The Industrial Food System Sustainable? Why Or Why Not?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sustainable Food Systems Concept and Framework
Sustainable food systems Concept and framework WHAT IS A SUSTAINABLE FOOD SYSTEM? Food systems (FS) encompass the entire range of actors and their interlinked value-adding activities involved in the production, aggregation, processing, distribution, consumption and disposal of food products that originate from agriculture, forestry or fisheries, and parts of the broader economic, societal and natural environments in which they are embedded. The food system is composed of sub-systems (e.g. farming system, waste management system, input supply system, etc.) and interacts with other key systems (e.g. energy system, trade system, health system, etc.). Therefore, a structural change in the food system might originate from a change in another system; for example, a policy promoting more biofuel in the energy system will have a significant impact on the food system. A sustainable food system (SFS) is a food system that delivers food security and nutrition for all in such a way that the economic, social and environmental bases to generate food security and nutrition for future generations are not compromised. This means that: – It is profitable throughout (economic sustainability); – It has broad-based benefits for society (social sustainability); and – It has a positive or neutral impact on the natural environment (environmental sustainability). A sustainable food system lies at the heart of the United Nations’ Sustainable Development Goals (SDGs). Adopted in 2015, the SDGs call for major transformations in agriculture and food systems in order to end hunger, achieve food security and improve nutrition by 2030. To realize the SDGs, the global food system needs to be reshaped to be more productive, more inclusive of poor and marginalized populations, environmentally sustainable and resilient, and able to deliver healthy and nutritious diets to all. -
Economics of Competition in the U.S. Livestock Industry Clement E. Ward
Economics of Competition in the U.S. Livestock Industry Clement E. Ward, Professor Emeritus Department of Agricultural Economics Oklahoma State University January 2010 Paper Background and Objectives Questions of market structure changes, their causes, and impacts for pricing and competition have been focus areas for the author over his entire 35-year career (1974-2009). Pricing and competition are highly emotional issues to many and focusing on factual, objective economic analyses is critical. This paper is the author’s contribution to that effort. The objectives of this paper are to: (1) put meatpacking competition issues in historical perspective, (2) highlight market structure changes in meatpacking, (3) note some key lawsuits and court rulings that contribute to the historical perspective and regulatory environment, and (4) summarize the body of research related to concentration and competition issues. These were the same objectives I stated in a presentation made at a conference in December 2009, The Economics of Structural Change and Competition in the Food System, sponsored by the Farm Foundation and other professional agricultural economics organizations. The basis for my conference presentation and this paper is an article I published, “A Review of Causes for and Consequences of Economic Concentration in the U.S. Meatpacking Industry,” in an online journal, Current Agriculture, Food & Resource Issues in 2002, http://caes.usask.ca/cafri/search/archive/2002-ward3-1.pdf. This paper is an updated, modified version of the review article though the author cannot claim it is an exhaustive, comprehensive review of the relevant literature. Issue Background Nearly 20 years ago, the author ran across a statement which provides a perspective for the issues of concentration, consolidation, pricing, and competition in meatpacking. -
Fact Sheet: Benefits of Hawaii's Tourism Economy
Fact Sheet: Benefits of Hawai‘i’s Tourism Economy Hawai‘i Tourism Industry in 20191 Tourism is the largest single source of private capital for Hawai‘i’s economy. In 2019, Hawai‘i’s tourism economy has recorded. Visitor Spending: $17.75 billion (+1.4%, +$244.4 million YOY versus 20182). Statewide: $48.6 million in average visitor spending daily: • O‘ahu: $22.4 million per day • Maui: $14.0 million per day • Island of Hawai‘i: $6.4 million per day • Kaua‘i: $5.2 million per day State Tax Revenue: $2.07 billion (+1.4%,+$28.5 million YOY versus 2018). Visitor Arrivals: 10,424,995 (+5.4% YOY versus 2018). On any given day were 249,000 visitors in the Hawaiian Islands. Jobs supported: 216,000 Air Seats: 13,619,349 (+2.9% YOY versus 2018). Opportunities for Continued Growth Increased arrivals during shoulder periods: April-May and October-November. Renovations, upgrades to Hawai‘i’s tourism product (hotels, attractions, natural resources). Increased distribution of visitors to the neighbor islands. TAT Collections FY 2018 TAT Distribution FY 2019 TAT Distribution ($ millions) ($ millions) Convention Convention Center Enterprise Center Enterprise Special Fund, Special Fund, Tourism $16.5 Tourism Special $26.5 Special Fund, Department of Fund, $82.0 $79.0 Land and Natural Department of Resources, Land and Natural $3.0 Resources, General Fund, $3.0 General Fund, Counties, $103.0 $315.2 Counties, $103.0 $340.0 Turtle Bay Conservation Turtle Bay Easement Conservation Fund, $1.5 Easement Fund, $1.5 Mass Transit Mass Transit Special Fund, Special Fund, $23.6 $57.4 FY 2017: The state collected $508.38 million in transient accommodations tax (TAT=9.25%). -
