Symmetries in Physics WS 2018/19
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Math 411 Midterm 2, Thursday 11/17/11, 7PM-8:30PM. Instructions: Exam Time Is 90 Mins
Math 411 Midterm 2, Thursday 11/17/11, 7PM-8:30PM. Instructions: Exam time is 90 mins. There are 7 questions for a total of 75 points. Calculators, notes, and textbook are not allowed. Justify all your answers carefully. If you use a result proved in the textbook or class notes, state the result precisely. 1 Q1. (10 points) Let σ 2 S9 be the permutation 1 2 3 4 5 6 7 8 9 5 8 7 2 3 9 1 4 6 (a) (2 points) Write σ as a product of disjoint cycles. (b) (2 points) What is the order of σ? (c) (2 points) Write σ as a product of transpositions. (d) (4 points) Compute σ100. Q2. (8 points) (a) (3 points) Find an element of S5 of order 6 or prove that no such element exists. (b) (5 points) Find an element of S6 of order 7 or prove that no such element exists. Q3. (12 points) (a) (4 points) List all the elements of the alternating group A4. (b) (8 points) Find the left cosets of the subgroup H of A4 given by H = fe; (12)(34); (13)(24); (14)(23)g: Q4. (10 points) (a) (3 points) State Lagrange's theorem. (b) (7 points) Let p be a prime, p ≥ 3. Let Dp be the dihedral group of symmetries of a regular p-gon (a polygon with p sides of equal length). What are the possible orders of subgroups of Dp? Give an example in each case. 2 Q5. (13 points) (a) (3 points) State a theorem which describes all finitely generated abelian groups. -
Generating the Mathieu Groups and Associated Steiner Systems
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 112 (1993) 41-47 41 North-Holland Generating the Mathieu groups and associated Steiner systems Marston Conder Department of Mathematics and Statistics, University of Auckland, Private Bag 92019, Auckland, New Zealand Received 13 July 1989 Revised 3 May 1991 Abstract Conder, M., Generating the Mathieu groups and associated Steiner systems, Discrete Mathematics 112 (1993) 41-47. With the aid of two coset diagrams which are easy to remember, it is shown how pairs of generators may be obtained for each of the Mathieu groups M,,, MIz, Mz2, M,, and Mz4, and also how it is then possible to use these generators to construct blocks of the associated Steiner systems S(4,5,1 l), S(5,6,12), S(3,6,22), S(4,7,23) and S(5,8,24) respectively. 1. Introduction Suppose you land yourself in 24-dimensional space, and are faced with the problem of finding the best way to pack spheres in a box. As is well known, what you really need for this is the Leech Lattice, but alas: you forgot to bring along your Miracle Octad Generator. You need to construct the Leech Lattice from scratch. This may not be so easy! But all is not lost: if you can somehow remember how to define the Mathieu group Mz4, you might be able to produce the blocks of a Steiner system S(5,8,24), and the rest can follow. In this paper it is shown how two coset diagrams (which are easy to remember) can be used to obtain pairs of generators for all five of the Mathieu groups M,,, M12, M22> Mz3 and Mz4, and also how blocks may be constructed from these for each of the Steiner systems S(4,5,1 I), S(5,6,12), S(3,6,22), S(4,7,23) and S(5,8,24) respectively. -
Frieze Groups Tara Mccabe Denis Mortell
Frieze Groups Tara McCabe Denis Mortell Introduction Our chosen topic is frieze groups. A frieze group is an infinite discrete group of symmetries, i.e. the set of the geometric transformations that are composed of rigid motions and reflections that preserve the pattern. A frieze pattern is a two-dimensional design that repeats in one direction. A study on these groups was published in 1969 by Coxeter and Conway. Although they had been studied by Gauss prior to this, Gauss did not publish his studies. Instead, they were found in his private notes years after his death. Visual Perspective Numerical Perspective What second-row numbers validate a frieze pattern? (F) There are seven types of groups. Each of these are the A frieze pattern is an array of natural numbers, displayed in a symmetry group of a frieze pattern. They have been lattice such that the top and bottom lines are composed only of The second-row numbers that determine the pattern are not illustrated below using the Conway notation and 1’s and for each unit diamond, random. Instead, these numbers have a peculiar property. corresponding diagrams: the rule (bc) − (ad) = 1 holds. Theorem I Fifth being a translation I The first, and the one There is a bijection between the valid which must occur in with vertical reflection, Here is an example of a frieze pattern: sequences for frieze patterns and all others is glide reflection and 180◦ rotation, or a the number of triangles adjacent to the Translation, or a vertices of a triangulated polygon. [2] ‘hop’. -
