Analytical Mechanics: Lagrangian and Hamiltonian Formalism

Total Page:16

File Type:pdf, Size:1020Kb

Analytical Mechanics: Lagrangian and Hamiltonian Formalism MATH-F-204 Analytical mechanics: Lagrangian and Hamiltonian formalism Glenn Barnich Physique Théorique et Mathématique Université libre de Bruxelles and International Solvay Institutes Campus Plaine C.P. 231, B-1050 Bruxelles, Belgique Bureau 2.O6. 217, E-mail: [email protected], Tel: 02 650 58 01. The aim of the course is an introduction to Lagrangian and Hamiltonian mechanics. The fundamental equations as well as standard applications of Newtonian mechanics are derived from variational principles. From a mathematical perspective, the course and exercises (i) constitute an application of differential and integral calculus (primitives, inverse and implicit function theorem, graphs and functions); (ii) provide examples and explicit solutions of first and second order systems of differential equations; (iii) give an implicit introduction to differential manifolds and to realiza- tions of Lie groups and algebras (change of coordinates, parametrization of a rotation, Galilean group, canonical transformations, one-parameter subgroups, infinitesimal transformations). From a physical viewpoint, a good grasp of the material of the course is indispensable for a thorough understanding of the structure of quantum mechanics, both in its operatorial and path integral formulations. Furthermore, the discussion of Noether’s theorem and Galilean invariance is done in a way that allows for a direct generalization to field theories with Poincaré or conformal invariance. 2 Contents 1 Extremisation, constraints and Lagrange multipliers 5 1.1 Unconstrained extremisation . .5 1.2 Constraints and regularity conditions . .5 1.3 Constrained extremisation . .7 2 Constrained systems and d’Alembert principle 9 2.1 Holonomic constraints . .9 2.2 d’Alembert’s theorem . 10 2.3 Non-holonomic constraints . 10 2.4 d’Alembert’s principle . 13 3 Hamilton and least action principles 15 4 Lagrangian mechanics 17 5 Applications of the Lagrangian formalism 19 6 Covariance of the Lagrangian formalism 21 6.1 Change of dependent variables . 21 6.2 Change of the independent variable . 22 6.3 Combined change of variables . 23 7 Noether’s theorem and Galilean invariance 25 7.1 Noether’s first theorem . 25 7.2 Applications . 26 7.2.1 Explicit time independence and conservation of energy . 26 7.2.2 Cyclic variables and conservation of canonical momentum . 26 7.2.3 One-parameter groups of transformations . 26 7.2.4 One-parameter groups of transformations involving time . 28 7.2.5 Galilean boosts . 30 8 Hamiltonian formalism 31 9 Canonical transformations 33 10 Dynamics in non-inertial frames 35 11 Charged particle in electromagnetic field 37 References 37 3 4 CONTENTS Chapter 1 Extremisation, constraints and Lagrange multipliers The purpose of this chapter is to re-derive in the finite-dimensional case standard results on constrained extremisation so as to motivate and clarify analogous results needed in the functional case. It is based on chapters II.1, II.2, II.5 of [8]. The discussion on constraints and regularity conditions is taken from chapter 1 of [11]. 1.1 Unconstrained extremisation The problem consists of finding the extrema (=stationary points) of a function F (x1; : : : ; xn) of n variables xa, a = 1; : : : ; n in the interior of a domain. We write the variation of such a function under variations δxa of the variables xa as @F δF = δxa : (1.1) @xa @F @F Here and throughout, we use the summation convention over repeated indices, δxa = Pn δxa . @xa a=1 @xa b Since for a collection of functions fa(x ), a a faδx = 0; 8δx =) fa = 0; (1.2) it follows that the extrema x¯a are determined by the vanishing of the gradient of F , @F δF = 0 () j a a = 0 : (1.3) @xa x =¯x Recall further that the nature (maximum, minimum, saddle point) of each extremum is determined by the eigenvalues of the matrix @2F j : (1.4) @xa@xb x¯ 1.2 Constraints and regularity conditions Very often, one is interested in a problem of extremisation, where the variables xa are subjected to con- straints, that is to say where r independent relations Gm(x) = 0; m = 1; : : : r; (1.5) 5 6 CHAPTER 1. EXTREMISATION, CONSTRAINTS AND LAGRANGE MULTIPLIERS @G are supposed to hold. Standard regularity on the functions G are that the rank of the matrix m is m @xa r (locally, in a neighborhood of Gm = 0). This means that one may choose locally a new system of a α coordinates such that Gm are r of the new coordinates, x ! q ;Gm, with α = 1; : : : n − r. Lemma 1. A function f that vanishes when the constraints hold can be written as a combination of the functions defining the constraints: m fjGm=0 = 0 () f = g Gm ; (1.6) for some coefficients gm(x). That the condition is sufficient ((=) is obvious. That it is necessary (=)) is shown in the new α coordinate system, where f(q ;Gm = 0) = 0 and thus 1 1 Z d Z @f f(qα;G ) = dτ f(qα; τG ) = G dτ (qα; τG ); (1.7) m dτ m m @G m 0 0 m m R 1 @f α so that g = dτ (q ; τGm). 0 @Gm In the following, we will use the notation f ≈ 0 for a function that vanishes when the constraints hold, m so that the lemma becomes f ≈ 0 () f = g Gm. Lemma 2. Suppose that the constraints hold and that one restricts oneself to variations δxa tangent to the constraint surface, @G G = 0; m δxa ≈ 0: (1.8) m @xa It follows that @G f δxa ≈ 0; 8δxa satisfying (1.8) () f ≈ µm m ; (1.9) a a @xa for some µm. NB: In this lemma, the use of ≈ means that these equalities in (1.8) and (1.9) are understood as holding when Gm = 0. That the condition is sufficient ((=) is again direct when contracting the expression for fa in the RHS of (1.9) with δxa and using the second of (1.8). That the condition is necessary (=)) follows by first substracting from the LHS of (1.9) the combi- nation @G −λm m δxa ≈ 0, with arbitrary λm, which gives @xa @G (f − λm m )δxa ≈ 0: (1.10) a @xa Without loss of generality (by renaming if necessary some of the variables), we can assume that @G j m j 6= 0; for a = n − r + 1; : : : ; n: (1.11) @xa This implies that one may locally solve the constraints in terms of the r last coordinates, ∆ ∆ α Gm = 0 () x = X (x ); ∆ = n − r + 1; : : : ; n; α = 1; : : : ; n − r: (1.12) In this case, one refers to the x∆ as dependent and to the xα as independent variables. This also implies that, locally, there exists an invertible matrix M m∆ such that m∆ @Gm0 m @Gm mΓ Γ M = δ 0 ; M = δ : (1.13) @x∆ m @x∆ ∆ 1.3. CONSTRAINED EXTREMISATION 7 In terms of the various types of variables, (1.10) may be decomposed as @G @G (f − λm m )δx∆ + (f − λm m )δxα ≈ 0: (1.14) ∆ @x∆ α @xα Since the λm are arbitrary, we are free to fix @G λm = M mΓf := µm () f = µm m ; (1.15) Γ ∆ @x∆ so that the first term (1.14) vanishes. We then remain with @G (f − µm m )δxα ≈ 0: (1.16) α @xα Since the variables xα are unconstrained and the variations δxα independent, this implies as in (1.2) that @G f ≈ µm m : (1.17) α @xα 1.3 Constrained extremisation a Extremisation of a function F (x ) under r constraints Gm = 0 can then be done in two equivalent ways: Method 1: The first is to solve the constraints as in (1.12) and to extremise the function F G(xα) = F (xα;X∆(xβ)) : (1.18) In terms of the unconstrained variables xα, we are back to an unconstrained extremisation problem, whose extrema are determined by @F G = 0 : (1.19) @xα In order to relate to the previous discussion and the second method to be explained below, note that, ∆ ∆ α by using Lemma 1, Gm = 0 () x − X (x ) = 0 implies ∆ ∆ α ∆m x − X (x ) = g Gm; (1.20) for g∆m(xa) invertible. Differentiation with respect to xΓ yields @g∆m @G δ∆ = G + g∆m m : (1.21) Γ @xΓ m @xΓ @G Hence, if the constraints are satisfied, i.e., if G = 0, g∆m is the inverse matrix to m , g∆m ≈ M ∆m. m @x∆ On the one hand, @F G @F @F @XΓ = j ∆ ∆ + j ∆ ∆ : (1.22) @xα @xα x =X @xΓ x =X @xα On the other hand, @XΓ @(XΓ − xΓ) @gΓm @G = = − G − gΓm m ; (1.23) @xα @xα @xα m @xα ∆ ∆ so that, if Gm = 0, or equivalently, if one substitutes x by X , (1.19) may be written as @F @G @F ≈ µm m ; µm ≈ g∆m: (1.24) @xα @xα @x∆ 8 CHAPTER 1. EXTREMISATION, CONSTRAINTS AND LAGRANGE MULTIPLIERS Furthermore, if Gm = 0, one may also write @F @F @F @G @G = δΓ ≈ gΓm m ≈ µm m : (1.25) @x∆ @xΓ ∆ @xΓ @x∆ @x∆ by using (1.21) and the definition of µm in (1.24). Method 2: Instead of restricting oneself to the space of independent variables