The Designer Methcathinone Analogs, Mephedrone and Methylone, Are Substrates for Monoamine Transporters in Brain Tissue

Total Page:16

File Type:pdf, Size:1020Kb

The Designer Methcathinone Analogs, Mephedrone and Methylone, Are Substrates for Monoamine Transporters in Brain Tissue Neuropsychopharmacology (2012) 37, 1192–1203 & 2012 American College of Neuropsychopharmacology. All rights reserved 0893-133X/12 www.neuropsychopharmacology.org The Designer Methcathinone Analogs, Mephedrone and Methylone, are Substrates for Monoamine Transporters in Brain Tissue ,1 1 1 1 2 Michael H Baumann* , Mario A Ayestas Jr , John S Partilla , Jacqueline R Sink , Alexander T Shulgin , 2 3 1 4 5 Paul F Daley , Simon D Brandt , Richard B Rothman , Arnold E Ruoho and Nicholas V Cozzi 1 Translational Pharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, 2 3 MD, USA; Alexander Shulgin Research Institute, Lafayette, CA, USA; School of Pharmacy and Biomolecular Sciences, Liverpool John Moores 4 University, Liverpool, UK; Department of Neuroscience and the UW Eye Research Institute, University of Wisconsin School of Medicine and 5 Public Health, Madison, WI, USA; Neuropharmacology Laboratory, Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA The nonmedical use of ‘designer’ cathinone analogs, such as 4-methylmethcathinone (mephedrone) and 3,4-methylenedioxymethcathi- none (methylone), is increasing worldwide, yet little information is available regarding the mechanism of action for these drugs. Here, we employed in vitro and in vivo methods to compare neurobiological effects of mephedrone and methylone with those produced by the structurally related compounds, 3,4-methylenedioxymethamphetamine (MDMA) and methamphetamine. In vitro release assays using rat brain synaptosomes revealed that mephedrone and methylone are nonselective substrates for plasma membrane monoamine transporters, similar to MDMA in potency and selectivity. In vivo microdialysis in rat nucleus accumbens showed that i.v. administration of 0.3 and 1.0 mg/kg of mephedrone or methylone produces dose-related increases in extracellular dopamine and serotonin (5-HT), with the magnitude of effect on 5-HT being greater. Both methcathinone analogs were weak motor stimulants when compared with methamphetamine. Repeated administrations of mephedrone or methylone (3.0 and 10.0 mg/kg, s.c., 3 doses) caused hyperthermia but no long-term change in cortical or striatal amines, whereas similar treatment with MDMA (2.5 and 7.5 mg/kg, s.c., 3 doses) evoked robust hyperthermia and persistent depletion of cortical and striatal 5-HT. Our data demonstrate that designer methcathinone analogs are substrates for monoamine transporters, with a profile of transmitter-releasing activity comparable to MDMA. Dopaminergic effects of mephedrone and methylone may contribute to their addictive potential, but this hypothesis awaits confirmation. Given the widespread use of mephedrone and methylone, determining the consequences of repeated drug exposure warrants further study. Neuropsychopharmacology (2012) 37, 1192–1203; doi:10.1038/npp.2011.304; published online 14 December 2011 Keywords: dopamine; MDMA; mesolimbic; microdialysis; serotonin (5-HT); transporters INTRODUCTION analogs of N-methylcathinone (ie, methcathinone) have become commercially available for purchase over the Cathinone (2-amino-1-phenylpropan-1-one) is a naturally Internet and in retail shops (Bossong et al, 2005; Brandt occurring b-keto analog of amphetamine that has served as et al, 2010; Karila and Reynaud, 2010; Vardakou et al, 2011; a structural template for the discovery of compounds with a Winstock et al, 2011). These so-called ‘designer’ methcathi- range of pharmacological activities (Carroll et al, 2010; nones are used outside of medical settings for personal Damaj et al, 2004; Meltzer et al, 2006). For example, experimentation, mood elevation, and as ‘legal highs’. The cathinone derivatives that display therapeutic properties European Monitoring Center for Drugs and Drug Addiction include the antidepressant bupropion and the anorectic reported that in 2010 alone, 15 out of 40 newly encountered agent diethylpropion. Recently, a number of synthetic psychoactive substances were found to be cathinone derivatives or isomers (EMCDDA, 2010). Two of the most *Correspondence: Dr MH Baumann, Translational Pharmacology popular methcathinone derivatives are 4-methylmethcathi- Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Drive, Suite 4500, none (mephedrone) and 3,4-methylenedioxymethcathinone Baltimore, MD 21224, USA, Tel: + 1 443 740 2660, Fax: + 1 443 740 (methylone) (Figure 1). Reports describing serious cardio- 2241, E-mail: [email protected] vascular and neurological side-effects of mephedrone have Received 30 August 2011; revised 28 October 