High Levels of Indium Exposure Relate to Progressive

Total Page:16

File Type:pdf, Size:1020Kb

High Levels of Indium Exposure Relate to Progressive Occupational lung disease Thorax: first published as 10.1136/thoraxjnl-2014-206380 on 18 August 2015. Downloaded from ORIGINAL ARTICLE High levels of indium exposure relate to progressive emphysematous changes: a 9-year longitudinal Editor’s choice Scan to access more free content surveillance of indium workers Atsuko Amata,1,2 Tatsuya Chonan,1 Kazuyuki Omae,3 Hiroshi Nodera,1 Jiro Terada,2 Koichiro Tatsumi2 ▸ Additional material is ABSTRACT published online only. To view Background During the last decade it has been Key messages please visit the journal online fi (http://dx.doi.org/10.1136/ clari ed that the inhalation of indium compounds can thoraxjnl-2014-206380). evoke alveolar proteinosis, cholesterol granuloma, pulmonary fibrosis and emphysema. In this study, we 1Department of Medicine, What is the key question? Nikko Memorial Hospital, aimed to elucidate the characteristics and time course of ▸ Does the progress of interstitial and/or Hitachi, Japan pulmonary disorders among indium workers using emphysematous lesion in indium workers 2 Department of Respirology, comprehensive pulmonary examinations at an indium- change by alleviating exposure to indium? Graduate School of Medicine, processing factory. Chiba University, Chiba, Japan 3 Methods Data for 84 male workers who underwent What is the bottom line? Department of Preventive ▸ Because permanent emphysematous changes Medicine and Public Health, the examinations for nine consecutive years from 2002 School of Medicine, Keio to 2010 were analysed regarding their symptoms, serum may be evoked under heavy exposure to indium University, Tokyo, Japan indium concentration (sIn), serum markers of interstitial compounds, it is necessary to reduce exposure pneumonia, pulmonary function test parameters and to indium-containing particles and detect lung Correspondence to fi disorders caused by indium as early as possible. Dr Jiro Terada, Department of high-resolution CT (HRCT) ndings of the lungs. Respirology, Graduate School Results In association with improvements in the work Why read on? of Medicine, Chiba University, environment and work practice, the sIn levels decreased ▸ This comprehensive study, for the first time, 1-8-1 Inohana Chuoku Chiba with significant reductions in the KL-6 and surfactant city, Chiba 2608670, Japan; fi examined the same workers in an indium plant [email protected] protein D (SP-D) levels. Regarding the HRCT ndings, for nine consecutive years, showing different the interstitial lesions regressed partially, whereas longitudinal patterns of interstitial and Received 1 October 2014 emphysematous lesions increased progressively in the Revised 29 June 2015 emphysematous lesions in patients with indium workers with high sIn values. FEV1/FVC decreased with lung after stopping or decreasing the exposure http://thorax.bmj.com/ Accepted 22 July 2015 the years and the rate of decrease was significantly Published Online First to the inhaled indium compounds. 18 August 2015 greater in those with high sIn. The biological half-life of sIn was estimated to be 8.09 years. Conclusions The present findings suggest that the sIn, SP-D, KL-6 levels and radiological interstitial changes observed in a significant number of indium- can be reduced in indium workers by alleviating processing workers.3 Furthermore, workers with exposure to indium, whereas emphysematous lesions can serum indium (sIn) concentrations in the highest progress among those with a history of heavy exposure. fi quartile had a history of signi cantly longer on September 29, 2021 by guest. Protected copyright. periods of exposure, greater HRCT changes, lower diffusing capacity of the lung for carbon monoxide (DLCO) and higher KL-6 levels compared with INTRODUCTION those with sIn concentrations in the lowest quartile. Indium is a rare metal that is primarily used in the According to these findings, we proposed that form of indium-tin oxide (ITO), a sintered material inhaled indium compound may be a potential new consisting of 90% indium oxide (In2O3) and 10% cause of occupational lung disease (‘indium 13 tin oxide (SnO2), to produce flat panel displays, lung’). This hypothesis was subsequently con- such as liquid-crystal displays. Recently, indium use firmed in different populations of indium workers.4 has sharply increased; the world demand for Combining the data obtained from 12 factories, indium