On Some Generation Methods of Finite Simple Groups
Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography On Some Generation Methods of Finite Simple Groups Ayoub B. M. Basheer Department of Mathematical Sciences, North-West University (Mafikeng), P Bag X2046, Mmabatho 2735, South Africa Groups St Andrews 2017 in Birmingham, School of Mathematics, University of Birmingham, United Kingdom 11th of August 2017 Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Abstract In this talk we consider some methods of generating finite simple groups with the focus on ranks of classes, (p; q; r)-generation and spread (exact) of finite simple groups. We show some examples of results that were established by the author and his supervisor, Professor J. Moori on generations of some finite simple groups. Ayoub Basheer, North-West University, South Africa Groups St Andrews 2017 Talk in Birmingham Introduction Preliminaries Special Kind of Generation of Finite Simple Groups The Bibliography Introduction Generation of finite groups by suitable subsets is of great interest and has many applications to groups and their representations. For example, Di Martino and et al. [39] established a useful connection between generation of groups by conjugate elements and the existence of elements representable by almost cyclic matrices. Their motivation was to study irreducible projective representations of the sporadic simple groups. In view of applications, it is often important to exhibit generating pairs of some special kind, such as generators carrying a geometric meaning, generators of some prescribed order, generators that offer an economical presentation of the group. -
Janko's Sporadic Simple Groups
Janko’s Sporadic Simple Groups: a bit of history Algebra, Geometry and Computation CARMA, Workshop on Mathematics and Computation Terry Gagen and Don Taylor The University of Sydney 20 June 2015 Fifty years ago: the discovery In January 1965, a surprising announcement was communicated to the international mathematical community. Zvonimir Janko, working as a Research Fellow at the Institute of Advanced Study within the Australian National University had constructed a new sporadic simple group. Before 1965 only five sporadic simple groups were known. They had been discovered almost exactly one hundred years prior (1861 and 1873) by Émile Mathieu but the proof of their simplicity was only obtained in 1900 by G. A. Miller. Finite simple groups: earliest examples É The cyclic groups Zp of prime order and the alternating groups Alt(n) of even permutations of n 5 items were the earliest simple groups to be studied (Gauss,≥ Euler, Abel, etc.) É Evariste Galois knew about PSL(2,p) and wrote about them in his letter to Chevalier in 1832 on the night before the duel. É Camille Jordan (Traité des substitutions et des équations algébriques,1870) wrote about linear groups defined over finite fields of prime order and determined their composition factors. The ‘groupes abéliens’ of Jordan are now called symplectic groups and his ‘groupes hypoabéliens’ are orthogonal groups in characteristic 2. É Émile Mathieu introduced the five groups M11, M12, M22, M23 and M24 in 1861 and 1873. The classical groups, G2 and E6 É In his PhD thesis Leonard Eugene Dickson extended Jordan’s work to linear groups over all finite fields and included the unitary groups. -
The Wreath Product Principle for Ordered Semigroups Jean-Eric Pin, Pascal Weil
The wreath product principle for ordered semigroups Jean-Eric Pin, Pascal Weil To cite this version: Jean-Eric Pin, Pascal Weil. The wreath product principle for ordered semigroups. Communications in Algebra, Taylor & Francis, 2002, 30, pp.5677-5713. hal-00112618 HAL Id: hal-00112618 https://hal.archives-ouvertes.fr/hal-00112618 Submitted on 9 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. November 12, 2001 The wreath product principle for ordered semigroups Jean-Eric Pin∗ and Pascal Weily [email protected], [email protected] Abstract Straubing's wreath product principle provides a description of the languages recognized by the wreath product of two monoids. A similar principle for ordered semigroups is given in this paper. Applications to language theory extend standard results of the theory of varieties to positive varieties. They include a characterization of positive locally testable languages and syntactic descriptions of the operations L ! La and L ! LaA∗. Next we turn to concatenation hierarchies. It was shown by Straubing that the n-th level Bn of the dot-depth hierarchy is the variety Vn ∗LI, where LI is the variety of locally trivial semigroups and Vn is the n-th level of the Straubing-Th´erien hierarchy. -
Proper Actions of Wreath Products and Generalizations
