Algorithms for Similarity Relation Learning from High Dimensional Data Phd Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Algorithms for Similarity Relation Learning from High Dimensional Data Phd Dissertation University of Warsaw Faculty of Mathematics, Informatics and Mechanics mgr Andrzej Janusz Algorithms for Similarity Relation Learning from High Dimensional Data PhD dissertation Supervisor Prof. dr hab. Nguyen Hung Son Institute of Mathematics University of Warsaw October 2013 Author’s declaration: aware of legal responsibility I hereby declare that I have written this dissertation myself and all the contents of the dissertation have been obtained by legal means. October 31, 2013 . date mgr Andrzej Janusz Supervisor’s declaration: the dissertation is ready to be reviewed October 31, 2013 . date Prof. dr hab. Nguyen Hung Son 3 Abstract The notion of similarity plays an important role in machine learning and artificial intelligence. It is widely used in tasks related to a supervised classification, clustering, an outlier detection and planning [7, 22, 57, 89, 153, 166]. Moreover, in domains such as information retrieval or case-based reasoning, the concept of similarity is essential as it is used at every phase of the reasoning cycle [1]. The similarity itself, however, is a very complex concept that slips out from formal definitions. A similarity of two objects can be different depending on a considered context. In many practical situations it is difficult even to evaluate the quality of similarity assessments without considering the task for which they were performed. Due to this fact the similarity should be learnt from data, specifically for the task at hand. In this dissertation a similarity model, called Rule-Based Similarity, is described and an algorithm for constructing this model from available data is proposed. The model utilizes notions from the rough set theory [108, 110, 113, 114, 115] to derive a similarity function that allows to approximate the similarity relation in a given context. The construction of the model starts from the extraction of sets of higher-level features. Those features can be interpreted as important aspects of the similarity. Having defined such features it is possible to utilize the idea of Tversky’s feature contrast model [159] in order to design an accurate and psychologically plausible similarity function for a given problem. Additionally, the dissertation shows two extensions of Rule-Based Similarity which are designed to efficiently deal with high dimensional data. They incorporate a broader array of similarity aspects into the model. In the first one it is done by constructing many heterogeneous sets of features from multiple decision reducts. To ensure their diversity, a randomized reduct computation heuristic is proposed. This approach is particularly well-suited for dealing with the few-objects-many-attributes problem, e.g. the analysis of DNA microarray data. A similar idea can be utilized in the text mining domain. The second of the proposed extensions serves this particular purpose. It uses a combination of a semantic indexing method and an information bireducts computation technique to represent texts by sets of meaningful concepts. The similarity function of the proposed model can be used to perform an accurate classification of previously unseen objects in a case-based fashion or to facilitate clustering of textual documents into semantically homogeneous groups. Experiments, whose results are also presented in the dissertation, show that the proposed models can successfully compete with the state-of-the-art algorithms. Keywords: Rule-Based Similarity, Similarity Learning, Rough Set Theory, Tversky’s Similarity Model, Case-Based Reasoning, Feature Extraction ACM Computing Classification (rev.2012): Computing methodologies 7! Machine learning 7! Machine learning approaches 7! Instance-based learning. 