Alvinella Pompejana Is an Endemic Inhabitant Tof Deep-Sea Hydrothermal Vents Located from 21°N to 32°S Latitude on the East Pacific Rise (1)

Total Page:16

File Type:pdf, Size:1020Kb

Alvinella Pompejana Is an Endemic Inhabitant Tof Deep-Sea Hydrothermal Vents Located from 21°N to 32°S Latitude on the East Pacific Rise (1) Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility Joseph J. Grzymskia,1, Alison E. Murraya,1, Barbara J. Campbellb, Mihailo Kaplarevicc, Guang R. Gaoc,d, Charles Leee, Roy Daniele, Amir Ghadirif, Robert A. Feldmanf, and Stephen C. Caryb,d,2 aDivision of Earth and Ecosystem Sciences, Desert Research Institute, 2215 Raggio Parkway, Reno, NV 89512; bCollege of Marine and Earth Studies, University of Delaware, Lewes, DE 19958; cDelaware Biotechnology Institute, 15 Innovation Way, Newark, DE 19702; dElectrical and Computer Engineering, University of Delaware, 140 Evans Hall, Newark, DE 19716; eDepartment of Biological Sciences, University of Waikato, Hamilton, New Zealand; fSymBio Corporation, 1455 Adams Drive, Menlo Park, CA 94025 Edited by George N. Somero, Stanford University, Pacific Grove, CA, and approved September 17, 2008 (received for review March 20, 2008) Hydrothermal vent ecosystems support diverse life forms, many of the thermal tolerance of a structural protein biomarker (5) which rely on symbiotic associations to perform functions integral supports the assertion that A. pompejana is likely among the to survival in these extreme physicochemical environments. Epsi- most thermotolerant and eurythermal metazoans on Earth lonproteobacteria, found free-living and in intimate associations (6, 7). with vent invertebrates, are the predominant vent-associated A. pompejana is characterized by a filamentous microflora that microorganisms. The vent-associated polychaete worm, Alvinella forms cohesive hair-like projections from mucous glands lining pompejana, is host to a visibly dense fleece of episymbionts on its the polychaete’s dorsal intersegmentary spaces (8). The episym- dorsal surface. The episymbionts are a multispecies consortium of biont community is constrained to the bacterial subdivision, Epsilonproteobacteria present as a biofilm. We unraveled details of Epsilonproteobacteria, (9)—a taxonomic class that is widely these enigmatic, uncultivated episymbionts using environmental represented in hydrothermal vent ecosystems on surfaces, free- genome sequencing. They harbor wide-ranging adaptive traits living, in symbioses with invertebrates, in sediments and the that include high levels of strain variability analogous to Epsilon- shallow subsurface (10, 11). Distribution of the 2 dominant proteobacteria pathogens such as Helicobacter pylori, metabolic members (5A and 13B) of this Epsilonproteobacteria consortium diversity of free-living bacteria, and numerous orthologs of pro- (9) appears highly structured along each hair-like projection. teins that we hypothesize are each optimally adapted to specific The community was reported to comprise between 10 to 15 temperature ranges within the 10–65 °C fluctuations characteristic phylotypes (related at Ն99% SSU rRNA gene identity), of which of the A. pompejana habitat. This strategic combination enables Ͼ98% were Epsilonproteobacteria (9). Most described host- the consortium to thrive under diverse thermal and chemical symbiont associations consist of either monospecific relation- regimes. The episymbionts are metabolically tuned for growth in ships [e.g., Euprymna squid–Vibrio fischeri (12)] or more often, hydrothermal vent ecosystems with genes encoding the complete divergent multispecies associations [e.g., termites (13), marine rTCA cycle, sulfur oxidation, and denitrification; in addition, the oligochaete, Olavius algarvensis (14)]. However, population-level episymbiont metagenome also encodes capacity for heterotrophic variation has been observed in some symbioses, such as the and aerobic metabolisms. Analysis of the