The Multi-Terminal Vertex Separator Problem: Complexity, Polyhedra and Algorithms

Total Page:16

File Type:pdf, Size:1020Kb

The Multi-Terminal Vertex Separator Problem: Complexity, Polyhedra and Algorithms The multi-terminal vertex separator problem : Complexity, Polyhedra and Algorithms Youcef Magnouche To cite this version: Youcef Magnouche. The multi-terminal vertex separator problem : Complexity, Polyhedra and Al- gorithms. Operations Research [cs.RO]. Université Paris sciences et lettres, 2017. English. NNT : 2017PSLED020. tel-01611046 HAL Id: tel-01611046 https://tel.archives-ouvertes.fr/tel-01611046 Submitted on 5 Oct 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT de l’Université de recherche Paris Sciences et Lettres PSL Research University Préparée à l’Université Paris-Dauphine The multi-terminal vertex separator problem : Complexity, Polyhedra and Algorithms École Doctorale de Dauphine — ED 543 COMPOSITION DU JURY : Spécialité Informatique M. A. Ridha MAHJOUB Université Paris-Dauphine Directeur de thèse M. Denis CORNAZ Université Paris-Dauphine Membre du jury M. Mohamed DIDI BIHA Université de Caen Basse-Normandie Rapporteur M. Nelson MACULAN Université fédérale de Rio de Janeiro Rapporteur Soutenue le 26.06.2017 Mme Ivana LJUBIC par Youcef MAGNOUCHE ESSEC Business School de Paris Membre du jury M. Sébastien MARTIN Dirigée par A. Ridha MAHJOUB Université de Lorraine Membre du jury M. Frédéric SEMET École Centrale de Lille Président du jury Remerciements Je voudrais en premier lieu remercier Messieurs A. Ridha Mahjoub et Denis Cornaz de m’avoir permis d’effectuer cette thèse. Je remercie tout particulièrement Monsieur A. Ridha Mahjoub, Professeur à l’Université Paris-Dauphine, de m’avoir apporté son soutien, scientifique et moral, tout au long de ce travail. Il a su me transmettre les connaissances, la rigueur, la motivation et la passion pour la recherche en général et l’optimisation combinatoire en particulier. Il m’a également permis de surmonter les moments difficiles grâce à son très grand intérêt pour mon travail et sa constante disponibilité. Je tiens aussi à remercier très sincèrement Monsieur Denis Cornaz, maître de con- férences à l’Université Paris-Dauphine, pour ses idées et sa détermination qui m’ont permis d’élargir mon domaine de connaissances et le travail réalisé durant cette thèse. Il m’a également appris, grâce à sa haute exigence scientifique et à sa très grande estime de mes capacités, à ne jamais renoncer et à donner le meilleur de moi-même. Je remercie également vivement Monsieur Sébastien Martin, maître de conférences à l’université de Lorraine, pour toute l’aide qu’il m’a apportée durant cette thèse. Cette aide se situe bien sûr au niveau scientifique, grâce à nos collaborations et aux nombreuses discussions que nous avons eues sur mon travail et à ses conseils et idées. J’ai été très honoré que Monsieur Mohamed Didi Biha, Professeur des universités à l’Université de Caen Basse-Normandie, ait accepté de rapporter ma thèse. Je remercie également Monsieur Nelson Maculan, Professeur Émérite à l’Université fédérale de Rio de Janeiro, pour l’intérêt qu’il a bien voulu porter à ce travail et pour m’avoir fait l’honneur d’accepter la charge de rapporteur. Mes remerciements vont également à Madame Ivana Ljubic, Professeur à l’école ii Remerciements supérieure des sciences économiques et commerciales, pour avoir accepté d’examiner mes travaux. Ma gratitude va ensuite à Monsieur Frédéric Semet, Professeur à l’école Centrale de Lille, d’avoir accepté d’examiner ma thèse. Je tiens également à remercier très chaleureusement mes différents collègues et amis du LAMSADE qui ont partagé avec moi ces dernières années. Les discussions ani- mées et les moments de détente partagés, leur bonne humeur, leurs encouragements et leur amitié, mais aussi les échanges scientifiques et les travaux effectués ensemble, ont grandement contribué à mon épanouissement scientifique et personnel lors de ces années de thèse. Je tiens à remercier tout particulièrement Khalil, Myriam, Pedro, Thomas, Ian- Christopher, Ioannis et Linda avec qui j’ai partagé mon bureau C605 de Paris-Dauphine. Enfin, mes remerciements ne seraient pas complets si je ne remerciais pas ma famille et mes amis, qui m’ont supporté et appuyé toutes ces années et se sont réellement intéressés à mon travail et au domaine hautement incompréhensible de l’optimisation combinatoire en général. Abstract