Technical Report on the Salinas Grandes-Guayatayoc Project Jujuy-Salta Provinces, Argentina

Total Page:16

File Type:pdf, Size:1020Kb

Technical Report on the Salinas Grandes-Guayatayoc Project Jujuy-Salta Provinces, Argentina TECHNICAL REPORT ON THE SALINAS GRANDES-GUAYATAYOC PROJECT JUJUY-SALTA PROVINCES, ARGENTINA REPORT FOR NI 43-101 PREPARED ON BEHALF OF OROCOBRE LTD. Level 1, 349 Coronation Drive, Milton, Queensland 4064, Australia. BY JOHN HOUSTON CONSULTING HYDROGEOLOGIST BSc., MSc., C.Geol., FGS, FCIWEM April 30, 2010 1 CONTENTS OF THE TECHNICAL REPORT 3. SUMMARY............................................................................................................................ 9 4. INTRODUCTION ................................................................................................................ 10 4.1. Authorship and Terms of Reference .............................................................................. 10 4.2. The uniqueness of brine prospects ................................................................................. 10 5. RELIANCE ON OTHER EXPERTS ................................................................................... 11 6. PROPERTY LOCATION AND DESCRIPTION................................................................ 12 6.1. Location.......................................................................................................................... 12 6.2. Exploration and exploitation licences ............................................................................ 13 6.2.1. Types of licences and co-ordinate system .............................................................. 13 6.2.2. Standing of licences................................................................................................ 14 6.2.3. The Salinas Grandes-Guayatayoc tenement package ............................................. 14 6.3. Environmental Liabilities............................................................................................... 18 6.4. Permits............................................................................................................................ 18 7. ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY........................................................................................................................ 19 7.1. Accessibility, Local Resources and Infrastructure......................................................... 19 7.2. Physiography.................................................................................................................. 19 7.3. Climate ........................................................................................................................... 22 7.3.1. Rainfall.................................................................................................................... 23 7.3.2. Temperature............................................................................................................ 23 7.3.3. Wind........................................................................................................................ 24 7.3.4. Evaporation............................................................................................................. 25 7.4. Vegetation ......................................................................................................................25 7.4.1. Low lying areas in the vicinity of water ................................................................. 25 7.4.2. Mixed Steppes......................................................................................................... 25 7.4.3. Bushy Steppes......................................................................................................... 25 8. HISTORY ............................................................................................................................. 26 8.1. Pre-Orocobre.................................................................................................................. 26 8.2. Orocobre exploration ..................................................................................................... 26 9. GEOLOGICAL SETTING................................................................................................... 27 9.1. Regional ......................................................................................................................... 27 9.1.1. Jurassic-Cretaceous................................................................................................. 27 2 9.1.2. Paleogene................................................................................................................ 27 9.1.3. Neogene .................................................................................................................. 29 9.1.4. Late Neogene-Quaternary....................................................................................... 30 9.2. The Salinas Grandes-Guayatayoc Basins....................................................................... 31 9.2.1. The Salinas Grandes Basin ..................................................................................... 31 9.2.2. The Guayatayoc Basin............................................................................................ 31 10. DEPOSIT TYPE................................................................................................................ 34 11. MINERALIZATION......................................................................................................... 36 12. EXPLORATION ............................................................................................................... 41 12.1. Geochemistry ................................................................................................................. 41 12.2. Geophysical Surveys...................................................................................................... 41 12.3. Gravity............................................................................................................................ 42 12.3.1. Data acquisition................................................................................................... 42 12.3.2. Data processing ................................................................................................... 43 12.3.3. Gravity data modelling and interpretation .......................................................... 44 12.4. Audio magnetotelluric.................................................................................................... 46 12.4.1. Data acquisition................................................................................................... 46 12.4.2. Data Processing and Modelling .......................................................................... 47 12.4.3. Model output and interpretation.......................................................................... 47 13. DRILLING AND RELATED ACTIVITIES..................................................................... 49 14. SAMPLING METHOD AND APPROACH..................................................................... 50 14.1. Brine Sample Program Design....................................................................................... 50 14.2. Salinas Grandes-Guayatayoc pit sampling..................................................................... 50 14.3. Sampling Supervision .................................................................................................... 51 14.4. Sample Security ............................................................................................................. 51 15. SAMPLE PREPARATION, ANALYSES AND SECURITY.......................................... 52 15.1. Sample Preparation ........................................................................................................ 52 15.2. Sample Analyses ............................................................................................................ 52 15.3. Quality Control............................................................................................................... 53 15.3.1. Relative percentage difference evaluation .......................................................... 53 15.3.2. Standard Analyses............................................................................................... 53 15.3.3. Sample Duplicate/Replicate Analyses ................................................................ 55 15.4. Anion-Cation Balance.................................................................................................... 59 15.5. Quality Control Conclusions.......................................................................................... 59 3 16. DATA VERIFICATION ................................................................................................... 60 16.1. General ........................................................................................................................... 60 16.2. Assay data ......................................................................................................................60 16.3. Geological data............................................................................................................... 60 16.4. Survey data.....................................................................................................................60 17. ADJACENT PROPERTIES .............................................................................................. 61 17.1. General comments.......................................................................................................... 61 17.2. Adjacent properties .......................................................................................................