xa, one extends the space of variables xa by additional variables λm, called Lagrange multipliers, and one considers the unconstrained extremisation of the function, λ a m a m λ F (x ; λ ) = F (x ) − λ Gm; δF = 0 : (1.26) By unconstrained extremisation, we understand that the variables xa; λm are considered as unconstrained at the outset, with independent variations δxa; δλm. That this gives the same extrema can be seen as follows: @F @G 0 = δF λ = ( − λm m )δxa − δλmG ; (1.27) @xa @xa m implies @F @G = λm m ;G = 0: (1.28) @xa @xa m @G A variation of the second equation then implies that m δxa = 0, while contraction of the first equation @xa with δxa gives us (1.10) of the proof of lemma 2.
Recommended publications
  • Branched Hamiltonians and Supersymmetry
    Branched Hamiltonians and Supersymmetry Thomas Curtright, University of Miami Wigner 111 seminar, 12 November 2013 Some examples of branched Hamiltonians are explored, as recently advo- cated by Shapere and Wilczek. These are actually cases of switchback poten- tials, albeit in momentum space, as previously analyzed for quasi-Hamiltonian dynamical systems in a classical context. A basic model, with a pair of Hamiltonian branches related by supersymmetry, is considered as an inter- esting illustration, and as stimulation. “It is quite possible ... we may discover that in nature the relation of past and future is so intimate ... that no simple representation of a present may exist.” – R P Feynman Based on work with Cosmas Zachos, Argonne National Laboratory Introduction to the problem In quantum mechanics H = p2 + V (x) (1) is neither more nor less difficult than H = x2 + V (p) (2) by reason of x, p duality, i.e. the Fourier transform: ψ (x) φ (p) ⎫ ⎧ x ⎪ ⎪ +i∂/∂p ⎪ ⇐⇒ ⎪ ⎬⎪ ⎨⎪ i∂/∂x p − ⎪ ⎪ ⎪ ⎪ ⎭⎪ ⎩⎪ This equivalence of (1) and (2) is manifest in the QMPS formalism, as initiated by Wigner (1932), 1 2ipy/ f (x, p)= dy x + y ρ x y e− π | | − 1 = dk p + k ρ p k e2ixk/ π | | − where x and p are on an equal footing, and where even more general H (x, p) can be considered. See CZ to follow, and other talks at this conference. Or even better, in addition to the excellent books cited at the conclusion of Professor Schleich’s talk yesterday morning, please see our new book on the subject ... Even in classical Hamiltonian mechanics, (1) and (2) are equivalent under a classical canonical transformation on phase space: (x, p) (p, x) ⇐⇒ − But upon transitioning to Lagrangian mechanics, the equivalence between the two theories becomes obscure.
    [Show full text]
  • The Lagrangian and Hamiltonian Mechanical Systems
    THE LAGRANGIAN AND HAMILTONIAN MECHANICAL SYSTEMS ALEXANDER TOLISH Abstract. Newton's Laws of Motion, which equate forces with the time- rates of change of momenta, are a convenient way to describe mechanical systems in Euclidean spaces with cartesian coordinates. Unfortunately, the physical world is rarely so cooperative|physicists often explore systems that are neither Euclidean nor cartesian. Different mechanical formalisms, like the Lagrangian and Hamiltonian systems, may be more effective at describing such phenomena, as they are geometric rather than analytic processes. In this paper, I shall construct Lagrangian and Hamiltonian mechanics, prove their equivalence to Newtonian mechanics, and provide examples of both non- Newtonian systems in action. Contents 1. The Calculus of Variations 1 2. Manifold Geometry 3 3. Lagrangian Mechanics 4 4. Two Electric Pendula 4 5. Differential Forms and Symplectic Geometry 6 6. Hamiltonian Mechanics 7 7. The Double Planar Pendulum 9 Acknowledgments 11 References 11 1. The Calculus of Variations Lagrangian mechanics applies physics not only to particles, but to the trajectories of particles. We must therefore study how curves behave under small disturbances or variations. Definition 1.1. Let V be a Banach space. A curve is a continuous map : [t0; t1] ! V: A variation on the curve is some function h of t that creates a new curve +h.A functional is a function from the space of curves to the real numbers. p Example 1.2. Φ( ) = R t1 1 +x _ 2dt, wherex _ = d , is a functional. It expresses t0 dt the length of curve between t0 and t1. Definition 1.3.