4 Streszczenie Pojęcie podobieństwa pełni istotną rolę w dziedzinach uczenia maszynowego i sztucznej inteligencji. Jest ono powszechnie wykorzystywane w zadaniach dotyczących nadzorowanej klasyfikacji, grupowania, wykrywania nietypowych obiektów oraz planowania [7, 22, 57, 89, 153, 166]. Ponadto w dziedzinach takich jak wyszukiwanie informacji (ang. information retrieval) lub wnioskowanie na podstawie przykładów (ang. case-based reasoning) pojęcie podobieństwa jest kluczowe ze względu na jego obecność na wszystkich etapach wyciągania wniosków [1]. Jednakże samo podobieństwo jest pojęciem niezwykle złożonym i wymyka się próbom ścisłego zdefiniowania. Stopień podobieństwa między dwoma obiektami może być różny w zależności od kontekstu w jakim się go rozpatruje. W praktyce trudno jest nawet ocenić jakość otrzymanych stopni podobieństwa bez odwołania się do zadania, któremu mają służyć. Z tego właśnie powodu modele oceniające podobieństwo powinny być wyuczane na podstawie danych, specjalnie na potrzeby realizacji konkretnego zadania. W niniejszej rozprawie opisano model podobieństwa zwany Regułowym Modelem Podobieństwa (ang. Rule-Based Similarity) oraz zaproponowano algorytm tworzenia tego modelu na podstawie danych. Wykorzystuje on elementy teorii zbiorów przybliżonych [108, 110, 113, 114, 115] do konstruowania funkcji podobieństwa pozwalającej aproksymować podobieństwo w zadanym kontekście. Konstrukcja ta rozpoczyna się od wykrywania zbiorów wysokopoziomowych cech obiektów. Mogą być one interpretowane jako istotne aspekty podobieństwa. Mając zdefiniowane tego typu cechy możliwe jest wykorzystanie idei modelu kontrastu cech Tversky’ego [159] (ang. feature contrast model) do budowy precyzyjnej oraz zgodnej z obserwacjami psychologów funkcji podobieństwa dla rozważanego problemu. Dodatkowo, niniejsza rozprawa zawiera opis dwóch rozszerzeń Regułowego Modelu Podobieństwa przystosowanych do działania na danych o bardzo wielu atrybutach. Starają się one włączyć do modelu szerszy zakres aspektów podobieństwa. W pierwszym z nich odbywa się to poprzez konstruowanie wielu zbiorów cech z reduktów decyzyjnych. Aby zapewnić ich zróżnicowanie, zaproponowano algorytm łączący heurystykę zachłanną z elementami losowymi. Podejście to jest szczególnie wskazane dla zadań związanych z problemem małej liczby obiektów i dużej liczby cech (ang. the few-objects-many-attributes problem), np. analizy danych mikromacierzowych. Podobny pomysł może być również wykorzystany w dziedzinie analizy tekstów. Realizowany jest on przez drugie z proponowanych rozszerzeń modelu. Łączy ono metodę semantycznego indeksowania z algorytmem obliczania bireduktów informacyjnych, aby reprezentować teksty dobrze zdefiniowanymi pojęciami. Funkcja podobieństwa zaproponowanego modelu może być wykorzystana do klasyfikacji nowych obiektów oraz do łączenia dokumentów tekstowych w semantycznie spójne grupy. Eksperymenty, których wyniki opisano w rozprawie, dowodzą, że zaproponowane modele mogą skutecznie konkurować nawet z powszechnie uznanymi rozwiązaniami. Contents 1 Introduction7 1.1 Motivation and Aims...........................7 1.2 Main Contributions............................9 1.3 Plan of the Dissertation......................... 10 1.4 Acknowledgements............................ 12 2 Theory of Rough Sets 13 2.1 Introduction to Rough Sets....................... 14 2.1.1 Information and decision systems................ 14 2.1.2 Indiscernibility relation...................... 16 2.1.3 Descriptions and rules...................... 17 2.2 Rough Set Approximations........................ 20 2.2.1 Lower and upper approximations................ 21 2.2.2 Approximation spaces...................... 23 2.2.3 Approximation of relations.................... 24 2.3 Attribute Reduction........................... 26 2.3.1 Rough set information reduction................. 26 2.3.2 Generalizations of reducts.................... 27 2.3.3 Notion of bireducts........................ 