Supplementary Table 1. Only Kcnj9 Shows Differential Expression

Total Page:16

File Type:pdf, Size:1020Kb

Supplementary Table 1. Only Kcnj9 Shows Differential Expression Supplementary Table 1. Only Kcnj9 shows differential expression consistent with the phenotype in both congenic (R4)/background (B6) and wildtype/Kcnj9 mutant comparisons. High/Low Withdrawal Genotype Gene TaqMan Probe (mRNA expression ratio) R4 congenic/B6 WT/Kcnj9-/- Wdr42a Mm00463652_m1 0.86 (p =1.5x10-4) 1.18 (NS) Pea15a Mm00440716_g1 1.02 (NS) Casq1 Mm00486725_m1 5.16 (p =8.0x10-13) 0.93 (NS) Atp1a4 Mm01290854_g1 20.67 (p =4.0x10-16) 0.88 (NS) Igsf8 Mm00712984_m1 0.84 (p =5.3x10-4) 1.19 (NS) Atp1a2 Mm00617899_m1 1.00 (NS) 0.98(NS) Atp1a2 custom 4.13 (p =1.3x10-20) 1.09 (NS) WT/Kcnj9+/- Kcnj9* custom 1.17 (p =3.4x10-5) 1.96 (p =6.5x10-7) Kcnj10 Mm00445028_m1 1.31 (p =1.7x10-6) 1.02 (NS) Pigm Mm00452712_s1 1.07 (NS) 1.01 (NS) Slamf9 Mm00504048_m1 0.93 (NS) Igsf9 Mm00459672_m1 1.33 (p =1.0x10-5) 0.74 (NS) Tagln2 Mm00724259_m1 0.97 (NS) Ccdc19 Mm01283396_g1 0.93 (NS) Vsig8 Mm00624907_m1 6.07 (p =1.0x10-3) 0.19 (p =3.3x10-4) In null mutant models, there is typical carryover of the embryonic stem (ES) cell-derived genotype (i.e., 129Sv/J in the Kcnj9-/- mice). In order to assess the potential impact of the other confirmed quantitative trait gene (QTG) candidates on the Kcnj9-/- phenotype (reduced withdrawal severity), we compared their expression in Kcnj9 mutant and wildtype (WT) littermates (whole brain). We also tested Pigm, which did not differ in expression between chromosome 1 congenic (R4) and background strain (B6) mice, but is one of six genes (Atp1a4- Atp1a2-Igsf8-Kcnj9-Kcnj10-Pigm) implicated in CNS excitability (Ferraro et al 2007). Data are for N=11-12 adults males in the R4 congenic/B6 comparison, and N=5-8 adult males per group in the WT/Kcnj9 mutant comparisons. Note, because there was no detectable Kcnj9 expression in the null mutants, the expression ratio shown for Kcnj9 is for WT/heterozygote littermates; the remaining expression ratios in this column are for WT/Kcnj9-/- littermates. p<0.0045 is significant after correction for multiple comparisons (i.e., p<0.05/11 Taqman probes tested for knockout analyses). As expected, Kcnj9 expression in WT littermates was significantly higher (and approximately twice) than in Kcnj9-/+ heterozygotes. Only one other gene (Vsig8) differed in expression between Kcnj9-/- and wildtype littermates. *However, only Kcnj9 shows a significant mRNA expression ratio concordant with withdrawal phenotype in both congenic (R4)/background (B6) and wildtype/Kcnj9 mutant comparisons (i.e., higher expression associated with more severe sedative-hypnotic withdrawal). Notably, Kcnj10, Atp1a2, and Atp1a4, which showed marked differential expression in whole brain between R4 congenic and B6 background strain mice did not differ in expression between Kcnj9-/- and wildtype littermates (expression ratios = 0.98, 0.92 and 1.13, respectively; all not significant [NS]). This mitigates the potential confounding effect of linked ES cell-derived genes on the Kcnj9-/- phenotype and supports a causal role for Kcnj9. Furthermore, only one nonsynonymous polymorphism was found in both 129Sv/J vs. D2 and B6 vs. D2 comparisons (rs31557967 in Igsf9, R284G). Supplement Fig 1. Development of D2.B6 congenic mice with a chromosome 1 QTL interval from the B6 donor strain introgressed onto the D2 genetic background D2 (background) B6 (donor) 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 X Step 1 11 12 13 14 15 16 17 18 19 X 11 12 13 14 15 16 17 18 19 X F1 1 2 3 4 5 6 7 8 9 10 Step 1. D2 and B6 progenitor strain mice were crossed to produce F1 (D2B6) progeny. 