    [Show full text]
  • Analytical Mechanics
    A Guided Tour of Analytical Mechanics with animations in MAPLE Rouben Rostamian Department of Mathematics and Statistics UMBC [email protected] December 2, 2018 ii Contents Preface vii 1 An introduction through examples 1 1.1 ThesimplependulumàlaNewton ...................... 1 1.2 ThesimplependulumàlaEuler ....................... 3 1.3 ThesimplependulumàlaLagrange.. .. .. ... .. .. ... .. .. .. 3 1.4 Thedoublependulum .............................. 4 Exercises .......................................... .. 6 2 Work and potential energy 9 Exercises .......................................... .. 12 3 A single particle in a conservative force field 13 3.1 The principle of conservation of energy . ..... 13 3.2 Thescalarcase ................................... 14 3.3 Stability....................................... 16 3.4 Thephaseportraitofasimplependulum . ... 16 Exercises .......................................... .. 17 4 TheKapitsa pendulum 19 4.1 Theinvertedpendulum ............................. 19 4.2 Averaging out the fast oscillations . ...... 19 4.3 Stabilityanalysis ............................... ... 22 Exercises .......................................... .. 23 5 Lagrangian mechanics 25 5.1 Newtonianmechanics .............................. 25 5.2 Holonomicconstraints............................ .. 26 5.3 Generalizedcoordinates .......................... ... 29 5.4 Virtual displacements, virtual work, and generalized force....... 30 5.5 External versus reaction forces . ..... 32 5.6 The equations of motion for a holonomic system . ...
    [Show full text]
  • Lagrangian Mechanics
    Alain J. Brizard Saint Michael's College Lagrangian Mechanics 1Principle of Least Action The con¯guration of a mechanical system evolving in an n-dimensional space, with co- ordinates x =(x1;x2; :::; xn), may be described in terms of generalized coordinates q = (q1;q2;:::; qk)inak-dimensional con¯guration space, with k<n. The Principle of Least Action (also known as Hamilton's principle) is expressed in terms of a function L(q; q_ ; t)knownastheLagrangian,whichappears in the action integral Z tf A[q]= L(q; q_ ; t) dt; (1) ti where the action integral is a functional of the vector function q(t), which provides a path from the initial point qi = q(ti)tothe¯nal point qf = q(tf). The variational principle ¯ " à !# ¯ Z d ¯ tf @L d @L ¯ j 0=±A[q]= A[q + ²±q]¯ = ±q j ¡ j dt; d² ²=0 ti @q dt @q_ where the variation ±q is assumed to vanish at the integration boundaries (±qi =0=±qf), yields the Euler-Lagrange equation for the generalized coordinate qj (j =1; :::; k) à ! d @L @L = ; (2) dt @q_j @qj The Lagrangian also satis¯esthesecond Euler equation à ! d @L @L L ¡ q_j = ; (3) dt @q_j @t and thus for time-independent Lagrangian systems (@L=@t =0)we¯nd that L¡q_j @L=@q_j is a conserved quantity whose interpretationwill be discussed shortly. The form of the Lagrangian function L(r; r_; t)isdictated by our requirement that Newton's Second Law m Är = ¡rU(r;t)describing the motion of a particle of mass m in a nonuniform (possibly time-dependent) potential U(r;t)bewritten in the Euler-Lagrange form (2).