29 3 Notion of Similarity 31 3.1 Similarity as a Relation.......................... 32 3.1.1 Vagueness of a similarity relation................ 32 3.1.2 Similarity in a context...................... 33 3.1.3 Similarity function and classification rules........... 35 3.1.4 Evaluation of similarity models................. 38 3.2 Commonly Used Similarity Models................... 40 3.2.1 Distance-based similarity modelling............... 40 3.2.2 Feature contrast model...................... 44 3.2.3 Hierarchical and ontology-based similarity models....... 46 3.3 Similarity in Machine Learning..................... 47 3.3.1 Similarity in predictive data analysis and visualization.... 48 3.3.2 Case-based Reasoning framework................ 49 3.3.3 Similarity in cluster analysis................... 50 5 6 CONTENTS 4 Similarity Relation Learning Methods 53 4.1 Problem Statement............................ 54 4.2 Examples of Similarity Learning Models................ 56 4.2.1 Feature extraction and attribute ranking methods....... 57 4.2.2 Genetic approaches........................ 58 4.2.3 Relational patterns learning................... 60 4.2.4 Explicit Semantic Analysis.................... 62 4.3 Rule-Based Similarity Model....................... 64 4.3.1 General motivation for Rule-Based Similarity......... 65 4.3.2 Construction of the Rule-Based Similarity model....... 67 4.3.3 Properties of the Rule-Based Similarity function........ 73 4.3.4 Rule-Based Similarity for high dimensional data........ 79 4.3.5 Unsupervised Rule-based Similarity for textual data...... 82 4.3.6 Summary of the Rule-Based Similarity models......... 86 5 Experimental Evaluation of the Rule-Based Similarity Model 89 5.1 Performance of Rule-Based Similarity in a Classification Context... 90 5.1.1 Description of the benchmark data sets............. 90 5.1.2 Compared similarity models................... 91 5.1.3 Evaluation
Recommended publications
  • Deep Similarity Learning for Sports Team Ranking
    Deep Similarity Learning for Sports Team Ranking Daniel Yazbek†, Jonathan Sandile Sibindi∗ Terence L. Van Zyl School of Computer Science and Applied Mathematics Institute for Intelligent Systems University of the Witswatersrand University of Johannesburg Johannesburg, South Africa Johannesburg, South Africa †[email protected], ∗[email protected] [email protected] Abstract—Sports data is more readily available and conse- feasible and economically desirable to various players in the quently, there has been an increase in the amount of sports betting industry. Further, accurate game predictions can aid analysis, predictions and rankings in the literature. Sports are sports teams in making adjustments to teams to achieve the unique in their respective stochastic nature, making analysis, and accurate predictions valuable to those involved in the sport. In best possible future results for that franchise. This increase response, we focus on Siamese Neural Networks (SNN) in unison in economic upside has increased research and analysis in with LightGBM and XGBoost models, to predict the importance sports prediction [26], using a multitude of machine learning of matches and to rank teams in Rugby and Basketball. algorithms [18]. Six models were developed and compared, a LightGBM, a Popular machine learning algorithms are neural networks, XGBoost, a LightGBM (Contrastive Loss), LightGBM (Triplet Loss), a XGBoost (Contrastive Loss), XGBoost (Triplet Loss). designed to learn patterns and effectively classify data into The models that utilise a Triplet loss function perform better identifiable classes. Classification tasks depend upon labelled than those using Contrastive loss. It is clear LightGBM (Triplet datasets; for a neural network to learn the correlation between loss) is the most effective model in ranking the NBA, producing labels and data, humans must transfer their knowledge to a a state of the art (SOTA) mAP (0.867) and NDCG (0.98) dataset.