This thesis deals with the multi-terminal vertex separator problem. Given a graph G = (V [T;E) with V [T the set of vertices, where T is a set of terminals, and a weight function w : V ! Z, associated with nonterminal nodes, the multi-terminal vertex separator problem consists in partitioning V [ T into k + 1 subsets fS; V1;:::;Vkg such that there is no edge between two different subsets Vi and Vj, each Vi contains exactly one terminal and the weight of S is minimum. In this thesis, we consider the problem from a polyhedral point of view. We give two integer programming formulations for the problem, for one of them, we investigate the related polyhedron and discuss its polyhedral structure. We describe some valid inequalities and characterize when these inequalities define facets. We also derive separation algorithms for these inequalities. Using these results, we develop a Branch-and-Cut algorithm for the problem, along with an extensive computational study is presented. We also study the multi-terminal vertex separator polytope in the graphs decompos- able by one node cutsets. If G is a graph that decomposes into G1 and G2, we show that the multi-terminal vertex separator polytope in G can be described from two lin- ear systems related to G1 and G2. This gives rise to a technique for characterizing the multi-terminal vertex separator polytope in the graphs that are recursively decompos- able. We also obtain a procedure to describe facets for this polytope and show that the multi-terminal vertex separator problem can also be decomposed. Applications of this technique are also discussed. Moreover, we propose three extended formulations for the problem and derive Branch- and-Price and Branch-and-Cut-and-Price algorithms. For each formulation we present a column generation scheme to solve the linear relaxation, the way to compute the dual bound and the branching scheme. We present computational results and discuss the performance of each algorithm. Further, we discuss four variants of the multi-terminal vertex separator problem. We iv Abstract show that all these variants are NP-hard, we give an integer programming formulation and present some valid inequalities. Key words : Combinatorial optimization, Polytope, Facet, Branch-and-Cut algo- rithm, Branch-and-Price algorithm, Composition of polyhedra. Résumé Dans ce manuscrit nous considérons le problème du séparateur de poids minimum. Étant donné un graphe G = (V [ T;E), tel que V [ T représente l’ensemble des sommets où T est un ensemble de terminaux, et une fonction de poids w : V ! Z, associée aux sommets non terminaux, le problème du séparateur de poids minimum consiste à partitionner V [ T en k + 1 sous-ensembles fS; V1;:::;Vkg tel qu’il n’y a aucune arête entre deux sous-ensembles Vi et Vj, chaque Vi contient exactement un terminal et le poids de S est minimum. Dans cette thèse, nous étudions le problème d’un point de vue polyédral. Nous donnons deux formulations en nombres entiers pour le problème, et pour une de ces formulations, nous étudions le polyèdre associé. Nous présentons plusieurs inégalités valides, et décrivons leurs conditions de facette. Nous présentons également des algorithmes de séparation pour ces inégalités. En utilisant ces résultats, nous développons un algorithme de génération de coupes et branchement pour le problème, et présentons une analyse approfondie des résultats numériques. Nous étudions également le polytope des séparateurs dans les graphes décomposables par sommets d’articulation. Si G est un graphe qui se décompose en G1 et G2, alors nous montrons que le polytope des séparateurs dans G peut être décrit à partir des deux systèmes linéaires liés à G1 et G2. Ceci donne lieu à une technique permettant de caractériser le polytope des séparateurs dans les classes de graphes qui sont récur- sivement décomposables. Nous obtenons également une procédure de composition de facettes dans ce type de graphes et nous montrons que le problème du séparateur peut être aussi décomposé. Des applications de cette technique sont discutées. Ensuite, nous étudions des formulations étendues pour le problème et proposons des algorithmes de génération de colonnes et branchements ainsi que des algorithmes de génération de colonnes, de coupes et branchement. Pour chaque formulation, nous présentons un algorithme de génération de colonnes pour résoudre la relaxation linéaire, une procédure pour le calcul de