Brownian Motion on Treebolic Space:Positive Harmonic Functions Tome 66, No 4 (2016), P
R AN IE N R A U L E O S F D T E U L T I ’ I T N S ANNALES DE L’INSTITUT FOURIER Alexander BENDIKOV, Laurent SALOFF-COSTE, Maura SALVATORI & Wolfgang WOESS Brownian motion on treebolic space:positive harmonic functions Tome 66, no 4 (2016), p. 1691-1731. <http://aif.cedram.org/item?id=AIF_2016__66_4_1691_0> © Association des Annales de l’institut Fourier, 2016, Certains droits réservés. Cet article est mis à disposition selon les termes de la licence CREATIVE COMMONS ATTRIBUTION – PAS DE MODIFICATION 3.0 FRANCE. http://creativecommons.org/licenses/by-nd/3.0/fr/ L’accès aux articles de la revue « Annales de l’institut Fourier » (http://aif.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://aif.cedram.org/legal/). cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Ann. Inst. Fourier, Grenoble 66, 4 (2016) 1691-1731 BROWNIAN MOTION ON TREEBOLIC SPACE: POSITIVE HARMONIC FUNCTIONS by Alexander BENDIKOV, Laurent SALOFF-COSTE, Maura SALVATORI & Wolfgang WOESS (*) Abstract. — This paper studies potential theory on treebolic space, that is, the horocyclic product of a regular tree and hyperbolic upper half plane. Relying on the analysis on strip complexes developed by the authors, a family of Laplacians with “vertical drift” parameters is considered. We investigate the positive harmonic functions associated with those Laplacians. Résumé. — Ce travail est dedié à une étude de la théorie du potentiel sur l’espace arbolique, i.e., le produit horcyclique d’un ârbre régulier avec le demi- plan hyperbolique supérieur.
[Show full text]