11 12 13 14 15 16 17 18 19 X Step 2. Male F1 mice were backcrossed to D2 strain mice. Step 2 Progeny were genotyped at ~80 markers across the genome. Example backcross progeny (each of which is unique) 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 1213141516171819 X 11 1213141516171819 X 11 1213141516171819 X Step 3. Male progeny that retain the QTL interval from the donor strain Step 3 are selected as breeders for the next generation. This process was (repeat in Steps 4-10) repeated in Steps 4-10. After 6 generations of backcrossing, the animals were estimated to be >98% D2 except within the introgressed interval. Step 11. A final intercross was performed to generate the finished Step 11 congenic strain (donor interval homozygotes). Finished D2.B6 congenic strain 1 2 3 4 5 6 7 8 9 10 QTL interval 11 12 13 14 15 16 17 18 19 X Supplement Fig 2. Development of interval-specific congenic strains with defined congenic intervals (spanning a chromosome 1 QTL) from the D2 donor introgressed onto the B6 background B6 B6.D2 (Mtv) 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 X Step 1 111213141516171819 X 11 12 13 14 15 16 17 18 19 X F1 (B6.D2 x B6) progeny 1 2 3 4 5 6 7 8 9 10 Step 1. B6.D2 congenic mice were backcrossed to B6 mice to yield F1 (B6.D2 x B6) mice. 11 12 13 14 15 16 17 18 19 X Step 2. F1 mice were backcrossed to B6 strain mice. Step 2 Individual progeny were genotyped using informative D1Mit and SNP markers within or flanking the congenic interval to identify recombinant mice. At this point animals recombinants are unique and heterozygous Step 3. Recombinant mice (founders) were backcrossed Step 3 to B6 mice to expand the genotype (i.e., produce multiple animals with the same recombinant genotype). Step 4. A final intercross was carried out to generate Step 4 donor region homozygotes (i.e., the finished interval specific congenic strains). Please see Fig 2A for the recombinations captured in the finished R4, R6, R6, R8, R9 and R12 interval specific congenic strains (donor region homozygotes) Supplement Fig 3. Kcnj9 null mutant on a D2 genetic background D2 Kcnj9 knockout (B6 background) 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 Kcnj9 null mutation X Step 1 11 12 13 14 15 16 17 18 19 X 11 12 13 14 15 16 17 18 19 X F1 1 2 3 4 5 6 7 8 9 10 Step 1. Kcnj9 knockout mice developed by Dr. Wickman (B6 background; Torricelli et al., 2002) were crossed to D2 strain mice to produce F1 mice heterozygous for the null mutation (D2B6-Kcnj9 -/-). 11 12 13 14 15 16 17 18 19 X Step 2. Male F1 mice were backcrossed to D2 strain mice. A PCR- based assay was used to differentiate hemizygotes (-/+) from wildtype Step 2 (+/+) littermates. Hemizygotes were genotyped at ~80 markers across the genome. The three males with the greatest D2 representation were selected as breeders for the next generation and backcrossed to D2 strain mice. This process was repeated in Steps 3-8. Example backcross progeny (each of which is unique) 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X 11 12 13 14 15 16 17 18 19 X Steps 3-8. After 6 generations of backcrossing, the animals were Steps 3-8 estimated to be >98% D2 except within the introgressed interval. Step 9 Step 9. Final intercross to generate the finished null mutant model. Finished Kcnj9 null mutant (D2 background) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 X.
Recommended publications
  • The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
    www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype.