    [Show full text]
  • RELIEF Algorithm and Similarity Learning for K-NN
    International Journal of Computer Information Systems and Industrial Management Applications. ISSN 2150-7988 Volume 4 (2012) pp. 445-458 c MIR Labs, www.mirlabs.net/ijcisim/index.html RELIEF Algorithm and Similarity Learning for k-NN Ali Mustafa Qamar1 and Eric Gaussier2 1 Assistant Professor, Department of Computing School of Electrical Engineering and Computer Science (SEECS) National University of Sciences and Technology (NUST), Islamabad, Pakistan [email protected] 2Laboratoire d’Informatique de Grenoble Universit´ede Grenoble France [email protected] Abstract: In this paper, we study the links between RELIEF, has paved the way for a new reasearch theme termed met- a well-known feature re-weighting algorithm and SiLA, a sim- ric learning. Most of the people working in this research ilarity learning algorithm. On one hand, SiLA is interested in area are more interested in learning a distance metric (see directly reducing the leave-one-out error or 0 − 1 loss by reduc- e.g. [1, 2, 3, 4]) as compared to a similarity one. However, ing the number of mistakes on unseen examples. On the other as argued by several researchers, similarities should be pre- hand, it has been shown that RELIEF could be seen as a distance ferred over distances on some of the data sets. Similarity is learning algorithm in which a linear utility function with maxi- usually preferred over the distance metric while dealing with mum margin was optimized. We first propose here a version of text, in which case the cosine similarity has been deemed this algorithm for similarity learning, called RBS (for RELIEF- more appropriate as compared to the various distance met- Based Similarity learning).
    [Show full text]
  • Deep Metric Learning: a Survey
    S S symmetry Review Deep Metric Learning: A Survey Mahmut KAYA 1,* and Hasan ¸SakirBILGE˙ 2 1 Department of Computer Engineering, Engineering Faculty, Siirt University, Siirt 56100, Turkey 2 Department of Electrical - Electronics Engineering, Engineering Faculty, Gazi University, Ankara 06570, Turkey * Correspondence: [email protected] Received: 23 July 2019; Accepted: 20 August 2019; Published: 21 August 2019 Abstract: Metric learning aims to measure the similarity among samples while using an optimal distance metric for learning tasks. Metric learning methods, which generally use a linear projection, are limited in solving real-world problems demonstrating non-linear characteristics. Kernel approaches are utilized in metric learning to address this problem. In recent years, deep metric learning, which provides a better solution for nonlinear data through activation functions, has attracted researchers’ attention in many different areas. This article aims to reveal the importance of deep metric learning and the problems dealt with in this field in the light of recent studies. As far as the research conducted in this field are concerned, most existing studies that are inspired by Siamese and Triplet networks are commonly used to correlate among samples while using shared weights in deep metric learning. The success of these networks is based on their capacity to understand the similarity relationship among samples. Moreover, sampling strategy, appropriate distance metric, and the structure of the network are the challenging factors for researchers to improve the performance of the network model. This article is considered to be important, as it is the first comprehensive study in which these factors are systematically analyzed and evaluated as a whole and supported by comparing the quantitative results of the methods.
    [Show full text]
  • Cross-Domain Visual Matching Via Generalized Similarity Measure and Feature Learning
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1 Cross-Domain Visual Matching via Generalized Similarity Measure and Feature Learning Liang Lin, Guangrun Wang, Wangmeng Zuo, Xiangchu Feng, and Lei Zhang Abstract—Cross-domain visual data matching is one of the fundamental problems in many real-world vision tasks, e.g., matching persons across ID photos and surveillance videos. Conventional approaches to this problem usually involves two steps: i) projecting samples from different domains into a common space, and ii) computing (dis-)similarity in this space based on a certain distance. In this paper, we present a novel pairwise similarity measure that advances existing models by i) expanding traditional linear projections into affine transformations and ii) fusing affine Mahalanobis distance and Cosine similarity by a data-driven combination. Moreover, we unify our similarity measure with feature representation learning via deep convolutional neural networks. Specifically, we incorporate the similarity measure matrix into the deep architecture, enabling an end-to-end way of model optimization. We extensively evaluate our generalized similarity model in several challenging cross-domain matching tasks: person re-identification under different views and face verification over different modalities (i.e., faces from still images and videos, older and younger faces, and sketch and photo portraits). The experimental results demonstrate superior performance of our model over other state-of-the-art methods. Index Terms—Similarity model, Cross-domain matching, Person verification, Deep learning. F 1 INTRODUCTION ISUAL similarity matching is arguably considered as V one of the most fundamental problems in computer vision and pattern recognition, and this problem becomes more challenging when dealing with cross-domain data.