la borne duale ainsi qu’une règle de branchement. Nous vi Résumé comparons ensuite la performance des algorithmes sur un ensemble d’instances à travers une étude expérimentale extensive. De plus, nous présentons quatre variantes du problème du séparateur. Nous montrons que les quatre variantes sont NP-difficiles, nous donnons une formulation en nombres entiers et présentons certaines inégalités valides. Mots clés : Optimisation combinatoire, Polytope, Facette, Algorithme de coupes et branchements, Algorithme de génération de colonnes et branchements, Composition de polyèdres. Résumé long Introduction L’optimisation combinatoire, et en particulier l’approche polyédral, sont très effi- caces pour traiter les problèmes combinatoires difficiles. Cette technique, initiée par Edmonds pour le problème de couplage, consiste à réduire le problème à un programme linéaire (ou une séquence de programmes linéaires) en donnant une description com- plète ou partielle du polytope associé par un système d’inégalités linéaires.
Recommended publications
  • Applications of the Quantum Algorithm for St-Connectivity
    Applications of the quantum algorithm for st-connectivity KAI DELORENZO1 , SHELBY KIMMEL1 , AND R. TEAL WITTER1 1Middlebury College, Computer Science Department, Middlebury, VT Abstract We present quantum algorithms for various problems related to graph connectivity. We give simple and query-optimal algorithms for cycle detection and odd-length cycle detection (bipartiteness) using a reduction to st-connectivity. Furthermore, we show that our algorithm for cycle detection has improved performance under the promise of large circuit rank or a small number of edges. We also provide algo- rithms for detecting even-length cycles and for estimating the circuit rank of a graph. All of our algorithms have logarithmic space complexity. 1 Introduction Quantum query algorithms are remarkably described by span programs [15, 16], a linear algebraic object originally created to study classical logspace complexity [12]. However, finding optimal span program algorithms can be challenging; while they can be obtained using a semidefinite program, the size of the program grows exponentially with the size of the input to the algorithm. Moreover, span programs are designed to characterize the query complexity of an algorithm, while in practice we also care about the time and space complexity. One of the nicest span programs is for the problem of undirected st-connectivity, in which one must decide whether two vertices s and t are connected in a given graph. It is “nice” for several reasons: It is easy to describe and understand why it is correct. • It corresponds to a quantum algorithm that uses logarithmic (in the number of vertices and edges of • the graph) space [4, 11].
    [Show full text]
  • Ranks and Signatures of Adjacency Matrices
    Ranks and signatures of adjacency matrices S. Akbari Institute for Studies in Theoretical Physics and Mathematics (IPM), Tehran, Iran, and Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran P. J. Cameron School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS, U.K. and G. B. Khosrovshahi Institute for Studies in Theoretical Physics and Mathematics (IPM), and University of Tehran, Tehran, Iran Draft, 01/07/2004 Abstract Two simple operations on graphs (deleting isolated vertices, and iden- tifying vertices with the same neighbour sets) do not change the rank and signature of the adjacency matrix. Moreover, for any given rank, there are only finitely many reduced graphs (those in which distinct vertices have dis- tinct neighbour sets) of any given rank. It follows that any graph parameter which is unchanged by the two reductions (such as clique number or chro- matic number) is bounded by a function of the rank. We give a list of some such parameters and best possible bounds in some cases. The rank of a graph is bounded by a function of the number t of negative eigenvalues. Hence the above parameters are also bounded by functions of t. The problem of finding the best possible bound is open. We also report on the determination of all reduced graphs with rank at most 7, and give information of the classification by rank and signature up 1 to rank 7. This also gives (at least implicitly) an exact enumeration of all graphs with rank at most 7. We have also determined the largest reduced graphs of rank 8, and we make a conjecture about the general case.