Recommended publications
  • Risse, A., Trumbull, RB, Coira, B., Kay, SM, Van Den Bogaard, P
    Originally published as: Risse, A., Trumbull, R. B., Coira, B., Kay, S. M., van den Bogaard, P. (2008): Ar-40/Ar-39 geochronology of mafic volcanism in the back-arc region of the southern Puna plateau, Argentina. - Journal of South American Earth Sciences, 26, 1, 1-15 DOI: 10.1016/j.jsames.2008.03.002 40Ar/39Ar geochronology of mafic volcanism in the back-arc region of the southern Puna plateau, Argentina Andrea Risse1, Robert B. Trumbull1*, Beatriz Coira2, Suzanne M. Kay3, Paul van den Bogaard4 1 GeoForschungsZentrumPotsdam, Telegrafenberg, 14473 Potsdam, Germany 2 Universidad Nacional de Jujuy, Instituto de Geología y Minería, SS de Jujuy, Argentina 3 Cornell University, Dept of Earth and Atmospheric Sciences, Snee Hall, Ithaca, NY USA 4 IFM-GEOMAR, Wischhofstr. 1-3, 24148 Kiel, Germany Abstract Late Cenozoic back-arc mafic volcanism in the southern Puna plateau of Argentina offers insights into the state of the mantle under the world’s second largest continental plateau. Previous studies of the mafic magmas in this region proposed a scenario of mantle melting due to lithospheric delamination and/or steepening of the subducting slab. However, few of the centers have been precisely dated, which limits any geodynamic interpretation. We present results of laser incremental-heating 40Ar/39Ar dating of 22 back-arc centers in the southern Puna, with emphasis on the Salar de Antofalla region where volcanic activity was most intense. Three localities yielded ages between 7.3 and 7.0 Ma which, along with 2 previous 7 Ma ages, firmly establishes that back-arc activity began as early as late Miocene.
    [Show full text]
  • (Vei): Pacaya and Fuego Volcanoes, Guatemala
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2015 INSIGHTS INTO THE RELATIONSHIP BETWEEN MIXING DURATION AND VOLCANIC EXPLOSIVITY INDEX (VEI): PACAYA AND FUEGO VOLCANOES, GUATEMALA Nicola Mari Michigan Technological University, [email protected] Copyright 2015 Nicola Mari Recommended Citation Mari, Nicola, "INSIGHTS INTO THE RELATIONSHIP BETWEEN MIXING DURATION AND VOLCANIC EXPLOSIVITY INDEX (VEI): PACAYA AND FUEGO VOLCANOES, GUATEMALA", Open Access Master's Thesis, Michigan Technological University, 2015. https://digitalcommons.mtu.edu/etdr/30 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Geochemistry Commons, and the Volcanology Commons INSIGHTS INTO THE RELATIONSHIP BETWEEN MIXING DURATION AND VOLCANIC EXPLOSIVITY INDEX (VEI): PACAYA AND FUEGO VOLCANOES, GUATEMALA By Nicola Mari A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2015 © 2015 Nicola Mari This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology. Department of Geological and Mining Engineering and Sciences Thesis Advisor: William I. Rose Committee Member: Chad D. Deering Committee Member: Gregory P. Waite Committee Member: Alessandro Tibaldi Department Chair: John S. Gierke Table of Contents Page List of Figures ..................................................................................................................