Growth, Structural Transformation and Poverty Reduction: Issues and Challenges with Special Reference to India*
Growth, Structural Transformation and Poverty Reduction: Issues and Challenges with special reference to India* Aradhna Aggarwal Professor, Indian Studies Department of International Economics and Management Copenhagen Business School Porcelænshaven 24A, 1-4.sal 2000 Frederiksberg Mobile: +45 9145 5565 Email: [email protected] [email protected] Abstract The present study analyses the growth-structural change-poverty linkages within the framework of the New Structural Economics using Indian data for the period since 1951-52. It finds that the relationship between growth, structural transformation and poverty reduction is complex and is characterized by various issues and challenges. It is influenced by country-specific idiosyncratic attributes as shaped by the broader growth strategy adopted by the government, its implementation, and its developmental outcomes. Failure to anticipate challenges in the development path adopted by the government is a chief cause of failure in reducing poverty. The study calls for informed state interventions to steer the economy to a sustained and inclusive development path. *The paper is prepared for presentation at the Inter-Agency Expert Group Meeting on "Employment and Decent Work for Poverty Eradication, in Support of the Second UN Decade for the Eradication of Poverty (2008-2017)" Bangkok: 4-6 May 2016 1 Growth, Structural Transformation and Poverty Reduction: Issues and Challenges with special reference to India 1. Introduction There is overwhelming evidence that rapid and sustained economic growth is crucial for reduction in poverty. But, there are substantial differences among countries with respect to the rate at which poverty declines with economic growth (Chen and Ravallion, 2010; Fosu, 2011; Islam and Kucera , 2014 among many others). -
5Food Animal Production
LAST UPDATED NOVEMBER 8, 2011 FOOD ANIMAL PRODUCTION BACKGROUND READING 5 The way the United States raises animals for food has changed dramatically in recent decades with the development of industrial food animal production (IFAP), an outgrowth of the overall industrialization of the nation’s agriculture. The trend in animal agriculture has been toward fewer operations, more animals raised on each one and fewer corporations controlling most aspects of the supply chain—from breeding to feed production to slaughter to the marketing of meat, milk and eggs. Although IFAP has some economic benefits, much of the burden of producing animal products in an industrialized system is externalized in the form of public health, environmental and social costs. Some farmers raise animals using alternative methods that strive to be more sustainable. These farms raise animals primarily outdoors, in more diversified operations that tend to be smaller-scale, allow more space per animal and avoid feed additives such as hormones and antibiotics. Some of the issues seen in land-based animal production are also present in the production of aquatic animals, though this type of production also presents unique problems and opportunities. How the current system developed Industrialization Before the 1950s, most cattle, hogs, poultry and other land-based food animals were raised on small-scale, independently owned farms. Animals generally had access to pasture or a barnyard when weather conditions permitted.1 Farms were often diversified, meaning they produced a -
Economic Energy Efficiency of Food Production Systems
energies Article Economic Energy Efficiency of Food Production Systems Bartłomiej Bajan * , Aldona Mrówczy ´nska-Kami´nska and Walenty Poczta Department of Economics and Economic Policy in Agribusiness, Faculty of Economics, Poznan University of Life Sciences, 60-637 Pozna´n,Poland; [email protected] (A.M.-K.); [email protected] (W.P.) * Correspondence: [email protected]; Tel.: +48-61-846-6379 Received: 19 September 2020; Accepted: 6 November 2020; Published: 8 November 2020 Abstract: The current global population growth forecast carries with it a global increase in demand for food. In order to meet this demand, it is necessary to increase production, which requires an increase in energy consumption. However, forecasted energy production growth is insufficient and traditional sources of energy are limited; hence, it is necessary to strive for greater energy efficiency in food production systems. The study aimed to compare the economic energy efficiency of food production systems in selected countries and identify the sources of diversification in this field. As a measure of energy efficiency, the indicators of the energy intensity of food production were used in this study. To calculate these indicators, a method based on input-output life-cycle assessment assumptions was used, which enables researchers to obtain fully comparable results between countries. The study showed that despite an increase in energy consumption in the food production systems of the analyzed countries by an average of 27%, from 19.3 EJ to 24.5 EJ, from 2000 to 2014, their energy intensity decreased, on average, by more than 18%, from 8.5 MJ/USD to 6.9 MJ/USD. -
May 23, 2019 Dear Food Industry, Food Waste Is a Major Concern In