in 2007 was approximately four times including ours, and one research laboratory, higher than in 1999.1 Nakano et al5 reported a strong dose–response In 2001, a 29-year-old man who was an ITO relationship between the sIn level and effects on surface grinder died of interstitial pneumonia with the lungs. bilateral pneumothorax,2 constituting the first As of May 2013, nine cases of interstitial lung – reported case of indium-related lung disease. In disease from Japan6 11 and three cases of alveolar 2002, we conducted a comprehensive study at the proteinosis from the USA12 and China13 had been To cite: Amata A, ITO plant where the above patient was employed reported. Exposure to indium compounds has been Chonan T, Omae K, et al. and reported that interstitial lung disorders charac- suggested to cause a novel lung disease consisting Thorax 2015;70: terised by abnormalities on high-resolution CT of alveolar proteinosis, cholesterol granuloma, pul- – 1040 1046. (HRCT) and the elevation of serum KL-6 were monary fibrosis and emphysema, accompanied by 1040 Amata A, et al. Thorax 2015;70:1040–1046. doi:10.1136/thoraxjnl-2014-206380 Occupational lung disease Thorax: first published as 10.1136/thoraxjnl-2014-206380 on 18 August 2015. Downloaded from pneumothorax in severe cases.14 The work environment and levels, or high sIn concentrations (2002–2006: no criteria, practice at ITO plants, where most cases have been reported, 2007–2008: >20 ng/mL, 2009–: >10 ng/mL) were transferred have considerably improved, and workplace changes have been to non-indium sections of the workplace. Thirty-seven of the 84 implemented among heavily exposed workers over the last workers had stopped working at ITO before the last year of the decade. In this study, we conducted a longitudinal surveillance present surveillance period (table 1, ‘former workers in 2010’). for nine consecutive years starting in 2002 of 84 male indium In a previous report,3 we confirmed that all variables, including workers at an indium plant, where a cross-sectional study of functional, radiological and biochemical parameters, were quali- 108 indium-processing workers was previously conducted,3 to tatively similar between the formerly and currently employed elucidate the clinical course of indium lung and the effects of indium-exposed workers with similar exposure periods; there- reduced exposure. fore, we combined the data for the former and current workers to analyse the time course of the disease. All subjects provided MATERIALS AND METHODS their informed consent prior to initiation of the analysis in this Study design and subjects study. In both the figures and tables, personal information has The present study was conducted as part of the health mainten- been carefully anonymised. ance programme for the employees and approved by the Because the severity of lung disorder caused by indium inhal- medical professional committee that oversees the health main- ation is correlated with the sIn concentration,35we classified all tenance programme of the plant. workers into four groups according to their sIn concentrations A comprehensive respiratory examination programme was measured in the first year: Group 1, <3.7; Group 2, 3.7–9.9; conducted annually from 2002 to 2010 for workers who were Group 3, 10.0–22.4; Group 4, >22.5 ng/mL. No differences formerly and/or currently engaged in indium processing. The were observed between the four groups in terms of age, preva- study design has been reported elsewhere and consisted of lence of smokers or smoking indices. We analysed chronological examinations of signs and symptoms, pulmonary function tests, changes in the variables among all participants and each of the HRCT of the lungs and measurements of the sIn concentration four groups. and serum markers of interstitial lung disease.3 Five hundred and fifteen individuals received an examination at least once, Improvements in the work environment and practice among whom 108 male workers underwent examinations in The ITO processing work environment has steadily improved in 2002 (reported as a cross-sectional study3). After excluding the addition to the introduction of various protective devices for data for 24 subjects who failed to undergo an examination for workers. As a result, the indium concentration in the air, as one or more years, we analysed the data of 84 male workers measured in accordance with the Working Environment (figure 1). The exposure period for these workers was 9.7 Measurement Law established by