    [Show full text]
  • Low-Rank Similarity Metric Learning in High Dimensions
    Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence Low-Rank Similarity Metric Learning in High Dimensions Wei Liuy Cun Muz Rongrong Ji\ Shiqian Max John R. Smithy Shih-Fu Changz yIBM T. J. Watson Research Center zColumbia University \Xiamen University xThe Chinese University of Hong Kong fweiliu,[email protected] [email protected] [email protected] [email protected] [email protected] Abstract clude supervised metric learning which is the main focus in the literature, semi-supervised metric learning (Wu et al. Metric learning has become a widespreadly used tool in machine learning. To reduce expensive costs brought 2009; Hoi, Liu, and Chang 2010; Liu et al. 2010a; 2010b; in by increasing dimensionality, low-rank metric learn- Niu et al. 2012), etc. The suite of supervised metric learning ing arises as it can be more economical in storage and can further be divided into three categories in terms of forms computation. However, existing low-rank metric learn- of supervision: the methods supervised by instance-level la- ing algorithms usually adopt nonconvex objectives, and bels (Goldberger, Roweis, and Salakhutdinov 2004; Glober- are hence sensitive to the choice of a heuristic low-rank son and Roweis 2005; Weinberger and Saul 2009), the basis. In this paper, we propose a novel low-rank met- methods supervised by pair-level labels (Xing et al. 2002; ric learning algorithm to yield bilinear similarity func- Bar-Hillel et al. 2005; Davis et al. 2007; Ying and Li 2012), tions. This algorithm scales linearly with input dimen- and the methods supervised by triplet-level ranks (Ying, sionality in both space and time, therefore applicable Huang, and Campbell 2009; McFee and Lanckriet 2010; to high-dimensional data domains.
    [Show full text]
  • Learning Mahalanobis Distance Metric: Considering Instance Disturbance Helps∗
    Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-17) Learning Mahalanobis Distance Metric: Considering Instance Disturbance Helps∗ Han-Jia Ye, De-Chuan Zhan, Xue-Min Si and Yuan Jiang National Key Laboratory for Novel Software Technology Collaborative Innovation Center of Novel Software Technology and Industrialization Nanjing University, Nanjing, 210023, China fyehj, zhandc, sixm, [email protected] Abstract dissimilar ones are far away. Although ground-truth side in- formation leads to a well-learned Mahalanobis metric [Verma Mahalanobis distance metric takes feature weights and Branson, 2015, Cao et al., 2016], it is in fact unknown and correlation into account in the distance com- during the training process. Therefore, side information is putation, which can improve the performance of often generated based on reliable raw features from various many similarity/dissimilarity based methods, such sources. For example, random choice [Davis et al., 2007], Eu- as kNN. Most existing distance metric learning clidean nearest neighbor selection [Weinberger et al., 2006], methods obtain metric based on the raw features and all-pair enumeration [Xing et al., 2003, Mao et al., 2016]. and side information but neglect the reliability of them. Noises or disturbances on instances will To reduce the uncertainty in side information, [Huang et al., make changes on their relationships, so as to af- 2010] and [Wang et al., 2012] try a selection strategy among fect the learned metric. In this paper, we claim that all target neighbors. While it is more reasonable to assume considering disturbance of instances may help the that there are inaccuracies in feature value collection, since metric learning approach get a robust metric, and the feature inaccuracies or noises will damage the structure propose the Distance metRIc learning Facilitated of neighbors, and consequently affect the reliableness of side by disTurbances (DRIFT) approach.