    [Show full text]
  • 4/2/2015 1.0.1 the Laplacian Matrix and Its Spectrum
    MS&E 337: Spectral Graph Theory and Algorithmic Applications Spring 2015 Lecture 1: 4/2/2015 Instructor: Prof. Amin Saberi Scribe: Vahid Liaghat Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. 1.0.1 The Laplacian matrix and its spectrum Let G = (V; E) be an undirected graph with n = jV j vertices and m = jEj edges. The adjacency matrix AG is defined as the n × n matrix where the non-diagonal entry aij is 1 iff i ∼ j, i.e., there is an edge between vertex i and vertex j and 0 otherwise. Let D(G) define an arbitrary orientation of the edges of G. The (oriented) incidence matrix BD is an n × m matrix such that qij = −1 if the edge corresponding to column j leaves vertex i, 1 if it enters vertex i, and 0 otherwise. We may denote the adjacency matrix and the incidence matrix simply by A and B when it is clear from the context. One can discover many properties of graphs by observing the incidence matrix of a graph. For example, consider the following proposition. Proposition 1.1. If G has c connected components, then Rank(B) = n − c. Proof. We show that the dimension of the null space of B is c. Let z denote a vector such that zT B = 0. This implies that for every i ∼ j, zi = zj. Therefore z takes the same value on all vertices of the same connected component. Hence, the dimension of the null space is c. The Laplacian matrix L = BBT is another representation of the graph that is quite useful.
    [Show full text]
  • Digraph Laplacians and Multi-Agent Systems
    On graph theoretic results underlying the analysis of consensus in multi-agent systems Pavel Chebotarev1 Institute of Control Sciences of the Russian Academy of Sciences 65 Profsoyuznaya Street, Moscow 117997, Russia Key words: consensus algorithms, cooperative control, flocking, graph Laplacians, networked multi-agent systems The objective of this note is to give several comments regarding the paper [1] published in the Proceedings of the IEEE. As stated in the Introduction of [1], “Graph Laplacians and their spectral properties […] are important graph-related matrices that play a crucial role in convergence analysis of consensus and alignment algorithms.” In particular, the stability properties of the distributed consensus algorithms & xi (t) = åaij (t)(x j (t) - xi (t)), i =1,...,n (1) jÎN i for networked multi-agent systems are completely determined by the location of the Laplacian eigenvalues of the network. The convergence analysis of such systems is based on the following lemma [1, p. 221]: Lemma 2: (spectral localization) Let G be a strongly connected digraph on n nodes. Then rank(L) = n − 1 and all nontrivial eigenvalues of L have positive real parts. Furthermore, suppose G has c ³ 1 strongly connected components, then rank(L) = n − c. Here, L = [lij] is the Laplacian matrix of G, i.e., L = D – A, where A is the adjacency matrix of G, and D is the diagonal matrix of vertex out-degrees. Four comments need to be made concerning this lemma. First, the last statement of the lemma is not correct. Indeed, recall that the strongly connected components (SCC) of a digraph G are its maximal strongly connected subgraphs.