    [Show full text]
  • Aquaporin Channels in the Heart—Physiology and Pathophysiology
    International Journal of Molecular Sciences Review Aquaporin Channels in the Heart—Physiology and Pathophysiology Arie O. Verkerk 1,2,* , Elisabeth M. Lodder 2 and Ronald Wilders 1 1 Department of Medical Biology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; [email protected] 2 Department of Experimental Cardiology, Amsterdam University Medical Centers, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; [email protected] * Correspondence: [email protected]; Tel.: +31-20-5664670 Received: 29 March 2019; Accepted: 23 April 2019; Published: 25 April 2019 Abstract: Mammalian aquaporins (AQPs) are transmembrane channels expressed in a large variety of cells and tissues throughout the body. They are known as water channels, but they also facilitate the transport of small solutes, gasses, and monovalent cations. To date, 13 different AQPs, encoded by the genes AQP0–AQP12, have been identified in mammals, which regulate various important biological functions in kidney, brain, lung, digestive system, eye, and skin. Consequently, dysfunction of AQPs is involved in a wide variety of disorders. AQPs are also present in the heart, even with a specific distribution pattern in cardiomyocytes, but whether their presence is essential for proper (electro)physiological cardiac function has not intensively been studied. This review summarizes recent findings and highlights the involvement of AQPs in normal and pathological cardiac function. We conclude that AQPs are at least implicated in proper cardiac water homeostasis and energy balance as well as heart failure and arsenic cardiotoxicity. However, this review also demonstrates that many effects of cardiac AQPs, especially on excitation-contraction coupling processes, are virtually unexplored.
    [Show full text]
  • Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
    bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.
    [Show full text]
  • Supplementary Table 1. Pain and PTSS Associated Genes (N = 604
    Supplementary Table 1. Pain and PTSS associated genes (n = 604) compiled from three established pain gene databases (PainNetworks,[61] Algynomics,[52] and PainGenes[42]) and one PTSS gene database (PTSDgene[88]). These genes were used in in silico analyses aimed at identifying miRNA that are predicted to preferentially target this list genes vs. a random set of genes (of the same length). ABCC4 ACE2 ACHE ACPP ACSL1 ADAM11 ADAMTS5 ADCY5 ADCYAP1 ADCYAP1R1 ADM ADORA2A ADORA2B ADRA1A ADRA1B ADRA1D ADRA2A ADRA2C ADRB1 ADRB2 ADRB3 ADRBK1 ADRBK2 AGTR2 ALOX12 ANO1 ANO3 APOE APP AQP1 AQP4 ARL5B ARRB1 ARRB2 ASIC1 ASIC2 ATF1 ATF3 ATF6B ATP1A1 ATP1B3 ATP2B1 ATP6V1A ATP6V1B2 ATP6V1G2 AVPR1A AVPR2 BACE1 BAMBI BDKRB2 BDNF BHLHE22 BTG2 CA8 CACNA1A CACNA1B CACNA1C CACNA1E CACNA1G CACNA1H CACNA2D1 CACNA2D2 CACNA2D3 CACNB3 CACNG2 CALB1 CALCRL CALM2 CAMK2A CAMK2B CAMK4 CAT CCK CCKAR CCKBR CCL2 CCL3 CCL4 CCR1 CCR7 CD274 CD38 CD4 CD40 CDH11 CDK5 CDK5R1 CDKN1A CHRM1 CHRM2 CHRM3 CHRM5 CHRNA5 CHRNA7 CHRNB2 CHRNB4 CHUK CLCN6 CLOCK CNGA3 CNR1 COL11A2 COL9A1 COMT COQ10A CPN1 CPS1 CREB1 CRH CRHBP CRHR1 CRHR2 CRIP2 CRYAA CSF2 CSF2RB CSK CSMD1 CSNK1A1 CSNK1E CTSB CTSS CX3CL1 CXCL5 CXCR3 CXCR4 CYBB CYP19A1 CYP2D6 CYP3A4 DAB1 DAO DBH DBI DICER1 DISC1 DLG2 DLG4 DPCR1 DPP4 DRD1 DRD2 DRD3 DRD4 DRGX DTNBP1 DUSP6 ECE2 EDN1 EDNRA EDNRB EFNB1 EFNB2 EGF EGFR EGR1 EGR3 ENPP2 EPB41L2 EPHB1 EPHB2 EPHB3 EPHB4 EPHB6 EPHX2 ERBB2 ERBB4 EREG ESR1 ESR2 ETV1 EZR F2R F2RL1 F2RL2 FAAH FAM19A4 FGF2 FKBP5 FLOT1 FMR1 FOS FOSB FOSL2 FOXN1 FRMPD4 FSTL1 FYN GABARAPL1 GABBR1 GABBR2 GABRA2 GABRA4
    [Show full text]
  • Kir4.1 May Represent a Novel Therapeutic Target for Diabetic Retinopathy (Review)