the Japan Industrial Safety and ±4.8 years (table 1). During the study period, workers with sig- Health Association ( JISHA), has gradually decreased (figure 2), nificant interstitial change on chest X-rays or HRCT, emphyse- and it can be assumed that the new indium burden has matous changes accompanied by elevated KL-6 and/or SP-D decreased for the study population as a whole. http://thorax.bmj.com/ on September 29, 2021 by guest. Protected copyright. Figure 1 Study flowchart. Amata A, et al. Thorax 2015;70:1040–1046. doi:10.1136/thoraxjnl-2014-206380 1041 Occupational lung disease Thorax: first published as 10.1136/thoraxjnl-2014-206380 on 18 August 2015. Downloaded from Table
Recommended publications
  • Effects of Indium Exposure on Respiratory Symptoms: a Retrospective Cohort Study in Japanese Workers Using Health Checkup Data
    Effects of indium exposure on respiratory symptoms: a retrospective cohort study in Japanese workers using health checkup data Toshiharu Mitsuhashi Center for Innovative Clinical Medicine, Okayama University Hospital, Okayama, Japan ABSTRACT Background. Indium compounds are known health hazards for lung cancer and interstitial pneumonia. Furthermore, they are related to emphysema, alveolar pro- teinosis, and cholesterol granuloma. In Japan, laws were revised in 2013 to tighten regulations on indium exposure in workplaces. However, its impact on the health of workers who handle indium has not been evaluated. This study aimed to investigate whether subjective respiratory symptoms in these workers have reduced after the 2013 amendment in the regulations. Methods. The subjects were workers from certain areas of Japan who had undergone health checkups between January 1, 2013, and June 30, 2015. Indium-handling and non-handling workers were categorized into the exposed and less-exposed groups, respectively. Based on the findings of health checkups during this period, the hazard ratio of subjective respiratory symptoms (cough, sputum production, shortness of breath, and palpitation) and its 95% confidence intervals (CIs) were calculated with the less-exposed group as the reference. The Prentice-Williams-Peterson model was used for calculation, and a model that adjusted for coarse analysis and potential confounding factors was adopted. Results. Overall, 2,561 workers (from 22 companies) who underwent 6,033 health checkups were included. The total person-years were 2,562.8 years, and 162 outcome Submitted 9 October 2019 events occurred. The hazard ratios of the exposed group were 1.65 (95% CI [1.14–2.39]: Accepted 16 December 2019 p D 0:008) and 1.61 (95% CI [1.04–2.50]: p D 0:032) in the crude and adjusted models, Published 15 January 2020 respectively.
    [Show full text]
  • Causal Relationship Between Indium Compound Inhalation and Effects on the Lungs
    Journal of J Occup Health 2009; 51: 513–521 Occupational Health Causal Relationship between Indium Compound Inhalation and Effects on the Lungs Makiko NAKANO1, Kazuyuki OMAE1, Akiyo TANAKA2, Miyuki HIRATA2, Takehiro MICHIKAWA1, Yuriko KIKUCHI1, Noriyuki YOSHIOKA1, Yuji NISHIWAKI1 and Tatsuya CHONAN3 1Department of Preventive Medicine and Public Health, School of Medicine, Keio University, 2Department of Hygiene, Graduate School of Medical Sciences, Kyushu University and 3Department of Medicine, Nikko Memorial Hospital, Japan Abstract: Causal Relationship between Indium SP-D and SP-A, respectively. Conclusion: Dose- Compound Inhalation and Effects on the Lungs: dependent lung effects due to indium exposure were Makiko NAKANO, et al. Department of Preventive shown, and a decrease of indium exposure reduced Medicine and Public Health, School of Medicine, the lung effects. An In-S value of 3 ng/ml may be a Keio University—Background: Recent case reports cut-off value which could be used to prevent early and epidemiological studies suggest that inhalation of effects on the lungs. indium dust induces lung damage. Objectives: To (J Occup Health 2009; 51: 513–521) elucidate the dose-dependent effects of indium on the lungs and to prove a causal relationship more clearly. Key words: Cross-sectional study, Indium, Interstitial Methods: A baseline observation was conducted on pneumonitis, KL-6, HRCT, SP-D 465 workers currently exposed to indium, 127 workers formerly exposed to indium and 169 workers without Due to the rapid expansion of flat panel displays and indium exposure in 12 factories and 1 research solar cells, indium demand has increased every year, and laboratory from 2003 to 2006.