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. University Microfilms International A Bell & Howell Information Company 300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 Order Number 9238305 Systematics of the genusMulinum pers. (Apiaceae, Hydrocotyloideae, Mulineae) Zech, James Craig, Ph.D. The Ohio State University, 1992 UMI 300 N.
    [Show full text]
  • Originally Published As: Schnurr, WBW, Trumbull, RB
    Originally published as: Schnurr, W. B. W., Trumbull, R. B., Clavero, J., Hahne, K., Siebel, W., Gardeweg, M. (2007): Twenty-five million years of felsic magmatism in the southern Central Volcanic Zone of the Andes: geochemistry and magma genesis of ignimbrites from 25-27°S, 67-72°W. - Journal of Volcanology and Geothermal Research, 166, 1, 17-46, DOI: 10.1016/j.jvolgeores.2007.06.005. Twenty-five million years of silicic volcanism in the southern Central Volcanic Zone of the Andes: geochemistry and magma genesis of ignimbrites from 25-27°S, 67-72°W W.B.W. Schnurr1, R.B. Trumbull2*, J. Clavero3, K. Hahne2, W. Siebel4, M. Gardeweg5 1 Freie Universität Berlin, Malteserstr. 74-100, 12249 Berlin, Germany 2 GeoForschungsZentrum Potsdam, Telegrafenberg, 14473 Potsdam, Germany 3 Servicio Nacional de Geología y Minería, Santiago, Chile 4 Institut für Geowissenschaften, Universität Tübingen, 72074 Tübingen, Germany 5 Aurum Consultores Servicios Geológicos y Mineros Ltda., Santiago, Chile Abstract Silicic volcanism in the Andean Central Volcanic Zone (CVZ) produced one of the world’s largest Neogene ignimbrite provinces. The largest and best known CVZ ignimbrites are located on the Altiplano-Puna plateau north of 24 °S. Their compositions and huge erupted volumes suggest an origin by large-scale crustal melting, and present-day geophysical anomalies in this region suggest still active zones of partial melting in the middle crust. Farther south in the CVZ, the Cerro Galán complex erupted ignimbrites in the late Miocene and Pliocene that are quite similar in volume and composition to those from north of 24 °S and they have a similar origin.
    [Show full text]
  • Geología Y Petrología De Los Volcanes Cenozoicos Pocitos, Del Medio Y Tul Tul, Provinciade Salta, Argentina Etcheverría, Mariela Patricia 2003
    Tesis de Posgrado Geología y petrología de los volcanes cenozoicos Pocitos, Del MEdio y Tul Tul, provinciade Salta, Argentina Etcheverría, Mariela Patricia 2003 Tesis presentada para obtener el grado de Doctor en Ciencias Geológicas de la Universidad de Buenos Aires Este documento forma parte de la colección de tesis doctorales y de maestría de la Biblioteca Central Dr. Luis Federico Leloir, disponible en digital.bl.fcen.uba.ar. Su utilización debe ser acompañada por la cita bibliográfica con reconocimiento de la fuente. This document is part of the doctoral theses collection of the Central Library Dr. Luis Federico Leloir, available in digital.bl.fcen.uba.ar. It should be used accompanied by the corresponding citation acknowledging the source. Cita tipo APA: Etcheverría, Mariela Patricia. (2003). Geología y petrología de los volcanes cenozoicos Pocitos, Del MEdio y Tul Tul, provinciade Salta, Argentina. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_3592_Etcheverria.pdf Cita tipo Chicago: Etcheverría, Mariela Patricia. "Geología y petrología de los volcanes cenozoicos Pocitos, Del MEdio y Tul Tul, provinciade Salta, Argentina". Tesis de Doctor. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. 2003. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_3592_Etcheverria.pdf Dirección: Biblioteca Central Dr. Luis F. Leloir, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires. Contacto: [email protected] Intendente Güiraldes
    [Show full text]
  • Technical Report on the Cauchari Project
    TECHNICAL REPORT ON THE CAUCHARI PROJECT JUJUY PROVINCE, ARGENTINA NI 43-101 REPORT PREPARED FOR OROCOBRE LTD. Level 1, 349 Coronation Drive, Milton, Queensland 4064, Australia. BY JOHN HOUSTON CONSULTING HYDROGEOLOGIST BSc., MSc., C.Geol., FGS, FCIWEM April 30, 2010 CONTENTS OF THE TECHNICAL REPORT 3. SUMMARY............................................................................................................................ 7 4. INTRODUCTION .................................................................................................................. 9 4.1. Authorship and Terms of Reference ................................................................................ 