2011; accepted 29 increased at an alarming rate (CDC, 2011; James et al, 2010; October 2011 Wood et al, 2010, 2011), and deaths attributable to overdose Methcathinone analogs and monoamine transporters MH Baumann et al 1193 long-term consequences of repeated high-dose drug admin- istration (Baumann et al, 2008). Our findings indicate that mephedrone and methylone are potent substrates for monoamine transporters in rat brain, with a profile of dopamine- and 5-HT-releasing activity, which more closely resembles MDMA than methamphetamine. However, im- portant differences were noted among the effects of mephedrone, methylone, and MDMA after high-dose administration. Further studies are warranted to elucidate the mechanistic distinctions among these various drugs. Figure 1 Chemical structures of designer methcathinone analogs and related compounds. MATERIALS AND METHODS Drugs and Reagents from mephedrone alone or in combination with other drugs have been documented (Dickson et al, 2010; Lusthof et al, Mephedrone and methylone were synthesized in racemic 2011; Maskell et al, 2011). form as HCl salts in our laboratories. Chemical and Although it might be inferred from structural similarities structural analysis included proton nuclear magnetic with cathinone that designer analogs of methcathinone resonance, gas chromatography/mass spectrometry, thin target monoamine transporters (Cozzi and Foley, 2003; layer chromatography, and melting point determination. All Rothman et al, 2003) or nicotinic acetylcholine receptors data confirmed the expected structures. ( + )-3,4-Methyle- (Carroll et al, 2010; Damaj et al, 2004), only limited nedioxymethamphetamine HCl (MDMA) and ( + )-metham- information is available regarding the pharmacodynamic phetamine HCl (methamphetamine) were obtained from the mechanisms of these drugs. Cozzi et al (1999) demonstrated Pharmacy at the National Institute on Drug Abuse (NIDA), that methylone blocks the reuptake of norepinephrine, Intramural Research Program (IRP) in Baltimore, MD. dopamine and serotonin (5-HT) in vitro, whereas (Nagai [3H]Serotonin ([3H]5-HT, specific activity ¼ 20 Ci/mmol) et al, 2007) found that methylone evokes the release of was purchased from Perkin Elmer (Shelton, CT) whereas radiolabeled monoamines from rat brain synaptosomes. [3H]1-methyl-4-phenylpyridinium ([3H]MPP + , specific The in vitro results indicate that methylone interacts with activity ¼ 85 Ci/mmol) was purchased from American Radi- plasma membrane transporters, but the precise nature of olabeled Chemicals (St Louis, MO). All other chemicals and this interaction requires clarification. Dal Cason et al (1997) reagents used for the in vitro assays, microdialysis methods, used a drug discrimination paradigm to demonstrate that and high-pressure liquid chromatography with electroche- methylone substitutes for 3,4-methylenedioxymethamphet- mical detection (HPLC-ECD) were acquired from Sigma- amine (MDMA) in rats trained to distinguish MDMA Aldrich (St Louis, MO). from saline, but fails to substitute for the psychedelic drug 2-amino-1-(2,5-dimethoxy-4-methylphenyl)propane (DOM) Animals and Surgery in rats trained to discriminate DOM from saline. A recent study by Kehr et al (2011) showed that mephedrone Male Sprague–Dawley rats weighing 300–350 g were housed increases extracellular dopamine and 5-HT in rat nucleus under conditions of controlled temperature (22±2 1C) and accumbens, and these effects could be related to inhibition humidity (45±5%) with food and water freely available. of monoamine uptake (Hadlock et al, 2011). Importantly, Rats were maintained in facilities accredited by the pharmacokinetic studies in rats and humans have shown Association for the Assessment and Accreditation of that mephedrone and methylone are metabolized in a Laboratory Animal Care, and procedures were carried out manner similar to ring-substituted amphetamines (Kamata in accordance with the Animal Care and Use Committee of et al, 2006; Meyer et al, 2010), suggesting the possibility that the NIDA IRP. Lights were on from 0700 to 1900 hours and bioactive metabolites might be formed in vivo. experiments were carried out between 0900 and 1400 hours. Given the lack of empirical data and the complex Rats were double-housed on receipt and allowed at least structure–activity relationships of cathinone analogs (Car- 2 weeks to acclimate to the vivarium conditions before roll et al, 2010; Dal Cason et al, 1997; Damaj et al, 2004; being used in experiments. For in vitro assays, rats were Nagai et al, 2007), we sought to examine the mechanism(s) euthanized with CO2 and decapitated. Brains were rapidly of action for mephedrone and methylone. To this end, we removed and tissue was dissected on ice. For in vivo used in vitro and in vivo methods to compare the microdialysis experiments, rats received