    [Show full text]
  • Journal of Occupational Health
    Advance Publication Journal of Occupational Health Accepted for Publication Aug 26, 2009 J-STAGE Advance Published Date: Oct 16, 2009 1 Title: Causal relationship between indium compound inhalation and effects on the lungs 2 Authors: Makiko Nakano1, Kazuyuki Omae1, Akiyo Tanaka2, Miyuki Hirata2, Takehiro 3 Michikawa1, Yuriko Kikuchi1, Noriyuki Yoshioka1, Yuji Nishiwaki1, and Tatsuya Chonan3 4 1) Department of Preventive Medicine and Public Health, School of Medicine, Keio 5 University 6 2) Department of Hygiene, Graduate School of Medical Sciences, Kyushu University. 7 3) Department of Medicine, Nikko Memorial Hospital 8 Correspondence to: Makiko Nakano, MD 9 e-mail: [email protected] 10 phone: +81-3-5363-3758 11 fax: +81-3-3359-3686 12 13 Type of contribution: Originals 14 Running title: Indium-induced respiratory effects 15 The number of words in abstract and the text: (271 words, 3853 words) 16 The number of tables and figures: 5 tables and 1 figure 17 18 Keywords: indium, interstitial pneumonitis, HRCT, KL-6, SP-D, cross-sectional study 19 1 1 Abstract: 2 Background: Recent case reports and epidemiological studies suggest that inhalation of 3 indium dust induces lung damage 4 Objectives: To elucidate the dose-dependent effects of indium on the lungs and to prove a 5 causal relationship more clearly. 6 Methods: A baseline observation was conducted on 465 workers currently exposed to 7 indium, 127 workers formerly exposed to indium and 169 workers without indium exposure 8 in 12 factories and 1 research laboratory from 2003 to 2006. Indium in serum (In-S) was 9 determined as an exposure parameter, and its effects on the lungs were examined.
    [Show full text]
  • Ilds Caused by Metals, Organic Dust Toxic Syndrome, Et Al.)