9 4.2. The uniqueness of brine prospects ................................................................................... 9 5. RELIANCE ON OTHER EXPERTS ................................................................................... 10 6. PROPERTY LOCATION AND DESCRIPTION................................................................ 11 6.1. Location.......................................................................................................................... 11 6.2. Exploration and exploitation licences ............................................................................ 11 6.2.1. Types of licences and co-ordinate system .............................................................. 11 6.2.2. Standing of licences................................................................................................ 13 6.2.3. The Cauchari
    [Show full text]
  • Taxocenosis De Las Serpientes (Sauropsida: Squamata) De La Provincia De Jujuy, Argentina
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340681516 Taxocenosis de las Serpientes (Sauropsida: Squamata) de la provincia de Jujuy, Argentina Article · April 2020 DOI: 10.31017/CdH.2020.(2019-042) CITATIONS READS 0 283 3 authors: Freddy Burgos Gallardo Jorge Baldo INECOA-CONICET National Scientific and Technical Research Council 18 PUBLICATIONS 38 CITATIONS 19 PUBLICATIONS 36 CITATIONS SEE PROFILE SEE PROFILE Diego Baldo National Scientific and Technical Research Council 159 PUBLICATIONS 1,662 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: MACS: Utilizacion econònica sustentable de camelidos sudamericanos silvestres. View project Chromosome Evolution View project All content following this page was uploaded by Diego Baldo on 04 May 2020. The user has requested enhancement of the downloaded file. Trabajo Cuad. herpetol. 34 (1): 53-77 (2020) Taxocenosis de las Serpientes (Sauropsida: Squamata) de la provincia de Jujuy, Argentina Freddy Burgos Gallardo1,2, Jorge Luis Baldo2,3, Juan Diego Baldo4 1 Instituto de Ecorregiones Andinas (UNJu-CONICET), Cátedra de Evolución, Facultad de Ciencias Agrarias, Alberdi 47, CP 4600, Jujuy, Argentina. 2 Colección de Vertebrados, Instituto de Biología de la Altura. UNJu, Avda. Bolivia 1239, Jujuy, Argentina. 3 VICAM-CONICET, Cátedra de Evolución, Facultad de Ciencias Agrarias, UNJu, Jujuy, Argentina. 4 Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones-CONICET, Misiones, Argentina. Recibido: 06 Noviembre 2019 ABSTRACT Revisado: 08 Enero 2020 Taxocenosis of Serpentes (Sauropsida: Squamata) of Jujuy province, Argentina. In this work, we Aceptado: 09 Marzo 2020 present a review on the composition and geographic distribution of the taxocenose of the snakes Editor Asociado: J.
    [Show full text]
  • Raga66 1.2 Maquetación 1
    Revista de la Asociación Geológica Argentina 66 (1): 253 - 270 (2010) 253 EVIDENCIA TEXTURAL Y GEOQUÍMICA DE MEZCLA DE MAGMAS EN EL VOLCÁN CHIMPA, PUNA SALTEÑA Marcelo ARNOSIO Instituto Geonorte, Facultad de Ciencias Naturales, Universidad Nacional de Salta, Salta. Email: [email protected] RESUMEN La historia eruptiva del volcán Chimpa (24º00´S-66º08´O) comprende un ciclo explosivo que eruptó ignimbritas y depósitos de flujos de bloques y ceniza de composición andesítica, y un ciclo efusivo, representado por lavas andesíticas y andesíticas basálticas. Los primeros materiales emitidos durante el ciclo explosivo corresponden a ignimbritas, las cuales no poseen evi- dencias de interacción con magmas básicos. Por el contrario, en los depósitos de flujos de bloques y ceniza quedó registrada la interacción con un magma básico (mingling) representado por inclusiones máficas y el desarrollo de texturas de desequilibrio en plagioclasa y biotita. Sin embargo, la composición del magma andesítico no se modificó durante la mezcla. En el ciclo efu- sivo se generó un nuevo magma, por mezcla y homogeneización (magma mixing) entre el magma andesítico y un magma más básico. Este magma híbrido posee una asociación mineral en desequilibrio, que incluye olivino y cuarzo con corona de clino- piroxeno, hornblenda y biotita con coronas formadas por plagioclasa + ortopiroxeno + magnetita, así como ortopiroxeno con coronas de clinopiroxeno. Estas fases en desequilibrio coexisten junto a otros cristales de las mismas fases, pero en aparente equilibrio. En diagramas geoquímicos, las lavas híbridas ocupan una posición intermedia en la tendencia lineal definida por el extremo andesítico y andesítico basáltico. La proporción del magma básico involucrado en la mezcla es de 44%.