May 23, 2019 Dear Food Industry, Food waste is a major concern in the United States. The U.S. Department of Agriculture’s (USDA’s) Economic Research Service estimates that 30 percent of food is lost or wasted at the retail and consumer level.1 This means Americans are throwing out approximately 133 billion pounds of food worth $161 billion each year.2 Manufacturers of packaged foods voluntarily use a wide variety of introductory phrases on product date labels, such as “Best If Used By,” “Use By,” and “Sell By,” to describe quality dates to indicate when a food may be at its best quality. In a 2007 survey of U.S. consumers conducted on knowledge and use of open dates (i.e. calendar dates) used on product date labels for common packaged foods, less than half were able to distinguish between the meanings of three different introductory phrases that often appear before the calendar date on the product label: “Sell By”, “Use By”, and “Best If Used By”.3 The Food and Drug Administration (FDA or we) has found that food waste by consumers may often result from fears about food safety caused by misunderstanding what the introductory phrases on product date labels mean, along with uncertainty about storage of perishable foods.4 It has been estimated that confusion over date labeling accounts for approximately 20 percent of consumer food waste.5 Industry, government, and non-profit organizations have been working to reduce consumer confusion regarding product date labels. Consumer research has found that the “Best If Used By” introductory phrase communicates to consumers the date by with the product will be of optimal quality.1 FDA has engaged in consumer education to raise awareness of food waste, reduce confusion regarding voluntary quality-based date labeling, and provide advice on food storage best practices to reduce waste. -
Food & Beverage Processing Industry Operating Costs
COMPARATIVE FOOD & BEVERAGE PROCESSING INDUSTRY OPERATING COSTS The Boyd Company, Inc. Location Consultants Princeton, NJ A COMPARATIVE OPERATING FOOD & BEVERAGE PROCESSING COST ANALYSIS INDUSTRY SITE SELECTION TABLE OF CONTENTS COMPARATIVE OPERATING COST ANALYSIS: EXECUTIVE SUMMARY AND NOTES ...................................................................................................... 1 INTRODUCTION ................................................................................................................... 1 COMPARATIVE REGIONAL LOCATIONS ........................................................................... 1 LABOR COSTS ..................................................................................................................... 2 COMPARATIVE ELECTRIC POWER AND NATURAL GAS COSTS .................................. 2 COMPARATIVE LAND ACQUISITION AND CONSTRUCTION COSTS ............................. 3 COMPARATIVE AD VALOREM AND SALES TAX COSTS ................................................. 3 TOTAL ANNUAL OPERATING COST RANKINGS .............................................................. 3 ABOUT BOYD ....................................................................................................................... 4 COMPARATIVE OPERATING COST ANALYSIS : ........................................................................ 5 EXHIBIT I: A COMPARATIVE ANNUAL OPERATING COST SIMULATION SUMMARY .................................................................................................. 6-7 EXHIBIT -
2019 Media & Entertainment Industry Outlook a New World of Content And
2019 Media & Entertainment Industry Outlook A new world of content and Technology, Media & advertising possibilities Telecommunications 2019 Media & Entertainment Industry Outlook | A new world of content and advertising possibilities Interview with Kevin Westcott The 2019 US rollout of fifth-generation (5G) wireless technology will create a host of new opportunities across the media & entertainment sector. At the same time, familiar themes such as video streaming, cord-cutting, personalized content and advertising, and data privacy will continue to shape the industry, says Kevin Westcott, vice chairman and US telecommunications, media & entertainment leader, Deloitte Consulting LLP. 2019 Media & Entertainment Industry Outlook | A new world of content and advertising possibilities Where do you see opportunities for growth in 2019? As devices proliferated, two key, closely related trends continued to could be the next big thing—after touch—in human-computer grab headlines in the media & entertainment sector over the past interaction. Voice-assisted speakers are gaining strength as well, year: 1) the skyrocketing growth of streaming and mobile video, with US penetration reaching 20 percent.7 Deloitte’s 2018 Digital and 2) a shift away from traditional pay TV. According to a recent media trends survey survey revealed that over half of US consumers Deloitte study, 55 percent of US households now subscribe to paid use a voice-based assistant, while a third access one on a weekly streaming video services, and nearly half (48 percent) of all US basis.8 Smartphones are the most favored voice-assistant platform, consumers streamed TV content every day or weekly in 2017.1 Not followed by voice-enabled digital home assistants.9 only are consumers across all age groups streaming more content In the near future, voice-enabled digital assistants and voice-assisted than ever before—they are doing it on smartphones and tablets. -