environmental genome marine sponge Axinella mexicana, which is associated with 2 suggests that A. pompejana may benefit from the episymbionts dominant crenarchaeotal populations (15) and the gammapro- serving as a stable source of food and vitamins. The success of teobacterial endosymbionts of the vent tubeworm Riftia pachy- Epsilonproteobacteria as episymbionts in hydrothermal vent eco- ptila (16). The diverse yet phylogenetically constrained episym- systems is a product of adaptive capabilities, broad metabolic bionts of A. pompejana are in stark contrast to a vent-associated capacity, strain variance, and virulent traits in common with shrimp from the Mid-Atlantic Ridge, Rimicaris exoculata, which pathogens. has established a more conventional single-species association with an epsilonproteobacterium (11). Although the A. pompe- Epsilonproteobacteria ͉ hydrothermal vent jana episymbionts have eluded isolation, molecular approaches have revealed that two of the dominant epsilonproteobacterial phylotypes have the capability for chemolithoautotrophic growth he polychaete Alvinella pompejana is an endemic inhabitant Tof deep-sea hydrothermal vents located from 21°N to 32°S latitude on the East Pacific Rise (1). This tube-dwelling Author contributions: A.E.M., B.J.C., G.R.G., R.D., R.A.F., and S.C.C. designed research; B.J.C. polychaete forms dense colonies exclusively on the walls of and A.G. performed research; J.J.G., A.E.M., B.J.C., M.K., C.L., and S.C.C. analyzed data; and high-temperature black smoker chimneys (2, 3), which are J.J.G., A.E.M., B.J.C., and S.C.C. wrote the paper. characterized by extreme physicochemical gradients and dy- The authors declare no conflict of interest. namic in thermal emission rates and intensive mineral precipi- This article is a PNAS Direct Submission. tation. The high-temperature diffuse flow surrounding the Freely available online through the PNAS open access option. worms’ tubes is acidic (pH 4.2–6.1) carrying high levels of total Data deposition: The Whole Genome Shotgun project has been deposited in the DDBJ/ (free ϩ complexed) hydrogen sulfide (Ͼ1 mM), ammonia EMBL/GenBank database (accession no. AAUQ00000000); the version described in this (3.8–10 ␮m), and reactive heavy metals (0.3–200 ␮M) including paper is the first version (accession no. AAUQ01000000). The project is registered with ␮ project ID 17241 and consists of sequences AAUQ01000001–AAUQ01128934. Traces were ferrous iron (290–840 m) (2). Temperature fluctuations in the submitted to the National Center for Biotechnology Information Trace Archive (accession actual tubes of A. pompejana range from 29 °C to 84 °C while the nos. 1878413299–1878706363); PCR-amplified SSU rRNA gene sequences were also sub- chemical conditions are anoxic, slightly acidic to near neutral pH mitted (accession nos. EF462586–EF462837). (5.33–6.9), and rich in electron acceptors (sulfate, nitrate, Fe III, 1J.J.G. and A.E.M. contributed equally to this work. and Mg) as well as potentially lethal levels of heavy metals (2, 3). 2To whom correspondence should be addressed. E-mail: [email protected]. The tube fluids contain surprisingly low levels of free H2S(Ͻ0.2 This article contains supporting information online at www.pnas.org/cgi/content/full/ ␮M to 46.53 ␮M) and are a mix of ambient seawater (72–91%) 0802782105/DCSupplemental. supplemented with vent-derived emissions (3, 4). An analysis of © 2008 by The National Academy of Sciences of the USA 17516–17521 ͉ PNAS ͉ November 11, 2008 ͉ vol. 105 ͉ no. 45 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0802782105 Downloaded by guest on September 30, 2021 0.09 0.08 m r 0.07 J R E M 0.06 j e 0.05 S C l c 0.04 ho L P HO N s 0.03 t I GF p 0.02 f g U K V ki Pathogen or Free-living Cog usage Cog or Free-living Pathogen v T 0.01 DQu Fig. 1. Rarefaction curves for SSU rRNA genes and selected proteins in the dqn EM. Rarefaction curves were determined for the SSU rRNA gene (216 bases, 79 