    [Show full text]
  • (Puna Plateau, NW Argentina). Implication for the Geothermal System Investigation
    energies Article Geological Map of the Tocomar Basin (Puna Plateau, NW Argentina). Implication for the Geothermal System Investigation Rubén Filipovich 1,* , Walter Báez 1, Gianluca Groppelli 2,* , Florencia Ahumada 1 , Luca Aldega 3 , Raúl Becchio 1, Gabriele Berardi 4, Sabina Bigi 3 , Chiara Caricchi 5, Agostina Chiodi 1, Sveva Corrado 4, Gianfilippo De Astis 5, Arnaldo A. De Benedetti 4 , Chiara Invernizzi 6, Gianluca Norini 2, Michele Soligo 4, Sara Taviani 7, José G. Viramonte 1 and Guido Giordano 2,4 1 Instituto de Bio y Geociencias del NOA (IBIGEO, UNSa-CONICET), Av. 9 de Julio 14, A4405BBA Salta, Argentina; [email protected] (W.B.); ahumadafl[email protected] (F.A.); [email protected] (R.B.); [email protected] (A.C.); [email protected] (J.G.V.) 2 CNR Istituto di Geologia Ambientale e Geoingegneria, sezione di Milano, Via Mario Bianco 9, 20131 Milan, Italy; [email protected] (G.N.); [email protected] (G.G.) 3 Dipartimento di Scienze della Terra, Sapienza Università di Roma, Piazzale Aldo Moro, 5, 00185 Rome, Italy; [email protected] (L.A.); [email protected] (S.B.) 4 Dipartimento di Scienze, Università degli Studi di Roma Tre, Largo S. L. Murialdo 1, 00146 Rome, Italy; [email protected] (G.B.); [email protected] (S.C.); [email protected] (A.A.D.B.); [email protected] (M.S.) 5 Istituto Nazionale di Geofisica e Vulcanologia, 00143 Rome, Italy; [email protected] (C.C.); gianfi[email protected] (G.D.A.) 6 Scuola di Scienze e Tecnologia—Sezione
    [Show full text]
  • Pacaya and Fuego Volcanoes, Guatemala
    Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports 2015 INSIGHTS INTO THE RELATIONSHIP BETWEEN MIXING DURATION AND VOLCANIC EXPLOSIVITY INDEX (VEI): PACAYA AND FUEGO VOLCANOES, GUATEMALA Nicola Mari Michigan Technological University, [email protected] Copyright 2015 Nicola Mari Recommended Citation Mari, Nicola, "INSIGHTS INTO THE RELATIONSHIP BETWEEN MIXING DURATION AND VOLCANIC EXPLOSIVITY INDEX (VEI): PACAYA AND FUEGO VOLCANOES, GUATEMALA", Open Access Master's Thesis, Michigan Technological University, 2015. https://doi.org/10.37099/mtu.dc.etdr/30 Follow this and additional works at: https://digitalcommons.mtu.edu/etdr Part of the Geochemistry Commons, and the Volcanology Commons INSIGHTS INTO THE RELATIONSHIP BETWEEN MIXING DURATION AND VOLCANIC EXPLOSIVITY INDEX (VEI): PACAYA AND FUEGO VOLCANOES, GUATEMALA By Nicola Mari A THESIS Submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In Geology MICHIGAN TECHNOLOGICAL UNIVERSITY 2015 © 2015 Nicola Mari This thesis has been approved in partial fulfillment of the requirements for the Degree of MASTER OF SCIENCE in Geology. Department of Geological and Mining Engineering and Sciences Thesis Advisor: William I. Rose Committee Member: Chad D. Deering Committee Member: Gregory P. Waite Committee Member: Alessandro Tibaldi Department Chair: John S. Gierke Table of Contents Page List of Figures ..................................................................................................................