    Fibrosing interstitial lung diseases of idiopathic and exogenous origin. Prague – 20.06.2014 Rare exogenous ILDs (ILDs caused by metals, organic dust toxic syndrome, et al.) B. Nemery, MD, PhD Department of Public Health and Primary Care and Pneumology KU Leuven Belgium [email protected] Fibrosing interstitial lung diseases of idiopathic and exogenous origin. Prague – 20.06.2014 Rare exogenous ILDs (ILDs caused by metals, organic dust toxic syndrome, et al.) B. Nemery, MD, PhD Department of Public Health and Primary Care and Pneumology KU Leuven Belgium [email protected] Organic dust toxic syndrome (ODTS) • Acute febrile reaction following single heavy exposure to (mould contaminated) organic dust • “silo unloader’s syndrome” • “pulmonary mycotoxicosis” • grain fever • (cotton) mill fever • intensive pig farming = non infectious, non allergic “toxic alveolitis” ≠ acute Hypersensitivity Pneumonitis ≠ acute Extrinsic Allergic Alveolitis, i.e. ≠ ILD ! ODTS • 4 to 8 h after exposure: • flu-like symptoms • fever • malaise • muscle & joint aches • (moderate) respiratory symptoms • massive influx of polymorphonuclear cells in BAL • peripheral leukocytosis ODTS • spontaneous resolution in 24 to 48 h • cause: bacterial endotoxin ? • tolerance • does not occur in chronically exposed • occurs after exposure-free period • no sequelae (?) • frequent, but unreported, overlooked or misdiagnosed ODTS • all jobs or circumstances with potential heavy exposure to organic dusts or bioaerosols • agriculture & horticulture • transportation,
    [Show full text]
  • Diagnosis of Occupational Asthma
    Fibrosing interstitial lung diseases of idiopathic and exogenous origin. Prague – 20.06.2014 Rare exogenous ILDs (ILDs caused by metals, organic dust toxic syndrome, et al.) B. Nemery, MD, PhD Department of Public Health and Primary Care and Pneumology KU Leuven Belgium [email protected] Fibrosing interstitial lung diseases of idiopathic and exogenous origin. Prague – 20.06.2014 Rare exogenous ILDs (ILDs caused by metals, organic dust toxic syndrome, et al.) B. Nemery, MD, PhD Department of Public Health and Primary Care and Pneumology KU Leuven Belgium [email protected] Organic dust toxic syndrome (ODTS) • Acute febrile reaction following single heavy exposure to (mould contaminated) organic dust • “silo unloader’s syndrome” • “pulmonary mycotoxicosis” • grain fever • (cotton) mill fever • intensive pig farming = non infectious, non allergic “toxic alveolitis” ≠ acute Hypersensitivity Pneumonitis ≠ acute Extrinsic Allergic Alveolitis, i.e. ≠ ILD ! ODTS • 4 to 8 h after exposure: • flu-like symptoms • fever • malaise • muscle & joint aches • (moderate) respiratory symptoms • massive influx of polymorphonuclear cells in BAL • peripheral leukocytosis ODTS • spontaneous resolution in 24 to 48 h • cause: bacterial endotoxin ? • tolerance • does not occur in chronically exposed • occurs after exposure-free period • no sequelae (?) • frequent, but unreported, overlooked or misdiagnosed ODTS • all jobs or circumstances with potential heavy exposure to organic dusts or bioaerosols • agriculture & horticulture • transportation,
    [Show full text]
  • Subclinical Interstitial Lung Damage in Workers Exposed to Indium
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Springer - Publisher Connector Choi et al. Annals of Occupational and Environmental Medicine 2013, 25:24 http://www.aoemj.com/content/25/1/24 RESEARCH ARTICLE Open Access Subclinical interstitial lung damage in workers exposed to indium compounds Sungyeul Choi1, Yong-Lim Won1, Dohyung Kim1, Gwang-Yong Yi1, Jai-Soung Park2 and Eun-A Kim1* Abstract Objectives: The present study was designed to determine whether there is a relationship between indium compound exposure and interstitial lung damage in workers employed at indium tin oxide manufacturing and reclaiming factories in Korea. Methods: In 2012, we conducted a study for the prevention of indium induced lung damage in Korea and identified 78 workers who had serum indium or Krebs von den Lungen-6 (KL-6) levels that were higher than the reference values set in Japan (3 μg/L and 500 U/mL, respectively). Thirty-four of the 78 workers underwent chest high-resolution computed tomography (HRCT), and their data were used for statistical analysis. Results: Geometric means (geometric standard deviations) for serum indium, KL-6, and surfactant protein D (SP-D) were 10.9 (6.65) μg/L, 859.0 (1.85) U/mL, and 179.27 (1.81) ng/mL, respectively. HRCT showed intralobular interstitial thickening in 9 workers. A dose–response trend was statistically significant for blood KL-6 levels. All workers who had indium levels ≥50 μg/L had KL-6 levels that exceeded the reference values. However, dose–response trends for blood SP-D levels, KL-6 levels, SP-D levels, and interstitial changes on the HRCT scans were not significantly different.