    [Show full text]
  • Lagrangian Mechanics - Wikipedia, the Free Encyclopedia Page 1 of 11
    Lagrangian mechanics - Wikipedia, the free encyclopedia Page 1 of 11 Lagrangian mechanics From Wikipedia, the free encyclopedia Lagrangian mechanics is a re-formulation of classical mechanics that combines Classical mechanics conservation of momentum with conservation of energy. It was introduced by the French mathematician Joseph-Louis Lagrange in 1788. Newton's Second Law In Lagrangian mechanics, the trajectory of a system of particles is derived by solving History of classical mechanics · the Lagrange equations in one of two forms, either the Lagrange equations of the Timeline of classical mechanics [1] first kind , which treat constraints explicitly as extra equations, often using Branches [2][3] Lagrange multipliers; or the Lagrange equations of the second kind , which Statics · Dynamics / Kinetics · Kinematics · [1] incorporate the constraints directly by judicious choice of generalized coordinates. Applied mechanics · Celestial mechanics · [4] The fundamental lemma of the calculus of variations shows that solving the Continuum mechanics · Lagrange equations is equivalent to finding the path for which the action functional is Statistical mechanics stationary, a quantity that is the integral of the Lagrangian over time. Formulations The use of generalized coordinates may considerably simplify a system's analysis. Newtonian mechanics (Vectorial For example, consider a small frictionless bead traveling in a groove. If one is tracking the bead as a particle, calculation of the motion of the bead using Newtonian mechanics) mechanics would require solving for the time-varying constraint force required to Analytical mechanics: keep the bead in the groove. For the same problem using Lagrangian mechanics, one Lagrangian mechanics looks at the path of the groove and chooses a set of independent generalized Hamiltonian mechanics coordinates that completely characterize the possible motion of the bead.
    [Show full text]
  • Ten1perature, Least Action, and Lagrangian Mechanics L
    14 Auguq Il)<)5 2) 291 PHYSICS LETTERS A 's. Rev. ELSEVIER Physics Letters A 204 (1995) 133-135 l) 759. 7. to be Ten1perature, least action, and Lagrangian mechanics l. 843. William G. Hoover Department ofApplied Science, Ulliuersity ofCalifornia at Davis / Livermore alld Lawrence Licermore Nalional Laboratory, LiueTlrJOre, CA 94551-7808, USA Received 28 March 1995; revised manuscript received 2 June 1995; accepted for publication 2 June J995 Communicated by A.R. Bishop Abstract Temperature is considered from two different mechanical standpoints. The more approach uses Hamilton's least action principle. From it we derive thermostatting forces identical to those found using Gauss' Principle. This approach applies to equilibrium and nonequilibrium systems. The Lagrangian approach is different, and less useful, applying only at equilibrium. Keywords: Least action principle; Nonequilibrium; Lagrangian mechanics 1. Introduction When the context is clear we use just a single q or q to represent whole sets. Feynman repeatedly emphasized the generality of Lagrangian mechanics is particularly well-suited Hamilton's principle of least action [1], the physical to the treatment of constrained systems. Constraints, law from which both kinds of mechanics, classical used first to represent mechanical linkages and cou­ and quantum, follow. The principle states that the plings, have more recently been used in molecular observed trajectory {qed} is that which minimizes simulations, where they maintain the shape of a the action integral, polyatomic molecule and reduce the number of dy­ namical equations to be integrated. The usual ap­ ofL(q,q,t)dt of(K <P)dt=O, proach is to add a "Lagrange multiplier" to the Lagrangian in such a way as to impose the constraint where K is the kinetic energy, <P is the potential without affecting energy conservation [2,3].