    [Show full text]
  • Unsupervised Domain Adaptation with Similarity Learning
    Unsupervised Domain Adaptation with Similarity Learning Pedro O. Pinheiro Element AI Montreal, QC, Canada [email protected] Abstract The objective of unsupervised domain adaptation is to µ leverageµ features from a labeled source domain and learn µ µ 3 a classifier for an unlabeled target domain, with a simi- 1 lar but different data distribution. Most deep learning ap- proaches to domain adaptation consist of two steps: (i) learn features that preserve a low risk on labeled samples (source domain)µ and (ii) make the features from both do- mains to be as indistinguishable as possible, so that a clas- µ2 t sifier trained on the source can also be applied on the tar- f(xi) get domain. In general, the classifiersµ in step (i) consist of fully-connected layers applied directly on the indistin- µ4 guishable features learned in (ii). In this paper, we pro- pose a different way to do the classification, using similarity learning. The proposed method learns a pairwise similarity function in which classification can be performed by com- puting similarity between prototype representations of each Figure 1: Illustrative example of our similarity-based clas- category. The domain-invariant features and the categori- sifier. A query target-domain image representation is com- cal prototype representations are learned jointly and in an pared to a set of prototypes, one per category, computed end-to-end fashion. At inference time, images from the tar- from source-domain images. The label of the most similar get domain are compared to the prototypes and the label prototype is assigned to the test image.
    [Show full text]
  • Supervised Learning with Similarity Functions
    Supervised Learning with Similarity Functions Purushottam Kar Prateek Jain Indian Institute of Technology Microsoft Research Lab Kanpur, INDIA Bangalore, INDIA [email protected] [email protected] Abstract We address the problem of general supervised learning when data can only be ac- cessed through an (indefinite) similarity function between data points. Existing work on learning with indefinite kernels has concentrated solely on binary/multi- class classification problems. We propose a model that is generic enough to handle any supervised learning task and also subsumes the model previously proposed for classification. We give a “goodness” criterion for similarity functions w.r.t. a given supervised learning task and then adapt a well-known landmarking technique to provide efficient algorithms for supervised learning using “good” similarity func- tions. We demonstrate the effectiveness of our model on three important super- vised learning problems: a) real-valued regression, b) ordinal regression and c) ranking where we show that our method guarantees bounded generalization error. Furthermore, for the case of real-valued regression, we give a natural goodness definition that, when used in conjunction with a recent result in sparse vector re- covery, guarantees a sparse predictor with bounded generalization error. Finally, we report results of our learning algorithms on regression and ordinal regression tasks using non-PSD similarity functions and demonstrate the effectiveness of our algorithms, especially that of the sparse landmark selection algorithm that achieves significantly higher accuracies than the baseline methods while offering reduced computational costs. 1 Introduction The goal of this paper is to develop an extended framework for supervised learning with similarity functions.
    [Show full text]
  • Unsupervised Graph-Based Similarity Learning Using Heterogeneous Features
    Unsupervised Graph-Based Similarity Learning Using Heterogeneous Features by Pradeep Muthukrishnan A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science and Engineering) in The University of Michigan 2011 Doctoral Committee: Professor Dragomir Radkov Radev, Chair Associate Professor Steven P. Abney Assistant Professor Honglak Lee Assistant Professor Qiaozhu Mei Assistant Professor Zeeshan Syed c Pradeep Muthukrishnan 2011 All Rights Reserved Dedicated to my parents ii ACKNOWLEDGEMENTS First and foremost, I am truly grateful to my advisor Dragomir Radev. This thesis would not have been possible without him and without the support he has given me over the past few years. His constant guidance, motivation and patience has been essential in my development as a scientist. Also, I would like to thank Qiaozhu Mei for many insightful discussions and feedback that helped shape and improve this work. I would also like to thank the other members of my dissertation committee, Steve Abney, Honglak Lee and Zeeshan Syed for their careful criticism and insightful feedback that improved the quality of this work. I would like to thank all members of the Computational Linguistics and Infor- mation Retrieval (CLAIR) group in the University of Michigan, Vahed Qazvinian, Ahmed Hassan, Arzucan Ozgur, and Amjad Abu-Jbara for being great colleagues and many insightful discussions that we had together. Special thanks to my roommates Kumar Sricharan and Gowtham Bellala for the innumerable late-night discussions on my research. My heartfelt thanks to all my friends who have been family for me here in Ann Arbor, especially Avani Kamath, Tejas Jayaraman and Gandharv Kashinath.