    EXPERIMENTAL AND THERAPEUTIC MEDICINE 22: 1021, 2021 Kir4.1 may represent a novel therapeutic target for diabetic retinopathy (Review) XIAOYU LI1,2, JIAJUN LV1,2, JIAZHI LI2 and XIANG REN1 1Department of Histology and Embryology, Dalian Medical University, Dalian, Liaoning 116044; 2Department of Radiotherapy Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116023, P.R. China Received April 6, 2021; Accepted May 28, 2021 DOI: 10.3892/etm.2021.10453 Abstract. As the major cause of irreversible loss of vision in individuals with diabetes worldwide, ~10% of which have adults, diabetic retinopathy (DR) is one of the most serious severe visual impairment and 2% of them are blind. It is complications of diabetes. The imbalance of the retinal micro‑ expected that the number of individuals at risk of vision loss environment and destruction of the blood‑retinal barrier have from DR will be double by 2030 (1). a significant role in the progression of DR. Inward rectifying Strategies to prevent or treat DR early have become a potassium channel 4.1 (Kir4.1) is located on Müller cells and research hotspot. An increasing number of studies have is closely related to potassium homeostasis, water balance and indicated that the occurrence of retinal neurodegenerative glutamate clearance in the whole retina. The present review changes in DR may be earlier than microvascular changes. discusses the functions of Kir4.1 in regulating the retinal Furthermore, both the proliferation of glial cells and the microenvironment and related biological mechanisms in DR. In damage of photoreceptor cells may occur at the beginning the future, Kir4.1 may represent a novel alternative therapeutic of the disease (2,3).
    [Show full text]
  • (253), Re15. [DOI: 10.1126/Stke.2532004Re15] 2004
    The VGL-Chanome: A Protein Superfamily Specialized for Electrical Signaling and Ionic Homeostasis Frank H. Yu and William A. Catterall (5 October 2004) Sci. STKE 2004 (253), re15. [DOI: 10.1126/stke.2532004re15] The following resources related to this article are available online at http://stke.sciencemag.org. This information is current as of 7 July 2009. Article Tools Visit the online version of this article to access the personalization and article tools: http://stke.sciencemag.org/cgi/content/full/sigtrans;2004/253/re15 Supplemental "Supplementary Table 1" Materials http://stke.sciencemag.org/cgi/content/full/sigtrans;2004/253/re15/DC1 Related Content The editors suggest related resources on Science's sites: http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2006/360/tw376 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2006/350/pe33 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2006/333/tw149 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2005/307/pe50 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2005/302/pe46 Downloaded from http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2005/270/tw55 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2004/233/pe22 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2004/233/pe23 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2004/227/pe16 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2004/219/re4 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2003/194/pe32 http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2003/188/re10
    [Show full text]
  • Ion Channels
    UC Davis UC Davis Previously Published Works Title THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels. Permalink https://escholarship.org/uc/item/1442g5hg Journal British journal of pharmacology, 176 Suppl 1(S1) ISSN 0007-1188 Authors Alexander, Stephen PH Mathie, Alistair Peters, John A et al. Publication Date 2019-12-01 DOI 10.1111/bph.14749 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: Ion channels. British Journal of Pharmacology (2019) 176, S142–S228 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: Ion channels Stephen PH Alexander1 , Alistair Mathie2 ,JohnAPeters3 , Emma L Veale2 , Jörg Striessnig4 , Eamonn Kelly5, Jane F Armstrong6 , Elena Faccenda6 ,SimonDHarding6 ,AdamJPawson6 , Joanna L Sharman6 , Christopher Southan6 , Jamie A Davies6 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 3Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 4Pharmacology and Toxicology, Institute of Pharmacy, University of Innsbruck, A-6020 Innsbruck, Austria 5School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 6Centre for Discovery Brain Science, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties.