Recommended publications
  • Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materialsd
    Recommended methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES Photo credits:UNODC Photo Library; UNODC/Ioulia Kondratovitch; Alessandro Scotti. Laboratory and Scientific Section UNITED NATIONS OFFICE ON DRUGS AND CRIME Vienna Recommended Methods for the Identification and Analysis of Synthetic Cathinones in Seized Materials (Revised and updated) MANUAL FOR USE BY NATIONAL DRUG ANALYSIS LABORATORIES UNITED NATIONS Vienna, 2020 Note Operating and experimental conditions are reproduced from the original reference materials, including unpublished methods, validated and used in selected national laboratories as per the list of references. A number of alternative conditions and substitution of named commercial products may provide comparable results in many cases. However, any modification has to be validated before it is integrated into laboratory routines. ST/NAR/49/REV.1 Original language: English © United Nations, March 2020. All rights reserved, worldwide. The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Mention of names of firms and commercial products does not imply the endorse- ment of the United Nations. This publication has not been formally edited. Publishing production: English, Publishing and Library Section, United Nations Office at Vienna. Acknowledgements The Laboratory and Scientific Section of the UNODC (LSS, headed by Dr. Justice Tettey) wishes to express its appreciation and thanks to Dr.
    [Show full text]
  • FSI-D-16-00226R1 Title
    Elsevier Editorial System(tm) for Forensic Science International Manuscript Draft Manuscript Number: FSI-D-16-00226R1 Title: An overview of Emerging and New Psychoactive Substances in the United Kingdom Article Type: Review Article Keywords: New Psychoactive Substances Psychostimulants Lefetamine Hallucinogens LSD Derivatives Benzodiazepines Corresponding Author: Prof. Simon Gibbons, Corresponding Author's Institution: UCL School of Pharmacy First Author: Simon Gibbons Order of Authors: Simon Gibbons; Shruti Beharry Abstract: The purpose of this review is to identify emerging or new psychoactive substances (NPS) by undertaking an online survey of the UK NPS market and to gather any data from online drug fora and published literature. Drugs from four main classes of NPS were identified: psychostimulants, dissociative anaesthetics, hallucinogens (phenylalkylamine-based and lysergamide-based materials) and finally benzodiazepines. For inclusion in the review the 'user reviews' on drugs fora were selected based on whether or not the particular NPS of interest was used alone or in combination. NPS that were use alone were considered. Each of the classes contained drugs that are modelled on existing illegal materials and are now covered by the UK New Psychoactive Substances Bill in 2016. Suggested Reviewers: Title Page (with authors and addresses) An overview of Emerging and New Psychoactive Substances in the United Kingdom Shruti Beharry and Simon Gibbons1 Research Department of Pharmaceutical and Biological Chemistry UCL School of Pharmacy
    [Show full text]
  • Mephedrone Is a Class B Drug, Which Means Self-Referral Form and It Is Illegal to Possess, Sell Or Give Away
    THE LAW CONTACT INFORMATION Novel Psychoacve Substances (NPS) are If you would like support controlled substances under the Misuse of around your substance HMP BRISTOL Drugs Act (1971). use, please complete a Substance Misuse Team Mephedrone is a Class B drug, which means self-referral form and it is illegal to possess, sell or give away. return to Health Care. Possession can result in prosecuon and up PALS to a five year prison sentence or an unlimited fine. To make a comment, raise a concern Mephedrone or make a complaint, please contact the Trust’s Paent Advice and Liaison Supplying someone else, even your friends, Service (PALS). can result in a prison sentence of up to 14 Know the effects years or an unlimited fine. Tel: 01249 468261 Freephone: 0800 073 1778 Email: [email protected] Being convicted of a drug‐related offence could have a serious impact on your future. This could affect the types of jobs you apply for and stop you from entering certain OTHER FORMATS OR countries. LANGUAGES If you need this informaon in other formats (such as large print, Braille) or in another language, please call PALS Lead: Chris Eade Leaflet code: 326 Approval date: Aug 2014 Review due: Aug 2017 WHAT IS MEPHEDRONE EFFECTS THE RISKS Mephedrone is also known as The effects of mephedrone can vary and All drugs pose a risk of dependency and meow meow, meph, m‐cat and miaow can affect people differently. It is never can cause short and long‐term damage certain what effect it will have on the user.