0 Bb 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 sequences at 99% similarity) and the following proteins: recombinase subunit EM-C Cog usage A (recA, 280 bases, 43 sequences at 99% similarity), DNA gyrase subunit B (gyrB, 239 bases, 34 sequences at 99% similarity), heat shock protein 60 (groEL, Fig. 2. COG distributions in the EM-C dataset compared with 3 pathogenic 167 bases, 34 sequences at 98% similarity), ribosomal protein S12 (rpS12, 233 epsilonproteobacteria (bold, capitalized letters) and 3 free-living bacteria bases, 28 sequences at 99% similarity), and malate dehydrogenase (mdh, 263 (lowercase letters). The letters indicate the specific COG role category. bases, 20 sequences at 99% similarity). coding genes (Fig. 1) identified between 6 and 31 distinct via the reductive TCA cycle (17). Until recently, it was believed sequences, respectively. carbon was solely fixed chemoautotrophically via the Calvin The EM dataset consisted of 300,607 high-quality reads that Benson cycle in vent microbial communities (17). assembled into short contigs at 95% nucleotide identity (Table We performed an environmental genomic analysis of the A. S2). Attempts to bin either the raw sequence data or the pompejana episymbiont community in an effort to define the assembled data based on GϩC content were unsuccessful be- basic metabolic strategy of the association and elucidate why cause the data were almost uniformly distributed around the Epsilonproteobacteria are so successful in this environment. We 35% average (Fig. S4). The assembled contigs averaged 1,462 bp hypothesized that under extreme constraints imposed by the in length and comprised 38.5 MB. The total dataset (68 MB), local geochemical environment, the Epsilonproteobacteria epi- including singletons, contained 128,412 sequences. A total of symbiotic consortium employs a core metabolic strategy shared 103,371 proteins was predicted from these data. Forty-one by most members of
Recommended publications
  • Inactivation of CRISPR-Cas Systems by Anti-CRISPR Proteins in Diverse Bacterial Species April Pawluk1, Raymond H.J
    LETTERS PUBLISHED: 13 JUNE 2016 | ARTICLE NUMBER: 16085 | DOI: 10.1038/NMICROBIOL.2016.85 Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species April Pawluk1, Raymond H.J. Staals2, Corinda Taylor2, Bridget N.J. Watson2, Senjuti Saha3, Peter C. Fineran2, Karen L. Maxwell4* and Alan R. Davidson1,3* CRISPR-Cas systems provide sequence-specific adaptive immu- MGE-encoded mechanisms that inhibit CRISPR-Cas systems. In nity against foreign nucleic acids1,2. They are present in approxi- support of this hypothesis, phages infecting Pseudomonas aeruginosa mately half of all sequenced prokaryotes3 and are expected to were found to encode diverse families of proteins that inhibit constitute a major barrier to horizontal gene transfer. We pre- the CRISPR-Cas systems of their host through several distinct viously described nine distinct families of proteins encoded in mechanisms4,5,17,18. However, homologues of these anti-CRISPR Pseudomonas phage genomes that inhibit CRISPR-Cas function4,5. proteins were found only within the Pseudomonas genus. Here, We have developed a bioinformatic approach that enabled us to we describe a bioinformatic approach that allowed us to identify discover additional anti-CRISPR proteins encoded in phages five novel families of functional anti-CRISPR proteins encoded in and other mobile genetic elements of diverse bacterial phages and other putative MGEs in species spanning the diversity species. We show that five previously undiscovered families of Proteobacteria. of anti-CRISPRs inhibit the type I-F CRISPR-Cas systems of The nine previously characterized anti-CRISPR protein families both Pseudomonas aeruginosa and Pectobacterium atrosepticum, possess no common sequence motifs, so we used genomic context to and a dual specificity anti-CRISPR inactivates both type I-F search for novel anti-CRISPR genes.
