 Lorentz invariance of the S-matrix and the equivalence prin- ciple . 14 2.2.3 Linearised gravitational field equations . 18 2.3 Jordan-Fierz-Brans-Dicke theory . 19 2.4 Dvali-Gabadadze-Porrati Model . 21 2.4.1 The Action and the vacuum solutions . 22 2.4.2 The cross-over from 4D to 5D . 23 2.4.3 The decoupling limit and the π-Lagrangian . 26 2.4.4 Ghosts on the self-accelerating branch . 28 2.4.5 The Vainshtein Screening . 29 2.5 Galileon field theory . 31 2.5.1 The Set-Up . 31 2.5.2 The Structure of Lgal ...................... 32 2.5.3 Galileon Cosmology in the weak-field limit . 33 2.5.4 The Self-accelerating solution . 35 ii 2.6 Ostrogradski's theorem . 40 2.7 Summary . 45 3 Hamiltonian of Galileon field theory 47 3.1 Introduction . 47 3.2 Infrared regularization of the Hamiltonian . 48 3.3 Bulk Decomposition . 50 3.4 Boundary decomposition . 52 3.5 Derivation of the Hamiltonian . 54 3.6 Energy of static galileon fields coupled to a point-source . 55 3.7 Summary . 57 4 Boundary Terms and Junction Conditions for Generalized Scalar- Tensor Theories 59 4.1 Introduction .
    [Show full text]
  • EXACT SOLUTIONS and SCALAR FIELDS in GRAVITY This Page Intentionally Left Blank EXACT SOLUTIONS and SCALAR FIELDS in GRAVITY RECENT DEVELOPMENTS
    EXACT SOLUTIONS AND SCALAR FIELDS IN GRAVITY This page intentionally left blank EXACT SOLUTIONS AND SCALAR FIELDS IN GRAVITY RECENT DEVELOPMENTS Edited by ALFREDO MACIAS Universidad Autónoma Metropolitana–Itzapalapa Mexico City, Mexico JORGE L. CERVANTES-COTA Institute Nacional de Investigaciones Nucleares Mexico City, Mexico CLAUS LÄMMERZAHL University of Düsseldorf Düsseldorf, Germany KLUWER ACADEMIC PUBLISHERS NEW YORK, BOSTON, DORDRECHT, LONDON, MOSCOW eBook ISBN: 0-306-47115-9 Print ISBN: 0-306-46618-X ©2002 Kluwer Academic Publishers New York, Boston, Dordrecht, London, Moscow Print ©2001 Kluwer Academic/Plenum Publishers New York All rights reserved No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher Created in the United States of America Visit Kluwer Online at: http://kluweronline.com and Kluwer's eBookstore at: http://ebooks.kluweronline.com To the 65th birthday of Heinz Dehnen and to the 60th birthday of Dietrich Kramer v This page intentionally left blank CONTENTS Preface xv Contributing Authors xvii Part I Exact Solutions Self–gravitating stationary axi-symmetric perfect fluids: Differential rota- tion and some geometric features 3 F.J. Chinea 1 Newtonian configurations 3 2 Dirichlet boundary problem vs. free-boundary problem 6 3 Interior solutions with differential rotation in general relativity 7 4 Vacuum as a “perfect fluid”. The “rigid rotation” and the “irrotational” gauges 10 5 Some geometric features
    [Show full text]
  • Non-Metricity in Theories of Gravity and Einstein Equivalence Principle
    UNIVERSITÀ DEGLI STUDI DI NAPOLI “FEDERICO II” Scuola Politecnica e delle Scienze di Base Area Didattica di Scienze Matematiche Fisiche e Naturali Dipartimento di Fisica “Ettore Pancini” Laurea Magistrale in Fisica Non-metricity in Theories of Gravity and Einstein Equivalence Principle Relatori: Candidato: Prof. Salvatore Capozziello Marcello Miranda Dr. Francesco Bajardi Matr. N94000401 Anno Accademico 2018/2019 Preface Framework The research for a unified theory, which describes both the laws of the microscopic world and those of the macroscopic world, reached a deadlock. The progress of physical theories is hampered by theoretical and experimental limits, which influence each other: on the one hand there are no models that help to interpret experimental observations compre- hensively, on the other hand there are no experimental decisive observations for a better formulation of existing models. To be precise, problems arise mostly from the cosmolog- ical observations and one tries to find an answer, for example, introducing new types of energy and matter. The assumption from which most start is that General Relativity (GR) is not a com- plete theory, despite being one of the most beautiful theories of gravity and its many successes (e.g classical tests of GR and gravitational waves) [1–4]; GR lacks a quantum counterpart and does not explain in an exhaustive way observations, such as the acceler- ated expansion of the universe (negative pressure), the analysis of galactic rotation curves [5], acoustic oscillations in the cosmic microwave background (CMB) [6–8], large scale structure formation [9, 10] and gravitational lensing [11–14]. The most used approach is to combine GR at cosmological scales, with a hypothesis of homogeneity and isotropy, and the Standard Model of particle physics (SM), describing non-gravitational interactions, in the “concordance model” of cosmology: the Λ−CDM (Cold Dark Matter) model.