    [Show full text]
  • 2015-02 Toxicology Rapid Testing Panel
    SOUTH CAROLINA LAW ENFORCEMENT DIVISION NIKKI R. HALEY MARK A. KEEL Governor Chief FORENSIC SERVICES LABORATORY CUSTOMER NOTICE 2015-02 REGARDING TOXICOLOGY RAPID TESTING PANEL August 12, 2015 This notice is to inform the Coroners of South Carolina of a new testing panel available through the SLED Toxicology Department. On Monday, August 17th, the Toxicology Department will begin offering both a Rapid Testing Panel in addition to the already available Expanded Testing Panel. This Rapid Testing Panel is to be utilized in cases where the Expanded Testing Panel is not warranted, specifically where a cause of death has already been established. The Rapid Testing Panel will consist of volatiles analysis, to include, ethanol, acetone, isopropanol and methanol, drug screens, and drug confirmation/quantitation of positive screens. The cases assigned to the Rapid Testing Panel will have an expedited turnaround time. Targeted turn around times will be two weeks for negative cases and six weeks or less for positive cases. While every effort will be made to adhere to these time frames, additional time may be required on occasion due to the nature of postmortem samples. Submitters will be notified if there is a problem with a particular sample. Please see attachment regarding specifically which substances are covered by the Rapid Testing Panel and the Expanded Testing Panel. As always, a detailed case history and list of drugs suspected is appreciated. Rapid Panel and Expanded Panel will be choices available in iLAB. Please contact Lt. Dustin Smith (803-896-7385) with additional questions. ALI-359-T An Accredited Law Enforcement Agency P.O.
    [Show full text]
  • Pharmacokinetics of Mephedrone Enantiomers in Whole Blood After a Controlled Intranasal Administration to Healthy Human Volunteers
    pharmaceuticals Article Pharmacokinetics of Mephedrone Enantiomers in Whole Blood after a Controlled Intranasal Administration to Healthy Human Volunteers Joanna Czerwinska 1, Mark C. Parkin 1,2, Agostino Cilibrizzi 3 , Claire George 4, Andrew T. Kicman 1, Paul I. Dargan 5,6 and Vincenzo Abbate 1,* 1 King’s Forensics, Department of Analytical, Environmental and Forensic Sciences, King’s College London, London SE1 9NH, UK; [email protected] (J.C.); MarkParkin@eurofins.co.uk (M.C.P.); [email protected] (A.T.K.) 2 Toxicology Department, Eurofins Forensic Services, Teddington TW11 0LY, UK 3 Institute of Pharmaceutical Science, King’s College London, London SE1 9NH, UK; [email protected] 4 Alere Toxicology (Now Part of Abbott), Abingdon OX14 1DY, UK; [email protected] 5 Clinical Toxicology, Faculty of Life Sciences and Medicine, King’s College London, London SE1 9NH, UK; [email protected] 6 Clinical Toxicology, Guy’s and St Thomas’ NHS Foundation Trust and King’s Health Partners, London SE1 7EH, UK * Correspondence: [email protected] Abstract: Mephedrone, which is one of the most popular synthetic cathinones, has one chiral centre and thus exists as two enantiomers: R-(+)-mephedrone and S-(−)-mephedrone. There are some preliminary data suggesting that the enantiomers of mephedrone may display enantioselective phar- macokinetics and exhibit different neurological effects. In this study, enantiomers of mephedrone were resolved via chromatographic chiral recognition and the absolute configuration was unambigu- ously determined by a combination of elution order and chiroptical analysis (i.e., circular dichroism). A chiral liquid chromatography tandem mass spectrometry method was fully validated and was Citation: Czerwinska, J.; Parkin, M.C.; applied to the analysis of whole blood samples collected from a controlled intranasal administra- Cilibrizzi, A.; George, C.; Kicman, A.T.; tion of racemic mephedrone hydrochloride to healthy male volunteers.