    [Show full text]
  • Lipid Analysis of CO2-Rich Subsurface Aquifers Suggests an Autotrophy-Based Deep Biosphere with Lysolipids Enriched in CPR Bacteria
    The ISME Journal (2020) 14:1547–1560 https://doi.org/10.1038/s41396-020-0624-4 ARTICLE Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria 1,2 3,4 1,3 3 3 Alexander J. Probst ● Felix J. Elling ● Cindy J. Castelle ● Qingzeng Zhu ● Marcus Elvert ● 5,6 6 1 7,9 7 Giovanni Birarda ● Hoi-Ying N. Holman ● Katherine R. Lane ● Bethany Ladd ● M. Cathryn Ryan ● 8 3 1 Tanja Woyke ● Kai-Uwe Hinrichs ● Jillian F. Banfield Received: 20 November 2018 / Revised: 5 February 2020 / Accepted: 25 February 2020 / Published online: 13 March 2020 © The Author(s) 2020. This article is published with open access Abstract Sediment-hosted CO2-rich aquifers deep below the Colorado Plateau (USA) contain a remarkable diversity of uncultivated microorganisms, including Candidate Phyla Radiation (CPR) bacteria that are putative symbionts unable to synthesize membrane lipids. The origin of organic carbon in these ecosystems is unknown and the source of CPR membrane lipids remains elusive. We collected cells from deep groundwater brought to the surface by eruptions of Crystal Geyser, sequenced 1234567890();,: 1234567890();,: the community, and analyzed the whole community lipidome over time. Characteristic stable carbon isotopic compositions of microbial lipids suggest that bacterial and archaeal CO2 fixation ongoing in the deep subsurface provides organic carbon for the complex communities that reside there. Coupled lipidomic-metagenomic analysis indicates that CPR bacteria lack complete lipid biosynthesis pathways but still possess regular lipid membranes. These lipids may therefore originate from other community members, which also adapt to high in situ pressure by increasing fatty acid unsaturation.
    [Show full text]
  • (Batch Learning Self-Organizing Maps), to the Microbiome Analysis of Ticks
    Title A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Nakao, Ryo; Abe, Takashi; Nijhof, Ard M; Yamamoto, Seigo; Jongejan, Frans; Ikemura, Toshimichi; Sugimoto, Author(s) Chihiro The ISME Journal, 7(5), 1003-1015 Citation https://doi.org/10.1038/ismej.2012.171 Issue Date 2013-03 Doc URL http://hdl.handle.net/2115/53167 Type article (author version) File Information ISME_Nakao.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks Ryo Nakao1,a, Takashi Abe2,3,a, Ard M. Nijhof4, Seigo Yamamoto5, Frans Jongejan6,7, Toshimichi Ikemura2, Chihiro Sugimoto1 1Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan 2Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan 3Graduate School of Science & Technology, Niigata University, 8050, Igarashi 2-no-cho, Nishi- ku, Niigata 950-2181, Japan 4Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany 5Miyazaki Prefectural Institute for Public Health and Environment, 2-3-2 Gakuen Kibanadai Nishi, Miyazaki 889-2155, Japan 6Utrecht Centre for Tick-borne Diseases (UCTD), Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, The Netherlands 7Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, 0110 Onderstepoort, South Africa aThese authors contributed equally to this work. Keywords: BLSOMs/emerging diseases/metagenomics/microbiomes/symbionts/ticks Running title: Tick microbiomes revealed by BLSOMs Subject category: Microbe-microbe and microbe-host interactions Abstract Ticks transmit a variety of viral, bacterial and protozoal pathogens, which are often zoonotic.
    [Show full text]
  • Microbial Interactions with Arsenite, Hydrogen and Sulfide In
    MICROBIAL INTERACTIONS WITH ARSENITE, HYDROGEN AND SULFIDE IN AN ACID-SULFATE-CHLORIDE GEOTHERMAL SPRING by Seth D’Imperio A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Ecology and Environmental Sciences MONTANA STATE UNIVERSITY Bozeman, Montana April, 2008 ©COPYRIGHT by Seth D’Imperio 2008 All Rights Reserved ii APPROVAL of a dissertation submitted by Seth D’Imperio This dissertation has been read by each member of the dissertation committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Timothy R. McDermott Approved for the Department Land Resources and Environmental Science Dr. Jon M. Wraith Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this dissertation in partial fulfillment of the requirements for a doctoral degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. I further agree that copying of this dissertation is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for extensive copying or reproduction of this dissertation should be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, Michigan 48106, to whom I have granted “the exclusive right to reproduce and distribute my dissertation in and from microform along with the non- exclusive right to reproduce and distribute my abstract in any format in whole or in part.” Seth D’Imperio April 2008 iv ACKNOWLEDGEMENTS Firstly, I would like to thank Dr.