    [Show full text]
  • Accepted Manuscript
    Accepted Manuscript A middle miocene (13.5–12Ma) deformational event constrained by volcanism along the puna-eastern cordillera border, NW Argentina Alejandro Aramayo, Silvina Guzmán, Fernando Hongn, Cecilia del Papa, Carolina Montero-López, Masafumi Sudo PII: S0040-1951(17)30073-2 DOI: doi: 10.1016/j.tecto.2017.02.018 Reference: TECTO 127410 To appear in: Tectonophysics Received date: 24 May 2016 Revised date: 6 February 2017 Accepted date: 21 February 2017 Please cite this article as: Alejandro Aramayo, Silvina Guzmán, Fernando Hongn, Cecilia del Papa, Carolina Montero-López, Masafumi Sudo , A middle miocene (13.5–12Ma) deformational event constrained by volcanism along the puna-eastern cordillera border, NW Argentina. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Tecto(2017), doi: 10.1016/j.tecto.2017.02.018 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT A middle miocene (13.5 -12 ma) deformational event constrained by volcanism along the puna- eastern cordillera border, NW Argentina Alejandro Aramayo1, Silvina Guzmán1,2, Fernando Hongn1, Cecilia del Papa3, Carolina Montero-López1, Masafumi Sudo4 1Instituto de Bio y Geociencias del NOA (IBIGEO), CONICET-UNSa, 9 de julio 14, Rosario de Lerma (4405), Salta, Argentina, [email protected], [email protected], [email protected], [email protected] 2Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, Lluis Sole i Sabaris s/n, 08028 Barcelona, Spain.
    [Show full text]
  • Volcanismo Postcolapso De La Caldera Vilama, Mioceno Superior, Puna Argentino-Boliviana
    “Volcanismo postcolapso de la caldera Vilama, Mioceno superior, Puna argentino-boliviana. Mecanismos eruptivos y Petrogénesis.” Tesis Doctoral Lic. Diego Fracchia Directora: Dra. Beatriz Lydia Luisa Coira Codirector: Dr. Eduardo Jorge Llambías Facultad de Ciencias Naturales y Museo Universidad Nacional de La Plata Año 2009 i Imagen de la portada: Fragmento del “Plano del Territorio Nacional de Los Andes” del año 1924, en donde se observa el trazado del límite internacional con la República de Bolivia previo al tratado definitivo de límites firmado el 9 de julio de 1925 y vigente desde el 11 de octubre de 1938. Tomado de Catalano, L., 1927. “Datos hidrológicos del Desierto de Atacama (Territorio Nacional de Los Andes)”. Dirección General de Minas, Geología e Hidrología, Publicación Nº 35. Págs. 1-55. Buenos Aires. ii “Volcanismo postcolapso de la caldera Vilama, Mioceno superior, Puna argentino-boliviana. Mecanismos eruptivos y Petrogénesis.” Tesis Doctoral Lic. Diego Fracchia Directora: Dra. Beatriz Lydia Luisa Coira Codirector: Dr. Eduardo Jorge Llambías Facultad de Ciencias Naturales y Museo Universidad Nacional de La Plata Año 2009 iii Resumen Este trabajo se realizó a partir de la hipótesis de trabajo: “los centros volcánicos emplazados alrededor y por encima del domo resurgente de la caldera Vilama (Puna argentina-Altiplano boliviano) con posterioridad a su colapso, son representantes de la Etapa de Postcolapso de dicha caldera”. De acuerdo con el modelo clásico de calderas resurgentes, para cumplir con dicha condición los centros volcánicos deberían estar formados por rocas derivadas del magma restante en la cámara magmática luego de la erupción formadora de la caldera. Para someter a prueba a esta hipótesis de trabajo se realizó un estudio petrológico de los centros volcánicos referidos, y luego se los comparó con la Ignimbrita Vilama, representante de la Etapa de Colapso de la caldera.
    [Show full text]