    [Show full text]
  • Inflationary F(R) Cosmologies
    universe Article Inflationary f (R) Cosmologies Heba Sami 1,2,* , Joseph Ntahompagaze 2,3,4 and Amare Abebe 1,2 1 Center for Space Research, North-West University, Mmabatho, Mafikeng 2735, South Africa; [email protected] 2 Department of Physics, North-West University, Mmabatho, Mafikeng 2735, South Africa; [email protected] 3 Astronomy and Astrophysics Division, Entoto Observatory and Research Center, Addis Ababa 33679, Ethiopia 4 Department of Physics, College of Science and Technology, University of Rwanda, Kigali 3900, Rwanda * Correspondence: [email protected] Received: 14 September 2017; Accepted: 16 October 2017; Published: 24 October 2017 Abstract: This paper discusses a simple procedure to reconstruct f (R)-gravity models from exact cosmological solutions of the Einstein field equations with a non-interacting classical scalar field-and-radiation background. From the type of inflationary scenario we are interested in, we show how the potential functions can be obtained. We then show how an f (R) gravitational Lagrangian density that mimics the same cosmological expansion as the scalar field-driven inflation of general relativity (GR) can be reconstructed. As a demonstration, we calculate the slow-roll parameters (the spectral index ns and the tensor-to-scalar ratio r) and compare these to the Planck data. Keywords: f (R) gravity; scalar field; inflation PACS: 04.50.Kd; 04.25.Nx; 98.80.-k; 95.36.+x; 98.80.Cq 1. Introduction Cosmological inflation is an early-stage accelerated expansion of the universe, first introduced to solve the horizon and flatness problems [1]. The usual approach is to assume that, in the very early universe, a scalar field dominated standard matter fields that sourced the action in general relativity (GR).
    [Show full text]
  • The Electrogravity Transformation and Global Monopoles in Scalar-Tensor
    IUCAA-17/99 hep-th/0001119 The electrogravity transformation and global monopoles in scalar-tensor gravity Sukanta Bose ∗ and Naresh Dadhich† Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411007, India (April 1999) Abstract The electrogravity transformation is defined by an interchange of the “ac- tive” and “passive” electric parts of the Riemann tensor. Such a transforma- tion has been used to find new solutions that are “dual” to the Kerr family of black hole spacetimes in general relativity. In such a case, the dual solution is a similar black hole spacetime endowed with a global monopole charge. Here, we extend this formalism to obtain solutions dual to the static, spher- ically symmetric solutions of two different scalar-tensor gravity theories. In particular, we first study the duals of the charged black hole solutions of a four-dimensional low-energy effective action of heterotic string theory. Next, we study dual of the Xanthopoulos-Zannias solution in Brans-Dicke theory, which contains a naked singularity. We show that, analogous to general rela- tivity, in these scalar-tensor gravity theories the dual solutions are similar to the original spacetimes, but with a global monopole charge. arXiv:hep-th/0001119v1 19 Jan 2000 Pacs: 04.20.Jb, 04.70.Bw, 11.27.+d, 98.80.Cq Typeset using REVTEX ∗Electronic address: [email protected] †Electronic address: [email protected] 1 I. INTRODUCTION Ever since the work of Barriola and Vilenkin (BV) [1], it has been of interest to explore the existence of spacetimes with a global monopole charge in alternative theories of gravity.
    [Show full text]