    [Show full text]
  • Microbial Carbon Metabolism Associated with Electrogenic Sulphur Oxidation in Coastal Sediments
    The ISME Journal (2015) 9, 1966–1978 & 2015 International Society for Microbial Ecology All rights reserved 1751-7362/15 OPEN www.nature.com/ismej ORIGINAL ARTICLE Microbial carbon metabolism associated with electrogenic sulphur oxidation in coastal sediments Diana Vasquez-Cardenas1,2, Jack van de Vossenberg2,6, Lubos Polerecky3, Sairah Y Malkin4,7, Regina Schauer5, Silvia Hidalgo-Martinez2, Veronique Confurius1, Jack J Middelburg3, Filip JR Meysman2,4 and Henricus TS Boschker1 1Department of Marine Microbiology, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, The Netherlands; 2Department of Ecosystem Studies, Royal Netherlands Institute for Sea Research (NIOZ), Yerseke, The Netherlands; 3Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands; 4Department of Environmental, Analytical and Geo-Chemistry, Vrije Universiteit Brussel (VUB), Brussels, Belgium and 5Centre of Geomicrobiology/Microbiology, Department of Bioscience, Aarhus University, Aarhus, Denmark Recently, a novel electrogenic type of sulphur oxidation was documented in marine sediments, whereby filamentous cable bacteria (Desulfobulbaceae) are mediating electron transport over cm- scale distances. These cable bacteria are capable of developing an extensive network within days, implying a highly efficient carbon acquisition strategy. Presently, the carbon metabolism of cable bacteria is unknown, and hence we adopted a multidisciplinary approach to study the carbon substrate utilization of both cable bacteria and associated microbial community in sediment incubations. Fluorescence in situ hybridization showed rapid downward growth of cable bacteria, concomitant with high rates of electrogenic sulphur oxidation, as quantified by microelectrode profiling. We studied heterotrophy and autotrophy by following 13C-propionate and -bicarbonate incorporation into bacterial fatty acids. This biomarker analysis showed that propionate uptake was limited to fatty acid signatures typical for the genus Desulfobulbus.
    [Show full text]
  • C O N F E R E N C E 22 27 April 2016
    Joint Pathology Center Veterinary Pathology Services WEDNESDAY SLIDE CONFERENCE 2015-2016 C o n f e r e n c e 22 27 April 2016 Cory Brayton, DVM, Ph.D., DACVP Associate Professor, Molecular & Comparative Pathobiology Johns Hopkins University School of Medicine Broadway Research Building, Suite 851 733 North Broadway Baltimore, MD 21205 CASE I: NIEHS-087 (JPC 4017222). Signalment: 11-month-old B6.129S- Cybbtm1Din/J mouse (Mus musculus) History: A breeding colony of B6.129S- Cybbtm1Din/J mice were housed in an AAALAC International accredited facility. The mice were housed in static micro isolator cases with ad libitum autoclaved food (NIH-31) and beta chip bedding. Mice were provided acidified water due to imm- unocompromised state. The mice were Body as a while, mouse. The liver was slightly enlarged, housed in the same room as B6 imm- and there are multiple tan foci in the liver and lung. (Photo courtesy of: National Institute of Environmental unocompetent mice. Sudden deaths were Health Sciences, Cellular and Molecular Pathology noted in the colony over a weekend. A total Branch and Comparative Medicine Branch, P.O. Box of 87 mice, aged from one to eleven months 12233, Research Triangle Park, NC 27709, http://www.niehs.nih.gov/research/atniehs/labs/lep/index. were affected. Of these, 45 mice were found cfm) dead and 19 sick mice were euthanized and were multifocal tan foci in the liver, spleen necropsied. Twenty males and 38 females and lung. were affected. Laboratory Results: From multiple tissues, Gross Pathology: The livers were pale and a pure culture of Burkholderia spp.