    [Show full text]
  • Examples in Lagrangian Mechanics C Alex R
    Lecture 18 Friday - October 14, 2005 Written or last updated: October 14, 2005 P441 – Analytical Mechanics - I Examples in Lagrangian Mechanics c Alex R. Dzierba Sample problems using Lagrangian mechanics Here are some sample problems. I will assign similar problems for the next problem set. Example 1 In Figure 1 we show a box of mass m sliding down a ramp of mass M. The ramp moves without friction on the horizontal plane and is located by coordinate x1. The box also slides without friction on the ramp and is located by coordinate x2 with respect to the ramp. x 2 m x1 M θ Figure 1: A box slides down a ramp without friction and the ramp slides along a horizontal surface without friction. The kinetic energy of the ramp TM is given by: 1 2 TM = Mx˙ 1 (1) 2 and the kinetic energy of the box Tm is given by: 1 2 2 Tm = m x˙ 1 +x ˙ 2 + 2x ˙ 1x˙ 1 cos θ (2) 2 The velocity of the box is obviously derived from the vector sum of the velocity relative to the ramp and the velocity of the ramp. The potential energy of the system is just the potential energy of the box and that leads to: U = −mgx2 sin θ (3) 1 and finally the Lagrangian is given by: 1 2 1 2 2 L(x1, x˙ 1, x2, x˙ 2)= TM + Tm − U = Mx˙ 1 + m x˙ 1 +x ˙ 2 + 2x ˙ 1x˙ 1 cos θ + mgx2 sin θ (4) 2 2 The equations of motion are: d ∂L ∂L = (5) dt ∂x˙ 1 ∂x1 and d ∂L ∂L = (6) dt ∂x˙ 2 ∂x2 Equation 5 leads to: d [m(x ˙ 1 +x ˙ 2 cos θ)+ Mx˙ 1] = 0 (7) dt The RHS of equation 7 is zero because the Lagrangian does not explicitly depend on x1.
    [Show full text]
  • Lagrange As a Historian of Mechanics
    Advances in Historical Studies 2013. Vol.2, No.3, 126-130 Published Online September 2013 in SciRes (http://www.scirp.org/journal/ahs) http://dx.doi.org/10.4236/ahs.2013.23016 Lagrange as a Historian of Mechanics Agamenon R. E. Oliveira Polytechnic School of Rio de Janeiro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil Email: [email protected] Received August 5th, 2013; revised September 6th, 2013; accepted September 15th, 2013 Copyright © 2013 Agamenon R. E. Oliveira. This is an open access article distributed under the Creative Com- mons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, pro- vided the original work is properly cited. In the first and second parts of his masterpiece, Analytical Mechanics, dedicated to static and dynamics respectively, Lagrange (1736-1813) describes in detail the development of both branches of mechanics from a historical point of view. In this paper this important contribution of Lagrange (Lagrange, 1989) to the history of mechanics is presented and discussed in tribute to the bicentennial year of his death. Keywords: History of Mechanics; Epistemology of Physics; Analytical Mechanics Introduction in the same meaning that is now understood by modern physi- cists. The logical unity of this theory is based on the least action Lagrange was one of the founders of variational calculus, in principle. However, the two dimensions of formalization and which the Euler-Lagrange equations were derived by him. He unification are the main characteristics of Lagrange’s method. also developed the method of Lagrange multipliers which is a manner of finding local maxima and minima of a function sub- jected to constraints.
    [Show full text]
  • Lagrangian Mechanics
    Chapter 1 Lagrangian Mechanics Our introduction to Quantum Mechanics will be based on its correspondence to Classical Mechanics. For this purpose we will review the relevant concepts of Classical Mechanics. An important concept is that the equations of motion of Classical Mechanics can be based on a variational principle, namely, that along a path describing classical motion the action integral assumes a minimal value (Hamiltonian Principle of Least Action). 1.1 Basics of Variational Calculus The derivation of the Principle of Least Action requires the tools of the calculus of variation which we will provide now. Definition: A functional S[ ] is a map M S[]: R ; = ~q(t); ~q :[t0; t1] R R ; ~q(t) differentiable (1.1) F! F f ⊂ ! g from a space of vector-valued functions ~q(t) onto the real numbers. ~q(t) is called the trajec- tory of a systemF of M degrees of freedom described by the configurational coordinates ~q(t) = (q1(t); q2(t); : : : qM (t)). In case of N classical particles holds M = 3N, i.e., there are 3N configurational coordinates, namely, the position coordinates of the particles in any kind of coordianate system, often in the Cartesian coordinate system. It is important to note at the outset that for the description of a d classical system it will be necessary to provide information ~q(t) as well as dt ~q(t). The latter is the velocity vector of the system. Definition: A functional S[ ] is differentiable, if for any ~q(t) and δ~q(t) where 2 F 2 F d = δ~q(t); δ~q(t) ; δ~q(t) < , δ~q(t) < , t; t [t0; t1] R (1.2) F f 2 F j j jdt j 8 2 ⊂ g a functional δS[ ; ] exists with the properties · · (i) S[~q(t) + δ~q(t)] = S[~q(t)] + δS[~q(t); δ~q(t)] + O(2) (ii) δS[~q(t); δ~q(t)] is linear in δ~q(t).