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 364, Number 6, June 2012, Pages 3159–3184 S 0002-9947(2012)05475-4 Article electronically published on February 9, 2012 PROPER ACTIONS OF WREATH PRODUCTS AND GENERALIZATIONS YVES CORNULIER, YVES STALDER, AND ALAIN VALETTE Abstract. We study stability properties of the Haagerup Property and of coarse embeddability in a Hilbert space, under certain semidirect products. In particular, we prove that they are stable under taking standard wreath products. Our construction also provides a characterization of subsets with relative Property T in a standard wreath product. 1. Introduction A countable group is Haagerup if it admits a metrically proper isometric action on a Hilbert space. Groups with the Haagerup Property are also known, after Gromov, as a-T-menable groups as they generalize amenable groups. However, they include a wide variety of non-amenable groups: for example, free groups are a-T-menable; more generally, so are groups having a proper isometric action either on a CAT(0) cubical complex, e.g. any Coxeter group, or on a real or complex hyperbolic symmetric space, or on a product of several such spaces; this includes the Baumslag-Solitar group BS(p, q), which acts properly by isometries on the product of a tree and a real hyperbolic plane. A nice feature about Haagerup groups is that they satisfy the strongest form of the Baum-Connes conjecture, namely the conjecture with coefficients [HK]. The Haagerup Property appears as an obstruction to Kazhdan’s Property T and its weakenings such as the relative Property T. Namely, a countable group G has Kazhdan’s Property T if every isometric action on a Hilbert space has bounded orbits; more generally, if G is a countable group and X a subset, the pair (G, X) has the relative Property T if for every isometric action of G on a Hilbert space, the “X-orbit” of 0, {g · 0|g ∈ X} is bounded. -
Deformations of Functions on Surfaces by Isotopic to the Identity Diffeomorphisms
DEFORMATIONS OF FUNCTIONS ON SURFACES BY ISOTOPIC TO THE IDENTITY DIFFEOMORPHISMS SERGIY MAKSYMENKO Abstract. Let M be a smooth compact connected surface, P be either the real line R or the circle S1, f : M ! P be a smooth map, Γ(f) be the Kronrod-Reeb graph of f, and O(f) be the orbit of f with respect to the right action of the group D(M) of diffeomorphisms of M. Assume that at each of its critical point the map f is equivalent to a homogeneous polynomial R2 ! R without multiple factors. In a series of papers the author proved that πnO(f) = πnM for n ≥ 3, π2O(f) = 0, and that π1O(f) contains a free abelian subgroup of finite index, however the information about π1O(f) remains incomplete. The present paper is devoted to study of the group G(f) of automorphisms of Γ(f) induced by the isotopic to the identity diffeomorphisms of M. It is shown that if M is orientable and distinct from sphere and torus, then G(f) can be obtained from some finite cyclic groups by operations of finite direct products and wreath products from the top. As an application we obtain that π1O(f) is solvable. 1. Introduction Study of groups of automorphisms of discrete structures has a long history. One of the first general results was obtained by A. Cayley (1854) and claims that every finite group G of order n is a subgroup of the permutation group of a set consisting of n elements, see also E. Nummela [35] for extension this fact to topological groups and discussions. -
14.2 Covers of Symmetric and Alternating Groups
Remark 206 In terms of Galois cohomology, there an exact sequence of alge- braic groups (over an algebrically closed field) 1 → GL1 → ΓV → OV → 1 We do not necessarily get an exact sequence when taking values in some subfield. If 1 → A → B → C → 1 is exact, 1 → A(K) → B(K) → C(K) is exact, but the map on the right need not be surjective. Instead what we get is 1 → H0(Gal(K¯ /K), A) → H0(Gal(K¯ /K), B) → H0(Gal(K¯ /K), C) → → H1(Gal(K¯ /K), A) → ··· 1 1 It turns out that H (Gal(K¯ /K), GL1) = 1. However, H (Gal(K¯ /K), ±1) = K×/(K×)2. So from 1 → GL1 → ΓV → OV → 1 we get × 1 1 → K → ΓV (K) → OV (K) → 1 = H (Gal(K¯ /K), GL1) However, taking 1 → µ2 → SpinV → SOV → 1 we get N × × 2 1 ¯ 1 → ±1 → SpinV (K) → SOV (K) −→ K /(K ) = H (K/K, µ2) so the non-surjectivity of N is some kind of higher Galois cohomology. Warning 207 SpinV → SOV is onto as a map of ALGEBRAIC GROUPS, but SpinV (K) → SOV (K) need NOT be onto. Example 208 Take O3(R) =∼ SO3(R)×{±1} as 3 is odd (in general O2n+1(R) =∼ SO2n+1(R) × {±1}). So we have a sequence 1 → ±1 → Spin3(R) → SO3(R) → 1. 0 × Notice that Spin3(R) ⊆ C3 (R) =∼ H, so Spin3(R) ⊆ H , and in fact we saw that it is S3. 14.2 Covers of symmetric and alternating groups The symmetric group on n letter can be embedded in the obvious way in On(R) as permutations of coordinates. -
Fourier Bases for Solving Permutation Puzzles