    [Show full text]
  • 3,4-Methylenedioxymethcathinone (Methylone) [“Bath Salt,” Bk-MDMA, MDMC, MDMCAT, “Explosion,” “Ease,” “Molly”] December 2019
    Drug Enforcement Administration Diversion Control Division Drug & Chemical Evaluation Section 3,4-Methylenedioxymethcathinone (Methylone) [“Bath salt,” bk-MDMA, MDMC, MDMCAT, “Explosion,” “Ease,” “Molly”] December 2019 Introduction: discriminate DOM from saline. 3,4-Methylenedioxymethcathinone (methylone) is a Because of the structural and pharmacological similarities designer drug of the phenethylamine class. Methylone is a between methylone and MDMA, the psychoactive effects, adverse synthetic cathinone with substantial chemical, structural, and health risks, and signs of intoxication resulting from methylone pharmacological similarities to 3,4-methylenedioxymeth- abuse are likely to be similar to those of MDMA. Several chat amphetamine (MDMA, ecstasy). Animal studies indicate that rooms discussed pleasant and positive effects of methylone when methylone has MDMA-like and (+)-amphetamine-like used for recreational purpose. behavioral effects. When combined with mephedrone, a controlled schedule I substance, the combination is called User Population: “bubbles.” Other names are given in the above title. Methylone, like other synthetic cathinones, is a recreational drug that emerged on the United States’ illicit drug market in 2009. It is perceived as being a ‘legal’ alternative to drugs of Licit Uses: Methylone is not approved for medical use in the United abuse like MDMA, methamphetamine, and cocaine. Evidence States. indicates that youths and young adults are the primary users of synthetic cathinone substances which include methylone. However, older adults also have been identified as users of these Chemistry: substances. O H O N CH3 Illicit Distribution: CH O 3 Law enforcement has encountered methylone in the United States as well as in several countries including the Netherlands, Methylone United Kingdom, Japan, and Sweden.
    [Show full text]
  • (19) United States (12) Patent Application Publication (10) Pub
    US 20130289061A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2013/0289061 A1 Bhide et al. (43) Pub. Date: Oct. 31, 2013 (54) METHODS AND COMPOSITIONS TO Publication Classi?cation PREVENT ADDICTION (51) Int. Cl. (71) Applicant: The General Hospital Corporation, A61K 31/485 (2006-01) Boston’ MA (Us) A61K 31/4458 (2006.01) (52) U.S. Cl. (72) Inventors: Pradeep G. Bhide; Peabody, MA (US); CPC """"" " A61K31/485 (201301); ‘4161223011? Jmm‘“ Zhu’ Ansm’ MA. (Us); USPC ......... .. 514/282; 514/317; 514/654; 514/618; Thomas J. Spencer; Carhsle; MA (US); 514/279 Joseph Biederman; Brookline; MA (Us) (57) ABSTRACT Disclosed herein is a method of reducing or preventing the development of aversion to a CNS stimulant in a subject (21) App1_ NO_; 13/924,815 comprising; administering a therapeutic amount of the neu rological stimulant and administering an antagonist of the kappa opioid receptor; to thereby reduce or prevent the devel - . opment of aversion to the CNS stimulant in the subject. Also (22) Flled' Jun‘ 24’ 2013 disclosed is a method of reducing or preventing the develop ment of addiction to a CNS stimulant in a subj ect; comprising; _ _ administering the CNS stimulant and administering a mu Related U‘s‘ Apphcatlon Data opioid receptor antagonist to thereby reduce or prevent the (63) Continuation of application NO 13/389,959, ?led on development of addiction to the CNS stimulant in the subject. Apt 27’ 2012’ ?led as application NO_ PCT/US2010/ Also disclosed are pharmaceutical compositions comprising 045486 on Aug' 13 2010' a central nervous system stimulant and an opioid receptor ’ antagonist.