    [Show full text]
  • The Role of Potassium Recirculation in Cochlear Amplification
    The role of potassium recirculation in cochlear amplification Pavel Mistrika and Jonathan Ashmorea,b aUCL Ear Institute and bDepartment of Neuroscience, Purpose of review Physiology and Pharmacology, UCL, London, UK Normal cochlear function depends on maintaining the correct ionic environment for the Correspondence to Jonathan Ashmore, Department of sensory hair cells. Here we review recent literature on the cellular distribution of Neuroscience, Physiology and Pharmacology, UCL, Gower Street, London WC1E 6BT, UK potassium transport-related molecules in the cochlea. Tel: +44 20 7679 8937; fax: +44 20 7679 8990; Recent findings e-mail: [email protected] Transgenic animal models have identified novel molecules essential for normal hearing Current Opinion in Otolaryngology & Head and and support the idea that potassium is recycled in the cochlea. The findings indicate that Neck Surgery 2009, 17:394–399 extracellular potassium released by outer hair cells into the space of Nuel is taken up by supporting cells, that the gap junction system in the organ of Corti is involved in potassium handling in the cochlea, that the gap junction system in stria vascularis is essential for the generation of the endocochlear potential, and that computational models can assist in the interpretation of the systems biology of hearing and integrate the molecular, electrical, and mechanical networks of the cochlear partition. Such models suggest that outer hair cell electromotility can amplify over a much broader frequency range than expected from isolated cell studies. Summary These new findings clarify the role of endolymphatic potassium in normal cochlear function. They also help current understanding of the mechanisms of certain forms of hereditary hearing loss.
    [Show full text]
  • Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery
    fphar-07-00121 May 7, 2016 Time: 11:45 # 1 REVIEW published: 10 May 2016 doi: 10.3389/fphar.2016.00121 Therapeutic Approaches to Genetic Ion Channelopathies and Perspectives in Drug Discovery Paola Imbrici1*, Antonella Liantonio1, Giulia M. Camerino1, Michela De Bellis1, Claudia Camerino2, Antonietta Mele1, Arcangela Giustino3, Sabata Pierno1, Annamaria De Luca1, Domenico Tricarico1, Jean-Francois Desaphy3 and Diana Conte1 1 Department of Pharmacy – Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy, 2 Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, Bari, Italy, 3 Department of Biomedical Sciences and Human Oncology, University of Bari “Aldo Moro”, Bari, Italy In the human genome more than 400 genes encode ion channels, which are transmembrane proteins mediating ion fluxes across membranes. Being expressed in all cell types, they are involved in almost all physiological processes, including sense perception, neurotransmission, muscle contraction, secretion, immune response, cell proliferation, and differentiation. Due to the widespread tissue distribution of ion channels and their physiological functions, mutations in genes encoding ion channel subunits, or their interacting proteins, are responsible for inherited ion channelopathies. These diseases can range from common to very rare disorders and their severity can be mild, Edited by: disabling, or life-threatening. In spite of this, ion channels are the primary target of only Maria Cristina D’Adamo, University of Perugia, Italy about 5% of the marketed drugs suggesting their potential in drug discovery. The current Reviewed by: review summarizes the therapeutic management of the principal ion channelopathies Mirko Baruscotti, of central and peripheral nervous system, heart, kidney, bone, skeletal muscle and University of Milano, Italy Adrien Moreau, pancreas, resulting from mutations in calcium, sodium, potassium, and chloride ion Institut Neuromyogene – École channels.
    [Show full text]
  • Original Article Transcript Expression Profiles of Stria Vascularis in Mitf-M Knockout Mice
    Int J Clin Exp Med 2017;10(2):2241-2251 www.ijcem.com /ISSN:1940-5901/IJCEM0042143 Original Article Transcript expression profiles of stria vascularis in Mitf-m knockout mice Wei Chen1*, Xi Shi2*, Lili Ren1, Keshuang Wang1, Xiaojie Liang3, Lei Chen4, Wei Sun5, Weiwei Guo1, Shiming Yang1 1Department of Otolayngology, Head & Neck Surgery, Institute of Otolaryngology of PLA, Chinese PLA General Hospital, Beijing 100853, China; 2Xuzhou Medical College listening Center, Xuzhou 221006, China; 3Department of Otolaryngeal-Head Neck Surgery, The Army General Hospital of PLA, Beijing 100700, China; 4Key Laboratory of Pig Industry Sciences (Ministry of Agriculture), Chongqing Academy of Animal Science, Chongqing 402460, China; 5Department of Communicative Disorders & Sciences, Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York, United States. *Equal contributors. Received October 17, 2015; Accepted November 15, 2015; Epub February 15, 2017; Published February 28, 2017 Abstract: Objective: Mitf-m gene plays an important role in the development of cochlear stria vascularies. The mutation of Mitf-m gene can cause severe hearing loss, such as Wanderburg syndrome. However, the gene ex- pression change caused by Mitf-m has not been systemically studied. In this paper, we studied the transcriptome of Mitf-m knockout mouse on cochlear stria vascularies. Methods: Total RNA extracted from the stria vascularies of the Mitf-m knockout mice (Mitfmi-ΔM/mi-ΔM, MM group) and the wild type mice (Mitf-m+/+, WW group) were used for RNA-Seq analysis. The clean reads were mapped to the reference sequence and cufflinks were used to evaluate the RNA sequencing results and gene expression.