Fourier Bases for Solving Permutation Puzzles Horace Pan Risi Kondor Department of Computer Science Department of Computer Science, Statistics University of Chicago University of Chicago [email protected] Flatiron Institute [email protected] Abstract Puzzle use pattern databases (Korf and Taylor, 1996; Korf, 1997; Kociemba, n.d.; Felner et al., 2004), which effectively store the distance of various partially solved Traditionally, permutation puzzles such as the puzzles to the solution state. Korf (1997) famously Rubik’s Cube were often solved by heuristic solved instances of the Rubik’s Cube using a pattern search like A∗-search and value based rein- database of all possible corner cube configurations and forcement learning methods. Both heuristic various edge configurations and has since improved search and Q-learning approaches to solving upon the result with an improved hybrid heuristic these puzzles can be reduced to learning a search (Bu and Korf, 2019). heuristic/value function to decide what puz- zle move to make at each step. We propose Machine learning based methods have become popular learning a value function using the irreducible alternatives to classical planning and search approaches representations basis (which we will also call for solving these puzzles. Brunetto and Trunda (2017) the Fourier basis) of the puzzle’s underlying treat the problem of solving the Rubik’s cube as a group. Classical Fourier analysis on real val- supervised learning task by training a feed forward neu- ued functions tells us we can approximate ral network on 10 million cube samples, whose ground smooth functions with low frequency basis truth distances to the goal state were computed by functions. -
Entropy and Isoperimetry for Linear and Non-Linear Group Actions
Entropy and Isoperimetry for Linear and non-Linear Group Actions. Misha Gromov June 11, 2008 Contents 1 Concepts and Notation. 3 incr max 1.1 Combinatorial Isoperimetric Profiles I◦, I◦ and I◦ . 3 1.2 I◦ for Subgroups, for Factor Groups and for Measures on Groups. 4 max 1.3 Boundaries |∂| , ∂µ and the Associated Isoperimetric Profiles. 5 1.4 G·m-Boundary and Coulhon-Saloff-Coste Inequality . 6 1.5 Linear Algebraic Isoperimetric Profiles I∗ of Groups and Algebras. 7 max 1.6 The boundaries |∂| , |∂|µ and |∂|G∗m ............... 9 1.7 I∗ For Decaying Functions. 10 1.8 Non-Amenability of Groups and I∗-Linearity Theorems by Elek and Bartholdi. 11 1.9 The Growth Functions G◦ and the Følner Functions F◦ of Groups and F∗ of Algebras. 12 1.10 Multivariable Følner Functions, P◦-functions and the Loomis- Whitney Inequality. 14 1.11 Filtered Boundary F∂ and P∗-Functions. 15 1.12 Summary of Results. 17 2 Non-Amenability of Groups and Strengthened non-Amenability of Group Algebras. 19 2.1 l2-Non-Amenability of the Complex Group Algebras of non- Amenable groups. 19 2.2 Geometric Proof that Applies to lp(Γ). 20 2.3 F- Non-Amenability of the Group Algebras of Groups with Acyclic Families of Subgroups. 21 3 Isoperimetry in the Group Algebras of Ordered Groups. 24 3.1 Triangular Systems and Bases. 24 3.2 Domination by Ordering and Derivation of the Linear Algebraic Isoperimetric Inequality from the Combinatorial One. 24 3.3 Examples of Orderable Groups and Corollaries to The Equiva- lence ◦ ⇔ ∗.............................. -
Sorting by Symmetry
Sorting by Symmetry Patterns along a Line Bob Burn Sorting patterns by Symmetry: Patterns along a Line 1 Sorting patterns by Symmetry: Patterns along a Line Sorting by Symmetry Patterns along a Line 1 Parallel mirrors ................................................................................................... 4 2 Translations ........................................................................................................ 7 3 Friezes ................................................................................................................ 9 4 Friezes with vertical reflections ....................................................................... 11 5 Friezes with half-turns ..................................................................................... 13 6 Friezes with a horizontal reflection .................................................................. 16 7 Glide-reflection ................................................................................................ 18 8 Fixed lines ........................................................................................................ 20 9 Friezes with half-turn centres not on reflection axes ....................................... 22 10 Friezes with all possible symmetries ............................................................... 26 11 Generators ........................................................................................................ 28 12 The family of friezes .......................................................................................