ALIPHATIC DICARBOXYLIC ACIDS from OIL SHALE ORGANIC MATTER – HISTORIC REVIEW REIN VESKI(A)
Oil Shale, 2019, Vol. 36, No. 1, pp. 76–95 ISSN 0208-189X doi: https://doi.org/10.3176/oil.2019.1.06 © 2019 Estonian Academy Publishers ALIPHATIC DICARBOXYLIC ACIDS FROM OIL SHALE ORGANIC MATTER ‒ HISTORIC REVIEW REIN VESKI(a)*, SIIM VESKI(b) (a) Peat Info Ltd, Sõpruse pst 233–48, 13420 Tallinn, Estonia (b) Department of Geology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia Abstract. This paper gives a historic overview of the innovation activities in the former Soviet Union, including the Estonian SSR, in the direct chemical processing of organic matter concentrates of Estonian oil shale kukersite (kukersite) as well as other sapropelites. The overview sheds light on the laboratory experiments started in the 1950s and subsequent extensive, triple- shift work on a pilot scale on nitric acid, to produce individual dicarboxylic acids from succinic to sebacic acids, their dimethyl esters or mixtures in the 1980s. Keywords: dicarboxylic acids, nitric acid oxidation, plant growth stimulator, Estonian oil shale kukersite, Krasava oil shale, Budagovo sapropelite. 1. Introduction According to the National Development Plan for the Use of Oil Shale 2016– 2030 [1], the oil shale industry in Estonia will consume 28 or 9.1 million tons of oil shale in the years to come in a “rational manner”, which in today’s context means the production of power, oil and gas. This article discusses the reasonability to produce aliphatic dicarboxylic acids and plant growth stimulators from oil shale organic matter concentrates. The technology to produce said acids and plant growth stimulators was developed by Estonian researchers in the early 1950s, bearing in mind the economic interests and situation of the Soviet Union. -
Contribution of the Ethanol Industry to the Economy of the United States in 2020
CONTRIBUTION OF THE ETHANOL INDUSTRY TO THE ECONOMY OF THE UNITED STATES IN 2020 Prepared for the Renewable Fuels Association by John M. Urbanchuk Managing Partner, ABF Economics February 2, 2021 The U.S. ethanol industry was slammed by the COVID-19 pandemic in 2020. The impact of the pandemic overshadowed most other issues facing the industry during the year. The widespread shelter-at-home orders in the Spring essentially shut the U.S. economy down, people stopped driving and both gasoline and ethanol demand fell sharply. As illustrated in Figure 1, the low point in demand was reached in April 2020 as motor gasoline and domestic ethanol demand fell by 38 and 42 percent from year earlier levels, respectively. Figure 1 U.S. Motor Gasoline and Domestic Ethanol Demand 14,000 1,400 12,000 1,200 10,000 1,000 8,000 800 Mil Gal Mil Gal 6,000 600 4,000 400 2,000 200 Motor Gasoline Use (Left) Ethanol Use (Right) - 0 Jul-2019 Jul-2020 Jan-2019Mar-2019May-2019 Sep-2019Nov-2019 Jan-2020Mar-2020May-2020 Sep-2020 Source: EIA 218 Pueblo Road, Doylestown, PA 18901 Tel: 215-230-1834 1 As the economy slowly reopened in the second half of the year demand picked up but didn’t recover to pre-pandemic levels and remained about 12 percent below year ago through October. Ethanol producers responded to the collapse in demand by reducing operating rates, shutting plants, and idling capacity. According to the Renewable Fuels Association 45 percent of industry capacity was idled in April and May 2020. -
Prospects for U.S.-Based Manufacturing in the SSL Industry
Solid-State Lighting The future of SSL is still unwritten … and technology, manu- Prospects for U.S.-Based facturing, and policy decisions being made today will influence Manufacturing in the SSL the shape of the industry for decades to come. The industry is global, the market potential is enormous and rapidly emerging, Industry and the stakes are high. Clearly, companies will weigh decisions on capital investment and facility location with extreme rigor. Public-sector investments in energy-efficient lighting technology, in particular those made through the U.S. Six Key Factors Department of Energy Solid-State Lighting Program, What would lead a company to invest in U.S.-based manufac- are yielding excellent returns for taxpayers in the form turing or engineering facilities? Through roundtable meetings of savings on electricity bills and reductions in carbon and workshops sponsored by DOE, industry executives have emissions. These benefits will compound in coming decades shared valuable insights on this question. as LED (light-emitting diode) and OLED (organic LED) Strategic considerations about sourcing and manufacturing— lighting continues to improve in efficiency and win over whether to make or buy, build or acquire—are unique for consumers. each company. Decisions also hinge on access to capital, which is often a pressing concern for small businesses, and Meanwhile, a question looms: to what extent will the U.S. they vary depending on what part of the SSL value chain is being economy also benefit from the robust business and job addressed. Competitive drivers differ substantially for suppliers creation that will emerge as a result of the transition to of substrates, phosphors, chemicals, production and test equip- solid-state lighting (SSL)? ment, LED die, LED packages, LED modules, and lamps and luminaires—as well as for OLED suppliers and manufacturers, Writing the Future where markets to date have remained small and niche-oriented.