    [Show full text]
  • 1.3 Matrices and Graphs
    Thus Tˆ(bˆj) = ajibˆi, �i and the matrix of Tˆ with respect to Bˆ isA T , the transpose of the matrix ofT with respect toB. Remark: Natural isomorphism betweenV and its double dual Vˆ. We have seen above that everyfinite dimensional vector spaceV has the same dimension as its dual Vˆ, and hence they are isomorphic as vector spaces. Once we choose a basis forV we also define a dual basis for Vˆ and the correspondence between the two bases gives us an explicit isomorphism betweenV and Vˆ. However this isomorphism is not intrinsic to the spaceV, in the sense that it depends upon a choice of basis and cannot be described independently of a choice of basis. ˆ The dual space of Vˆ is denoted Vˆ; it is the space of all linear mappings from Vˆ toF. By all of the above discussion it has the same dimension as Vˆ andV. The reason for mentioning this however is that there is a “natural” isomorphismθ fromV to Vˆ. It is defined in the following way, ˆ forx V andf Vˆ - note thatθ(x) belongs to Vˆ, soθ(x)(f) should be an element ofF. ∈ ∈ θ(x)(f) =f(x). To see thatθ is an isomorphism, suppose thatx 1,...,x k are independent elements ofV. Then ˆ θ(x1),...,θ(x k) are independent elements of Vˆ. To see this leta 1,...,a k be element ofF for which a θ(x ) + +a θ(x ) = 0. This means thatf(a x + +a x ) = 0 for allf Vˆ, which means 1 1 ··· k k 1 1 ··· k k ∈ thata x + +a x = 0, which means that eacha = 0.
    [Show full text]
  • Definitions of Matroids Properties. Examples
    Definitions of matroids References: J. Oxley [Ox], D. J. A. Welsh [Wel], H. Whitney [Wh]. Independent sets. A matroid is a pair M =(E, I) consisting of a finite set E and a nonempty collection I of its subsets, called independent sets, satisfying the axioms: (I1) Any subset on an independent set is independent. (I2) If X and Y are independent and |X| = |Y | + 1, then there is an element x ∈ X − Y such that Y ∪ x is independent. Circuits. A matroid is a pair M =(E, C) consisting of a finite set E and a nonempty collection C of its subsets, called circuits, satisfying the axioms: (C1) No proper subset of a circuit is a circuit. (C2) If C1 and C2 are distinct circuits and c ∈ C1 ∩ C2, then (C1 ∪ C2) − c contains a circuit. Bases. A matroid is a pair M =(E, B) consisting of a finite set E and a nonempty collection B of its subsets, called bases, satisfying the axioms: (B1) No proper subset of a base is a base. (B2) If B1 and B2 are bases and b1 ∈ B1 − B2, then there is an element b2 ∈ B2 − B1 such that (B1 − b1) ∪ b2 is a base. Rank function. A matroid is a pair M =(E, r) consisting of a finite set E and a function r, rank, assigning a number to a subset of E and satisfying the axioms: (R1) The rank of an empty subset is zero. (R2) For any subset X and any element y 6∈ X, r(X) , or r(X ∪ {y})= r(X) + 1 .
    [Show full text]
  • The Min-Cut and Vertex Separator Problem
    manuscript No. (will be inserted by the editor) The min-cut and vertex separator problem Fanz Rendl · Renata Sotirov the date of receipt and acceptance should be inserted later Abstract We consider graph three-partitions with the objective of minimiz- ing the number of edges between the first two partition sets while keeping the size of the third block small. We review most of the existing relaxations for this min-cut problem and focus on a new class of semidefinite relaxations, based on matrices of order 2n + 1 which provide a good compromise between quality of the bound and computational effort to actually compute it. Here, n is the order of the graph. Our numerical results indicate that the new bounds are quite strong and can be computed for graphs of medium size (n ≈ 300) with reasonable effort of a few minutes of computation time. Further, we exploit those bounds to obtain bounds on the size of the vertex separators. A vertex separator is a subset of the vertex set of a graph whose removal splits the graph into two disconnected subsets. We also present an elegant way of convexifying non-convex quadratic prob- lems by using semidefinite programming. This approach results with bounds that can be computed with any standard convex quadratic programming solver. Keywords vertex separator · minimum cut · semidefinite programming · convexification Fanz Rendl Universit¨atsstrasse65-67, 9020 Klagenfurt, Austria Tel.: +43 463 2700 3114 Fax: +43 463 2700 993114 E-mail: [email protected] Renata Sotirov Warandelaan 2, 5000 LE, Tilburg, The Netherlands Tel.: +31 13 466 3178 Fax: +31 13 466 3280 E-mail: [email protected] 2 Fanz Rendl, Renata Sotirov 1 Introduction The vertex separator problem (VSP) for a graph is to find a subset of vertices (called vertex separator) whose removal disconnects the graph into two com- ponents of roughly equal size.