    [Show full text]
  • Potential of Bacterial Cellulose Chemisorbed with Anti-Metabolites, 3-Bromopyruvate Or Sertraline, to Fight Against Helicobacter Pylori Lawn Biofilm
    International Journal of Molecular Sciences Article Potential of Bacterial Cellulose Chemisorbed with Anti-Metabolites, 3-Bromopyruvate or Sertraline, to Fight against Helicobacter pylori Lawn Biofilm Paweł Krzy˙zek 1,* , Gra˙zynaGo´sciniak 1 , Karol Fijałkowski 2 , Paweł Migdał 3 , Mariusz Dziadas 4 , Artur Owczarek 5 , Joanna Czajkowska 6, Olga Aniołek 7 and Adam Junka 8 1 Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; [email protected] 2 Department of Immunology, Microbiology and Physiological Chemistry, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 70-311 Szczecin, Poland; karol.fi[email protected] 3 Department of Environment, Hygiene and Animal Welfare, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; [email protected] 4 Faculty of Chemistry, University of Wroclaw, 50-353 Wroclaw, Poland; [email protected] 5 Department of Drug Form Technology, Wroclaw Medical University, 50-556 Wroclaw, Poland; [email protected] 6 Laboratory of Microbiology, Polish Center for Technology Development PORT, 54-066 Wroclaw, Poland; [email protected] 7 Faculty of Medicine, Lazarski University, 02-662 Warsaw, Poland; [email protected] 8 Department of Pharmaceutical Microbiology and Parasitology, Wroclaw Medical University, 50-556 Wroclaw, Poland; [email protected] * Correspondence: [email protected] Received: 23 November 2020; Accepted: 11 December 2020; Published: 14 December 2020 Abstract: Helicobacter pylori is a bacterium known mainly of its ability to cause persistent inflammations of the human stomach, resulting in peptic ulcer diseases and gastric cancers. Continuous exposure of this bacterium to antibiotics has resulted in high detection of multidrug-resistant strains and difficulties in obtaining a therapeutic effect.
    [Show full text]
  • Unlocking the Genomic Taxonomy of the Prochlorococcus Collective
    bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.980698; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Unlocking the genomic taxonomy of the Prochlorococcus collective Diogo Tschoeke1#, Livia Vidal1#, Mariana Campeão1, Vinícius W. Salazar1, Jean Swings1,2, Fabiano Thompson1*, Cristiane Thompson1* 1Laboratory of Microbiology. SAGE-COPPE and Institute of Biology. Federal University of Rio de Janeiro. Rio de Janeiro. Brazil. Av. Carlos Chagas Fo 373, CEP 21941-902, RJ, Brazil. 2Laboratory of Microbiology, Ghent University, Gent, Belgium. *Corresponding authors: E-mail: [email protected] , [email protected] Phone no.: +5521981041035, +552139386567 #These authors contributed equally. ABSTRACT 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.09.980698; this version posted March 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Prochlorococcus is the most abundant photosynthetic prokaryote on our planet. The extensive ecological literature on the Prochlorococcus collective (PC) is based on the assumption that it comprises one single genus comprising the species Prochlorococcus marinus, containing itself a collective of ecotypes. Ecologists adopt the distributed genome hypothesis of an open pan-genome to explain the observed genomic diversity and evolution patterns of the ecotypes within PC.