    [Show full text]
  • Methamphetamine (Canadian Drug Summary)
    www.ccsa.ca • www.ccdus.ca March 2020 Canadian Drug Summary Methamphetamine Key Points • The prevalence of methamphetamine use in the Canadian population is low (~0.2%). • Several jurisdictions report at least a three-fold increase in the use of methamphetamine over the past five years among individuals accessing treatment or harm reduction services. • Notable increases for rates of criminal violations involving methamphetamine have been observed in the last five years (2013–2018). Introduction Methamphetamine is a synthetic drug classified as a central nervous system (CNS) stimulant or psychostimulant. CNS stimulants cover a wide range of substances that act on the body by increasing the level of activity of the CNS and include caffeine, nicotine, amphetamine (e.g., Adderall®), methylphenidate (e.g., Ritalin®), MDMA (“ecstasy”), cocaine (including crack cocaine) and methamphetamine (including crystal meth).1,2 While both methamphetamine and amphetamine are psychostimulants and often grouped together, they are different drugs. A slight chemical modification of amphetamine produces methamphetamine, which has a different pharmacological profile that results in a larger release of certain neurochemicals in the brain and a stronger and more rapid physiological response. Some amphetamines are prescribed in Canada for attention-deficit hyperactivity disorder (ADHD) and narcolepsy (e.g., Adderall and Vyvanse®), but methamphetamine use is currently illegal. Methamphetamine is often made in illegal, clandestine laboratories with commonly available, inexpensive chemicals, such as ephedrine and pseudoephedrine, found in medications, among other sources. The use of these medications as precursor chemicals for methamphetamine led to stricter regulations introduced in Canada in 2006, limiting access to them by requiring they be kept behind the counter of pharmacies.3 Illegal production can be dangerous due to the toxicity of the chemicals used and the high risk of explosions.
    [Show full text]
  • Vol. 1, Issue 1
    Methamphetamine Topical Brief Series: Vol. 1, Issue 1 What is countries involved in World War II provided amphetamine to soldiers Methamphetamine? for performance enhancement and the drug was used by “actors, artists, Methamphetamine is an addictive, athletes, politicians, and the public stimulant drug that affects the alike.”5 central nervous system. It is typically used in powder or pill form and can By the 1960s, media coverage be ingested orally, snorted, smoked, began drawing simplistic, negative or injected. Methamphetamine is connections between amphetamine known as meth, blue, ice, speed, and and crime, and government officials 1 crystal among other names. The term discussed public safety and drugs amphetamine has been used broadly as a social concern.6 Over-the- to refer to a group of chemicals that counter amphetamines were have similar, stimulating properties available until 1959,7 and by 1970 and methamphetamine is included in all amphetamines were added to 2 this group. According to the National the controlled substances list as Institute on Drug Abuse (NIDA), Schedule II drugs. Schedule II drugs “Methamphetamine differs from required a new prescription with amphetamine in that, at comparable each fill and strict documentation doses, much greater amounts of the by doctors and pharmacists.8 drug get into the brain, making it a The reduction in a legal supply 3 more potent stimulant.” of amphetamine led to increased black-market production and sale From the 1930s to the 1960s, of various types of amphetamine U.S. pharmaceutical
    [Show full text]
  • Structure-Cytotoxicity Relationship Profile of 13 Synthetic Cathinones In
    Neurotoxicology 75 (2019) 158–173 Contents lists available at ScienceDirect Neurotoxicology journal homepage: www.elsevier.com/locate/neuro Structure-cytotoxicity relationship profile of 13 synthetic cathinones in differentiated human SH-SY5Y neuronal cells T ⁎ Jorge Soaresa, , Vera Marisa Costaa, Helena Gasparb,c, Susana Santosd,e, Maria de Lourdes Bastosa, ⁎ Félix Carvalhoa, João Paulo Capelaa,f, a UCIBIO, REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Portugal b BioISI – Instituto de Biossistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Portugal c MARE - Centro de Ciências do Mar e do Ambiente, Escola Superior de Turismo e Tecnologia do Mar, Instituto Politécnico de Leiria, Portugal d Centro de Química e Bioquímica (CQB), Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, Portugal e Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Portugal f FP-ENAS (Unidade de Investigação UFP em Energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Portugal ARTICLE INFO ABSTRACT Keywords: Synthetic cathinones also known as β-keto amphetamines are a new group of recreational designer drugs. We Synthetic cathinones aimed to evaluate the cytotoxic potential of thirteen cathinones lacking the methylenedioxy ring and establish a Classical amphetamines putative structure-toxicity profile using differentiated SH-SY5Y cells, as well as to compare their toxicity to that Cytotoxicity of amphetamine (AMPH) and methamphetamine (METH). Cytotoxicity assays [mitochondrial 3-(4,5-dimethyl-2- SH-SY5Y cells thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) reduction and lysosomal neutral red (NR) uptake] per- Structure-toxicity relationship formed after a 24-h or a 48-h exposure revealed for all tested drugs a concentration-dependent toxicity.