    [Show full text]
  • Pulmonary Alveolar Proteinosis
    PulmonaryMatthias Griese, MD Alveolar Proteinosis: A abstract Comprehensive’ Clinical Perspective Pulmonary alveolar proteinosis is a broad group of rare diseases that are defined by the occupation of a lung s gas-exchange area by pulmonary surfactants that are not properly removed. The clinical and radiologic phenotypes among them are very similar. The age of manifestation plays a central role in the differential diagnosis of the almost 100 conditions and provides an efficient path to the correct diagnosis. The diagnostic approach is tailored to identify genetic or autoimmune causes, exposure to environmental agents, and associations with numerous other diseases. Whole-lung lavages are the cornerstone of treatment, and children in particular depend on the expertise to perform such therapeutic lavages. Other treatment options and long-term survival are related to the condition causing the proteinosis. 3 Under pathological conditions, the inhabitants4 . The first description of alveolar airspaces can be filled with PAP as well as the vast majority of various materials, which frequently data on treatment and prognosis are replace the air necessary for gas related to autoimmune PAP. Most Department of Pediatric Pneumology, Dr von Hauner exchange and give rise to alveolar pediatric cases are nonautoimmune Children’s Hospital, Ludwig-Maximilians-University of Munich and the German Center for Lung Research, Munich, filling syndromes (‍Table 1). These PAP and distribute almost evenly Germany conditions have similar clinical and among many different entities. In radiologic presentations. This makes childhood, there is a bimodal age DOI: https:// doi. org/ 10. 1542/ peds. 2017- 0610 their differential diagnosis difficult. distribution; some conditions manifest Accepted for publication Apr 11, 2017 in the neonatal period (‍Fig 2, upper Address correspondence to Matthias Griese, MD, Pulmonary alveolar proteinosis (‍PAP) portion), whereas others manifest Dr von Hauner Children’s Hospital, University of is defined by the accumulation of during infancy and childhood.
    [Show full text]
  • Work-Related Interstitial Lung Disease: Beyond
    WWOORKRK-R-RELELAATETEDD ININTTEERRSSTTIITTIAIALL L LUUNNGG DIDISSEEAASSE:E: B BEEYYOONNDD DIDISSCLCLOOSSUURERESS PPNENEUUMMOOCCOONINIOOSSISIS DDRR C CAARRLL R REEYYNNOOLLDDSS I HAHAVEVE N NOOTHTHIINNGG T TOO SSUUPPPOPORRTTININGG DIDISSCCLLOOSSEE MAMATTERERIAIALLSS talk available online http://carlreynolds.net/work-related- ild-talk-sanfran-march-2017/ BBEYEYOONNDD additional material available PNPNEEUUMMOOCCOONINIOOSSISIS?? https://github.com/drcjar/work-related- ild-talk-sanfran-march-2017 Kellingley colliery workers HSE Pneumoconiosis figures WWHHAATT I ISS WWOORKRK-R-RELELAATTEEDD IILLD?D? Prevalence of progressive massive fibrosis in underground coal miners with 25 years of more exposure in three states of the USA (1) WWOORKRK-R-RELELAATETEDD DEDEFFIINNITITIOIONNSS DODOEESSNN'T'T M MEEANAN OOCCCCUUPPAATITIOONNALAL occupational diseases are primarily caused by exposure DIFFUSEDIFFUSE to risk factors arising from work work-related diseases have multiple causes; factors in PARENCHYMAL LUNGLUNGPARENCHYMAL workplace may play a role (WHO 2017) DISEASE IS CONFUSING ILD or DPLD heterogeneous group of disorders characterised by inflammation and fibrosis of the interstitium interstitium refers to tissue between the pulmonary alveoli and the bloodstream in practice disease can also involve airway An ILD Taxonomy (7) LLUNUNGG PPHHYYSSIIOOLLOOGGYY AANNDD IINNTTERERSSTITITITIAALL EXEXPPOOSSUURRESES CT appearance ILD (5) Diffusion of gases across blood-gas barrier is passive and governed by Fick's Law. Weibel model Vgas (diffusing) is proportional to Area/Thickness * D(diffusion constant) * (P1 - P2) D = solubility / root of the molecular weight of the gas Blood gas barrier 2μm across (for ref sheet of paper is 50μm, 1/20th of a mm or 0.05mm). 25x thinner than that. 300 million alveolii. TV 500ml, dead space 150ml, RR 15/min, Each alveoli is 0.0042mm^3 (a grain of sand is 0.06mm^3, 350ml*15 = approx 5L/min -> 7200L/day so an alveoli is about 14 times smaller).