    [Show full text]
  • Role of Chemolithoautotrophic Microorganisms Involved in Nitrogen and Sulfur Cycling in Coastal Marine Sediments
    Role of chemolithoautotrophic microorganisms involved in nitrogen and sulfur cycling in coastal marine sediments Yvonne Antonia Lipsewers THIS RESEARCH WAS FINANCIALLY SUPPORTED BY DARWIN CENTER FOR BIOGEOSCIENCES NIOZ – ROYAL NETHERLANDS INSTITUTE FOR SEA RESEARCH ISBN: 978-90-6266-492-4 Cover photos: S. Rampen, L. Villanueva, M. van der Meer Printed by Ipskamp Printing, The Netherlands Role of chemolithoautotrophic microorganisms involved in nitrogen and sulfur cycling in coastal marine sediments De rol van chemolithoautotrofe micro-organismen die deelnemen in de stikstof- en zwavelcyclus in mariene kustsedimenten (met een samenvatting in het Nederlands) Proefschrift ter verkrijging van de graad van doctor aan de Universiteit Utrecht op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan, ingevolge het besluit van het college voor promoties in het openbaar te verdedigen op dinsdag 5 december 2017 des ochtends te 10.30 uur door Yvonne Antonia Lipsewers geboren op 18 juli 1977 te Salzkotten, Duitsland Promotor: Prof. dr. ir. J.S. Sinninghe Damsté Copromotor: Dr. L. Villanueva „Hinterher ist man immer schlauer…“ Für meine Familie Table of contents Chapter 1 – Introduction .....................................................................................................1 Chapter 2 – Seasonality and depth distribution of the abundance and activity of am- monia oxidizing microorganisms in marine coastal sediments (North Sea) ..........23 Chapter 3 – Lack of 13C-label incorporation suggests low turnover rates of thaumar- chaeal intact
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment
    life Article The Eastern Nebraska Salt Marsh Microbiome Is Well Adapted to an Alkaline and Extreme Saline Environment Sierra R. Athen, Shivangi Dubey and John A. Kyndt * College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA; [email protected] (S.R.A.); [email protected] (S.D.) * Correspondence: [email protected] Abstract: The Eastern Nebraska Salt Marshes contain a unique, alkaline, and saline wetland area that is a remnant of prehistoric oceans that once covered this area. The microbial composition of these salt marshes, identified by metagenomic sequencing, appears to be different from well-studied coastal salt marshes as it contains bacterial genera that have only been found in cold-adapted, alkaline, saline environments. For example, Rubribacterium was only isolated before from an Eastern Siberian soda lake, but appears to be one of the most abundant bacteria present at the time of sampling of the Eastern Nebraska Salt Marshes. Further enrichment, followed by genome sequencing and metagenomic binning, revealed the presence of several halophilic, alkalophilic bacteria that play important roles in sulfur and carbon cycling, as well as in nitrogen fixation within this ecosystem. Photosynthetic sulfur bacteria, belonging to Prosthecochloris and Marichromatium, and chemotrophic sulfur bacteria of the genera Sulfurimonas, Arcobacter, and Thiomicrospira produce valuable oxidized sulfur compounds for algal and plant growth, while alkaliphilic, sulfur-reducing bacteria belonging to Sulfurospirillum help balance the sulfur cycle. This metagenome-based study provides a baseline to understand the complex, but balanced, syntrophic microbial interactions that occur in this unique Citation: Athen, S.R.; Dubey, S.; inland salt marsh environment.
    [Show full text]
  • Helicobacter Hepaticus Model of Infection: the Human Hepatocellular Carcinoma Controversy
    Review articles Helicobacter hepaticus model of infection: the human hepatocellular carcinoma controversy Yessica Agudelo Zapata, MD,1 Rodrigo Castaño Llano, MD,2 Mauricio Corredor, PhD.3 1 Medical Doctor and General Surgeon in the Abstract Gastrohepatology Group at Universidad de Antioquia in Medellin, Colombia The discovery of Helicobacter 30 years ago by Marshall and Warren completely changed thought about peptic 2 Gastrointestinal Surgeon and Endoscopist in the and duodenal ulcers. The previous paradigm posited the impossibility of the survival of microorganisms in the Gastrohepatology Group at the Universidad de stomach’s low pH environment and that, if any microorganisms survived, they would stay in the duodenum Antioquia in Medellin, Colombia 3 Institute Professor of Biology in the Faculty of or elsewhere in the intestine. Today the role of H. pylori in carcinogenesis is indisputable, but little is known Natural Sciences and the GEBIOMIC Group the about other emerging species of the genus Helicobacter in humans. Helicobacter hepaticus is one of these Gastroenterology Group at the Universidad de species that has been studied most, after H. pylori. We now know about their microbiological, genetic and Antioquia in Medellin, Colombia pathogenic relationships with HCC in murine and human infections. This review aims to show the medical and ......................................... scientifi c community the existence of new species of Helicobacter that have pathogenic potential in humans, Received: 07-05-13 thus encouraging research. Accepted: 27-08-13 Keywords Helicobacter hepaticus, Helicobacter pylori, Helicobacter spp., hepatocellular carcinoma. INTRODUCTION bacterium can infect animals including mice, dogs and ger- bils which could lead to a proposal to use H.
    [Show full text]