    [Show full text]
  • Minimum Rank, Maximum Nullity, and Zero Forcing Number of Graphs Shaun M
    Masthead Logo Mathematics Publications Mathematics 2014 Minimum Rank, Maximum Nullity, and Zero Forcing Number of Graphs Shaun M. Fallat University of Regina Leslie Hogben Iowa State University and American Institute of Mathematics, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/math_pubs Part of the Algebra Commons, Applied Mathematics Commons, and the Discrete Mathematics and Combinatorics Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ math_pubs/212. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Book Chapter is brought to you for free and open access by the Mathematics at Iowa State University Digital Repository. It has been accepted for inclusion in Mathematics Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Minimum Rank, Maximum Nullity, and Zero Forcing Number of Graphs Abstract This chapter represents an overview of research related to a notion of the “rank of a graph" and the dual concept known as the “nullity of a graph," from the point of view of associating a fixed collection of symmetric or Hermitian matrices to a given graph. This topic and related questions have enjoyed a fairly large history within discrete mathematics, and have become very popular among linear algebraists recently, partly based on its connection to certain inverse eigenvalue problems, but also because of the many interesting applications (e.g., to communication complexity in computer science and to control of quantum systems in mathematical physics) and implications to several facets of graph theory.
    [Show full text]
  • On the Interplay Between Graphs and Matroids
    On the interplay between graphs and matroids James Oxley Abstract “If a theorem about graphs can be expressed in terms of edges and circuits only it probably exemplifies a more general theorem about ma- troids.” This assertion, made by Tutte more than twenty years ago, will be the theme of this paper. In particular, a number of examples will be given of the two-way interaction between graph theory and matroid theory that enriches both subjects. 1 Introduction This paper aims to be accessible to those with no previous experience of matroids; only some basic familiarity with graph theory and linear algebra will be assumed. In particular, the next section introduces matroids by showing how such objects arise from graphs. It then presents a minimal amount of the- ory to make the rest of the paper comprehensible. Throughout, the emphasis is on the links between graphs and matroids. Section 3 begins by showing how 2-connectedness for graphs extends natu- rally to matroids. It then indicates how the number of edges in a 2-connected loopless graph can be bounded in terms of the circumference and the size of a largest bond. The main result of the section extends this graph result to ma- troids. The results in this section provide an excellent example of the two-way interaction between graph theory and matroid theory. In order to increase the accessibility of this paper, the matroid technicalities have been kept to a minimum. Most of those that do arise have been separated from the rest of the paper and appear in two separate sections, 4 and 10, which deal primarily with proofs.
    [Show full text]
  • A Dual Graph Construction for Higher-Rank Graphs, and K-Theory for Finite 2-Graphs
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 2, Pages 455–464 S 0002-9939(05)07994-3 Article electronically published on June 29, 2005 A DUAL GRAPH CONSTRUCTION FOR HIGHER-RANK GRAPHS, AND K-THEORY FOR FINITE 2-GRAPHS STEPHEN ALLEN, DAVID PASK, AND AIDAN SIMS (Communicated by David R. Larson) Abstract. Given a k-graph Λ and an element p of Nk, we define the dual k-graph, pΛ. We show that when Λ is row-finite and has no sources, the C∗-algebras C∗(Λ) and C∗(pΛ) coincide. We use this isomorphism to apply Robertson and Steger’s results to calculate the K-theory of C∗(Λ) when Λ is finite and strongly connected and satisfies the aperiodicity condition. 1. Introduction In 1980, Cuntz and Krieger introduced a class of C∗-algebras, now called Cuntz- Krieger algebras, associated to finite {0, 1}-matrices A [4]. Enomoto and Watatani then showed that these algebras could be regarded as being associated in a natural way to finite directed graphs by regarding A as the vertex adjacency matrix of a finite directed graph E [5]. Generalising this association, Enomoto and Watatini associated C∗-algebras C∗(E) to finite graphs E with no sources1 (E has no sources if each vertex of E is the range of at least one edge). Although not every finite directed graph with no sources has a vertex adjacency matrix with entries in {0, 1}, the vertex adjacency matrix of the dual graph E formed by regarding the edges of E as vertices and the paths of length 2 in E as edges does always have entries in {0, 1}, and the Cuntz-Krieger algebras associated to E and to E are canonically isomorphic [11].