    [Show full text]
  • Exercises on Analytical Mechanics Problem Set Number 4
    Institut fur¨ Physik WS 2012/2013 Friederike Schmid Exercises on Analytical Mechanics Problem set number 4 Questions on the lecture: 27. What do we mean by rigid body? 28. What are the Euler angles? 29. What is the characterizing property of a physical tensor? 30. Give the equation for the inertia tensor of a rigid body with mass distribution ρ(r). 31. What is the relation between the inertia tensor and the moment of inertia? 32. Give the general expressions for the angular momentum and the kinetic energy of a rigid body. Which is the translational contribution? Which the rotational contribution? 33. What are the principal moments of inertia? 34. What are the principal axes of inertia? Problems (To be dropped until 12:00 am on November 11th, 2012 in the red box number 40 at Staudingerweg 7) Problem 10) Jojo (6 Points) Consider a Jojo consisting of a cylinder of length L with radius R and mass M, which is attached to a string at its round side. The Jojo can roll up and down the string. It has the height h. a) Calculate the moment of inertia θ of the cylinder with respect to its long axis. b) Calculate the kinetic energy as a funciton of h˙ . (Don’t forget the rotational contribution!) c) Construct the Lagrange function L and determine the equations of motion. How does the solution look like? Problem 11) Lagrange parameters (6 Points) Use Lagrange parameters to solve the following problems. a) Determine the cuboid with largest volume V which can be fully contained in the ellipsoid x2 y2 z2 + + = 1.
    [Show full text]
  • Simple Pendulum Via Lagrangian Mechanics by Frank Owen, 22 May 2014 © All Rights Reserved
    Alpha Omega Engineering, Inc. 872 Toro Street, San Luis Obispo, CA 93401 – (805) 541 8608 (home office), (805) 441 3995 (cell) Simple pendulum via Lagrangian mechanics by Frank Owen, 22 May 2014 © All rights reserved The equation of motion for a simple pendulum of length l, operating in a gravitational field is ̈ This equation can be obtained by applying Newton’s Second Law (N2L) to the pendulum and then writing the equilibrium equation. It is instructive to work out this equation of motion also using Lagrangian mechanics to see how the procedure is applied and that the result obtained is the same. For this example we are using the simplest of pendula, i.e. one with a massless, inertialess link and an inertialess pendulum bob at its end, as shown in Figure 1. Figure 1 – Simple pendulum Lagrangian formulation The Lagrangian function is defined as where T is the total kinetic energy and U is the total potential energy of a mechanical system. 1 To get the equations of motion, we use the Lagrangian formulation ( ) ̇ where q signifies generalized coordinates and F signifies non-conservative forces acting on the mechanical system. For the simplify pendulum, we assume no friction, so no non-conservative forces, so all Fi are 0. The aforementioned equation of motion is in terms of as a coordinate, not in terms of x and y. So we need to use kinematics to get our energy terms in terms of . For T, we need the velocity of the mass. ̇ So ( ̇) ̇ Figure 2 – Height for potential energy The potential energy, U, depends only on the y-coordinate.
    [Show full text]
  • The Origins of Analytical Mechanics in 18Th Century Marco Panza
    The Origins of Analytical Mechanics in 18th century Marco Panza To cite this version: Marco Panza. The Origins of Analytical Mechanics in 18th century. H. N. Jahnke. A History of Analysis, American Mathematical Society and London Mathematical Society, pp. 137-153., 2003. halshs-00116768 HAL Id: halshs-00116768 https://halshs.archives-ouvertes.fr/halshs-00116768 Submitted on 29 Nov 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Origins of Analytic Mechanics in the 18th century Marco Panza Last version before publication: H. N. Jahnke (ed.) A History of Analysis, American Math- ematical Society and London Mathematical Society, 2003, pp. 137-153. Up to the 1740s, problems of equilibrium and motion of material systems were generally solved by an appeal to Newtonian methods for the analysis of forces. Even though, from the very beginning of the century—thanks mainly to Varignon (on which cf. [Blay 1992]), Jean Bernoulli, Hermann and Eu- ler—these methods used the analytical language of the differential calculus, and were considerably improved and simplified, they maintained their essen- tial feature. They were founded on the consideration of a geometric diagram representing the mechanical system under examination, and consequently applied only to (simple) particular and explicitly defined systems.
    [Show full text]