    [Show full text]
  • NIOSH's Respiratory Health Division
    HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author Arch Environ Manuscript Author Occup Health Manuscript Author . Author manuscript; available in PMC 2020 January 01. Published in final edited form as: Arch Environ Occup Health. 2019 ; 74(1-2): 15–29. doi:10.1080/19338244.2018.1532387. NIOSH’s Respiratory Health Division: 50 years of science and service Kristin J. Cummingsa, Doug O. Johnsa, Jacek M. Mazureka, Frank J. Hearlb, and David N. Weissmana aRespiratory Health Division, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Morgantown, WV, USA bOffice of the Director, National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention, Washington, DC, USA Abstract The year 2017 marked the 50th anniversary of NIOSH’s Respiratory Health Division (RHD). RHD began in 1967 as the Appalachian Laboratory for Occupational Respiratory Diseases (ALFORD), with a focus on coal workers’ pneumoconiosis. ALFORD became part of NIOSH in 1971 and added activities to address work-related respiratory disease more generally. Health hazard evaluations played an important role in understanding novel respiratory hazards such as nylon flock, diacetyl, and indium-tin oxide. Epidemiologic and laboratory studies addressed many respiratory hazards, including coal mine dust, silica, asbestos, cotton dust, beryllium, diesel exhaust, and dampness and mold. Surveillance activities tracked the burden of diseases and enhanced the quality of spirometry and chest radiography used to screen workers. RHD’s efforts to improve scientific understanding, inform strategies for prevention, and disseminate knowledge remain important now and for the future. Keywords Epidemiology; occupational lung disease; respiratory diseases; workers Introduction The year 2017 marked the 50th anniversary of a US research and service unit currently known as the Respiratory Health Division (RHD) of the National Institute for Occupational Safety and Health (NIOSH).
    [Show full text]
  • |||GET||| Public Health Leadership 1St Edition
    PUBLIC HEALTH LEADERSHIP 1ST EDITION DOWNLOAD FREE Richard Callahan | 9781315405810 | | | | | National Leadership Academy for the Public's Health Finally, we learned that strategies to promote the sustainability of the program are needed. February The doctoral programs are distinct from the MPH and other professional programs by the addition of advanced coursework and the nature and scope Public Health Leadership 1st edition a dissertation research project. Public health as social justice. Tausch, Arno Health aid to developing countries is an important source of public health funding for many developing countries. This website uses cookies. The summer course was organized in 3 learning modules: one focused on analytical skills, a second focused on implementation research skills, and a third focused on public health leadership competencies 9, The concept of health takes into account physical, psychologicaland social well-being. Most countries have their own governmental public health agency, often called the ministry of health, with responsibility for domestic health issues. Occupational hazard Biological hazard Chemical hazard Physical hazard Psychosocial hazard Hierarchy of hazard controls Prevention through design Exposure assessment Occupational exposure limit Occupational epidemiology Workplace health surveillance. At the age of seven, she was enrolled as a member of the Norwegian Labour Movement in its children's section and has been a member ever since, leading the Labour Party to election victory three times. This was partly driven by the fact that many countries 54 in total became independent of their colonizers over this period, and needed to set up their own health services. Gamm LD. Public health infrastructures are still forming in those countries.