    [Show full text]
  • Matroids Lecturer: Michel X. Goemans Scribe: Bridget Eileen Tenner
    18.997 Topics in Combinatorial Optimization 9 March 2004 Matroids Lecturer: Michel X. Goemans Scribe: Bridget Eileen Tenner For reference, see Chapter 39 of Schrijver’s book. Definition 1Amatroid M =(S, I) is a finite groundS together set with a collection of sets I⊆2S,knownastheindependent sets, satisfying the following axioms: 1.IfI ∈I andJ ⊆ I thenJ ∈I. 2.IfI,J ∈I and|J| > |I|, then there exists anz element ∈ J \ I such thatI + z ∈I,where+ indicates union. If I ⊆ S is not an element of I, I is called a dependent set.Anelement I ∈I is a basisif it is a maximal (inclusion-wise) independent set. A circuitC of M is a minimal dependent set. A set I ∈I is a spanning setif I contains a basis. Example 1Linear matroids. LetA be anm-by-n matrix. LetS = {1,...,n} be the index set of the columnsA.I ⊆ S of is independent if the columns indexedI are by linearly independent. It is straightforward to check that the axioms for a matroid hold in this example. Observation 1All bases of a matroid have the same cardinality by the second axiom. For T ⊆ S,let the rankof T be rM (T )= r(T )=max{|I| : I ⊆ T and I ∈I}. Note that this is a generalization of the linear algebra definition of rank. Letting the set T equal S, we find that rM (S)= |B|, the size of a basis of the matroid. If F is a field, a matroid is said to be representableover F if the matrix A and linear independence are taken over F .
    [Show full text]
  • REFLECTION POSITIVITY, RANK CONNECTIVITY, and HOMOMORPHISM of GRAPHS 1. Introduction for Two Finite Graphs G and H, Let Hom(G, H
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY Volume 20, Number 1, January 2007, Pages 37–51 S 0894-0347(06)00529-7 Article electronically published on April 13, 2006 REFLECTION POSITIVITY, RANK CONNECTIVITY, AND HOMOMORPHISM OF GRAPHS MICHAEL FREEDMAN, LASZL´ OLOV´ ASZ,´ AND ALEXANDER SCHRIJVER 1. Introduction For two finite graphs G and H,lethom(G, H) denote the number of homo- morphisms (adjacency-preserving mappings) from G to H. Many interesting graph parameters can be expressed in terms of the number of homomorphisms into a fixed graph: for example, the number of colorings with a number of colors is the number of homomorphisms into a complete graph. Further examples for the occurrence of these numbers in graph theory will be discussed in Section 3. Another source of important examples is statistical physics, where partition func- tions of various models can be expressed as graph homomorphism functions. For example, let G be an n×n grid, and suppose that every node of G (every “site”) can be in one of two states, “UP” or “DOWN”. The properties of the system are such that no two adjacent sites can be “UP”. A “configuration” is a valid assignment of states to each node. The number of configurations is the number of independent sets of nodes in G, which in turn can be expressed as the number of homomorphisms of G into the graph H consisting of two nodes, “UP” and “DOWN”, connected by an edge, and with an additional loop at “DOWN”. To capture more interesting physical models, so-called “vertex coloring models”, one needs to extend the notion of graph homomorphism to the case when the nodes and edges of H have weights (see Section 2.1).
    [Show full text]