    [Show full text]
  • Amphetamine/Dextroamphetamine IR Generic
    GEORGIA MEDICAID FEE-FOR-SERVICE STIMULANT AND RELATED AGENTS PA SUMMARY Preferred Non-Preferred Amphetamine/dextroamphetamine IR generic Adzenys ER (amphetamine ER oral suspension) Armodafinil generic Adzenys XR (amphetamine ER dispersible tab) Atomoxetine generic Amphetamine/dextroamphetamine ER (generic Concerta (methylphenidate ER/SA) Adderall XR) Dextroamphetamine IR tablets generic Aptensio XR (methylphenidate ER) Focalin (dexmethylphenidate) Clonidine ER generic Focalin XR (dexmethylphenidate ER) Cotempla XR (methylphenidate ER disintegrating Guanfacine ER generic tablet) Methylin oral solution (methylphenidate) Daytrana (methylphenidate TD patch) Methylphenidate CD/CR/ER generic by Lannett Desoxyn (methamphetamine) [NDCs 00527-####-##] and Kremers Urban [NDCs Dexmethylphenidate IR generic 62175-####-##] (generic Metadate CD) Dexmethylphenidate ER generic Methylphenidate IR generic Dextroamphetamine ER capsules generic Modafinil generic Dextroamphetamine oral solution generic Quillichew ER (methylphenidate ER chew tabs) Dyanavel XR (amphetamine ER oral suspension) Quillivant XR (methylphenidate ER oral suspension) Evekeo (amphetamine tablets) Vyvanse (lisdexamfetamine) Methamphetamine generic Zenzedi 5 mg, 10 mg IR tablets (dextroamphetamine) Methylphenidate IR chewable tablets generic Methylphenidate ER/SA (generic Concerta) Methylphenidate ER/LA/SR (generic Ritalin LA, Ritalin SR, Metadate ER) Methylphenidate ER/SA 72 mg generic Methylphenidate oral solution generic Mydayis (amphetamine/dextroamphetamine ER) Ritalin LA 10 mg
    [Show full text]
  • Effects of Mephedrone and Amphetamine Exposure During Adolescence on Spatial Memory in Adulthood: Behavioral and Neurochemical Analysis
    International Journal of Molecular Sciences Article Effects of Mephedrone and Amphetamine Exposure during Adolescence on Spatial Memory in Adulthood: Behavioral and Neurochemical Analysis Pawel Grochecki 1, Irena Smaga 2 , Malgorzata Lopatynska-Mazurek 1, Ewa Gibula-Tarlowska 1, Ewa Kedzierska 1, Joanna Listos 1, Sylwia Talarek 1, Marta Marszalek-Grabska 3 , Magdalena Hubalewska-Mazgaj 2, Agnieszka Korga-Plewko 4 , Jaroslaw Dudka 5, Zbigniew Marzec 6, Małgorzata Filip 2 and Jolanta H. Kotlinska 1,* 1 Department of Pharmacology and Pharmacodynamics, Medical University, 20-093 Lublin, Poland; [email protected] (P.G.); [email protected] (M.L.-M.); [email protected] (E.G.-T.); [email protected] (E.K.); [email protected] (J.L.); [email protected] (S.T.) 2 Department of Drug Addiction Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; [email protected] (I.S.); [email protected] (M.H.-M.); mal.fi[email protected] (M.F.) 3 Department of Experimental and Clinical Pharmacology, Medical University, 20-090 Lublin, Poland; [email protected] 4 Independent Medical Biology Unit, Medical University, 20-090 Lublin, Poland; [email protected] 5 Department of Toxicology, Medical University, 20-090 Lublin, Poland; [email protected] 6 Department of Food and Nutrition, Medical University, 20-093 Lublin, Poland; [email protected] Citation: Grochecki, P.; Smaga, I.; * Correspondence: [email protected] Lopatynska-Mazurek, M.; Gibula-Tarlowska, E.; Kedzierska, E.; Abstract: A synthetic cathinone, mephedrone is widely abused by adolescents and young adults. Listos, J.; Talarek, S.; Despite its widespread use, little is known regarding its long-term effects on cognitive function.
    [Show full text]