    [Show full text]
  • Comparative Transcriptome Profiling of the Human and Mouse Dorsal Root Ganglia: an RNA-Seq-Based Resource for Pain and Sensory Neuroscience Research
    bioRxiv preprint doi: https://doi.org/10.1101/165431; this version posted October 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Title: Comparative transcriptome profiling of the human and mouse dorsal root ganglia: An RNA-seq-based resource for pain and sensory neuroscience research Short Title: Human and mouse DRG comparative transcriptomics Pradipta Ray 1, 2 #, Andrew Torck 1 , Lilyana Quigley 1, Andi Wangzhou 1, Matthew Neiman 1, Chandranshu Rao 1, Tiffany Lam 1, Ji-Young Kim 1, Tae Hoon Kim 2, Michael Q. Zhang 2, Gregory Dussor 1 and Theodore J. Price 1, # 1 The University of Texas at Dallas, School of Behavioral and Brain Sciences 2 The University of Texas at Dallas, Department of Biological Sciences # Corresponding authors Theodore J Price Pradipta Ray School of Behavioral and Brain Sciences School of Behavioral and Brain Sciences The University of Texas at Dallas The University of Texas at Dallas BSB 14.102G BSB 10.608 800 W Campbell Rd 800 W Campbell Rd Richardson TX 75080 Richardson TX 75080 972-883-4311 972-883-7262 [email protected] [email protected] Number of pages: 27 Number of figures: 9 Number of tables: 8 Supplementary Figures: 4 Supplementary Files: 6 Word count: Abstract = 219; Introduction = 457; Discussion = 1094 Conflict of interest: The authors declare no conflicts of interest Patient anonymity and informed consent: Informed consent for human tissue sources were obtained by Anabios, Inc. (San Diego, CA). Human studies: This work was approved by The University of Texas at Dallas Institutional Review Board (MR 15-237).
    [Show full text]
  • Dimethylation of Histone 3 Lysine 9 Is Sensitive to the Epileptic Activity
    1368 MOLECULAR MEDICINE REPORTS 17: 1368-1374, 2018 Dimethylation of Histone 3 Lysine 9 is sensitive to the epileptic activity, and affects the transcriptional regulation of the potassium channel Kcnj10 gene in epileptic rats SHAO-PING ZHANG1,2*, MAN ZHANG1*, HONG TAO1, YAN LUO1, TAO HE3, CHUN-HUI WANG3, XIAO-CHENG LI3, LING CHEN1,3, LIN-NA ZHANG1, TAO SUN2 and QI-KUAN HU1-3 1Department of Physiology; 2Ningxia Key Laboratory of Cerebrocranial Diseases, Incubation Base of National Key Laboratory, Ningxia Medical University; 3General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China Received February 18, 2017; Accepted September 13, 2017 DOI: 10.3892/mmr.2017.7942 Abstract. Potassium channels can be affected by epileptic G9a by 2-(Hexahydro-4-methyl-1H-1,4-diazepin-1-yl)-6,7-di- seizures and serve a crucial role in the pathophysiology of methoxy-N-(1-(phenyl-methyl)-4-piperidinyl)-4-quinazolinamine epilepsy. Dimethylation of histone 3 lysine 9 (H3K9me2) and tri-hydrochloride hydrate (bix01294) resulted in upregulation its enzyme euchromatic histone-lysine N-methyltransferase 2 of the expression of Kir4.1 proteins. The present study demon- (G9a) are the major epigenetic modulators and are associated strated that H3K9me2 and G9a are sensitive to epileptic seizure with gene silencing. Insight into whether H3K9me2 and G9a activity during the acute phase of epilepsy and can affect the can respond to epileptic seizures and regulate expression of transcriptional regulation of the Kcnj10 channel. genes encoding potassium channels is the main purpose of the present study. A total of 16 subtypes of potassium channel Introduction genes in pilocarpine-modelled epileptic rats were screened by reverse transcription-quantitative polymerase chain reac- Epilepsies are disorders of neuronal excitability, characterized tion, and it was determined that the expression ATP-sensitive by spontaneous and recurrent seizures.
    [Show full text]