    [Show full text]
  • Occupational Lung Diseases: from Old and Novel Exposures to Effective
    Review Occupational lung diseases: from old and novel exposures to eff ective preventive strategies Paul Cullinan, Xavier Muñoz, Hille Suojalehto, Raymond Agius, Surinder Jindal, Torben Sigsgaard, Anders Blomberg, Denis Charpin, Isabella Annesi-Maesano, Mridu Gulati, Yangho Kim, Arthur L Frank, Metin Akgün, David Fishwick, Rafael E de la Hoz*, Subhabrata Moitra* Occupational exposure is an important, global cause of respiratory disease. Unlike many other non-communicable lung Lancet Respir Med 2017 diseases, the proximal causes of many occupational lung diseases are well understood and they should be amenable to Published Online control with use of established and eff ective approaches. Therefore, the risks arising from exposure to silica and asbestos January 6, 2017 are well known, as are the means of their prevention. Although the incidence of occupational lung disease has decreased http://dx.doi.org/10.1016/ S2213-2600(16)30424-6 in many countries, in parts of the world undergoing rapid economic transition and population growth—often with large See Online/Comment informal and unregulated workforces—occupational exposures continue to impose a heavy burden of disease. The http://dx.doi.org/10.1016/ incidence of interstitial and malignant lung diseases remains unacceptably high because control measures are not S2213-2600(16)30426-X implemented or exposures arise in novel ways. With the advent of innovative technologies, new threats are continually *Contributed equally introduced to the workplace (eg, indium compounds and vicinal diketones). In developed countries, work-related Department of Occupational asthma is the commonest occupational lung disease of short latency. Although generic control measures to reduce the and Environmental Medicine, risk of developing or exacerbating asthma are well recognised, there is still uncertainty, for example, with regards to the Imperial College, London, UK (Prof P Cullinan MD); MRC-PHE management of workers who develop asthma but remain in the same job.
    [Show full text]
  • Occupational Interstitial Lung Disease
    Occupational Interstitial Lung Disease Effective: TBD NYS WCB MTG – Occupational Interstitial Lung Disease 1 Contributors Medical Advisory Committee The NYS Workers’ Compensation Board would like to thank the members of the New York Workers’ Compensation Board Medical Advisory Committee (MAC). The MAC served as the Board’s advisory body to adapt the American College of Occupational and Environmental Medicine (ACOEM) Practice Guidelines to a New York version of the Medical Treatment Guidelines (MTG). In this capacity, the MAC provided valuable input and made recommendations to help guide the final version of these Guidelines. With full consensus reached on many topics, and a careful review of any dissenting opinions on others, the Board established the final product. Joseph Canovas, Esq. Special Counsel New York State AFL-CIO Kenneth B. Chapman, MD Director Pain Medicine, SIUH Northwell Health Systems Assistant Clinical Professor, NYU Langone Medical Center Adjunct Assistant Professor, Hofstra Medical School Lev Ginsburg, Esq. Senior Director of Government Affairs The Business Council of New York State Robert Goldberg, DO Attending Physician – Department of Rehabilitation, Beth Israel Hospital and Medical Center of NYC Professor of Physical Medicine and Rehabilitation and Health Policy Clinical Associate Professor of Rehabilitation Medicine, New York Medical College Clinical Professor of Rehabilitation Medicine, Philadelphia College of Osteopathic Medicine Member Council on Medical Education of the American Medical Association David Kamelhar, MD, FACP, FCCP Clinical Professor of Medicine Department of Pulmonary, Critical Care and Sleep Medicine NYU School of Medicine Joseph Pachman, MD, PhD, MBA, MPH Licensed Psychologist and Physician Board Certified in Occupational Medicine Fellow in ACOEM Vice President and National Medical Director, Liberty Mutual Elain Sobol Berger, MD, Esq.
    [Show full text]