    [Show full text]
  • Coupled Attribute Similarity Learning on Categorical Data Can Wang, Xiangjun Dong, Fei Zhou, Longbing Cao, Senior Member, IEEE, and Chi-Hung Chi
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 26, NO. 4, APRIL 2015 781 Coupled Attribute Similarity Learning on Categorical Data Can Wang, Xiangjun Dong, Fei Zhou, Longbing Cao, Senior Member, IEEE, and Chi-Hung Chi Abstract— Attribute independence has been taken as a major Index Terms— Clustering, coupled attribute similarity, coupled assumption in the limited research that has been conducted on object analysis, similarity analysis, unsupervised learning. similarity analysis for categorical data, especially unsupervised learning. However, in real-world data sources, attributes are more or less associated with each other in terms of certain I. INTRODUCTION coupling relationships. Accordingly, recent works on attribute IMILARITY analysis has been a problem of great dependency aggregation have introduced the co-occurrence of attribute values to explore attribute coupling, but they only Spractical importance in several domains for decades, not present a local picture in analyzing categorical data similarity. least in recent work, including behavior analysis [1], document This is inadequate for deep analysis, and the computational analysis [2], and image analysis [3]. A typical aspect of these complexity grows exponentially when the data scale increases. applications is clustering, in which the similarity is usually This paper proposes an efficient data-driven similarity learning defined in terms of one of the following levels: 1) between approach that generates a coupled attribute similarity measure for nominal objects with attribute couplings to capture a global clusters; 2) between attributes; 3) between data objects; or picture of attribute similarity. It involves the frequency-based 4) between attribute values. The similarity between clusters is intra-coupled similarity within an attribute and the inter-coupled often built on top of the similarity between data objects, e.g., similarity upon value co-occurrences between attributes, as well centroid similarity.
    [Show full text]
  • Learning Similarities for Linear Classification: Theoretical
    Learning similarities for linear classification : theoretical foundations and algorithms Maria-Irina Nicolae To cite this version: Maria-Irina Nicolae. Learning similarities for linear classification : theoretical foundations and al- gorithms. Machine Learning [cs.LG]. Université de Lyon, 2016. English. NNT : 2016LYSES062. tel-01975541 HAL Id: tel-01975541 https://tel.archives-ouvertes.fr/tel-01975541 Submitted on 9 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. École Doctorale ED488 "Sciences, Ingénierie, Santé" Learning Similarities for Linear Classification: Theoretical Foundations and Algorithms Apprentissage de similarités pour la classification linéaire : fondements théoriques et algorithmes Thèse préparée par Maria-Irina Nicolae pour obtenir le grade de : Docteur de l’Université Jean Monnet de Saint-Etienne Domaine: Informatique Soutenance le 2 Décembre 2016 au Laboratoire Hubert Curien devant le jury composé de : Maria-Florina Balcan Maître de conférences, Carnegie Mellon University Examinatrice Antoine Cornuéjols Professeur, AgroParisTech
    [Show full text]
  • Arsknn-A K-NN Classifier Using Mass Based Similarity Measure
    Available online at www.sciencedirect.com ScienceDirect Procedia Computer Science 46 ( 2015 ) 457 – 462 International Conference on Information and Communication Technologies (ICICT 2014) ARSkNN-A k-NN Classifier Using Mass Based Similarity Measure Ashish Kumara,*, Roheet Bhatnagara, Sumit Srivastavaa aManipal University Jaipur, Dehmi Kalan, Jaipur, 303007, India Abstract k-Nearest Neighbor (k-NN) classification technique is one of the most elementary and straightforward classification methods. Although distance learning is in the core of k-NN classification, similarity can be preferred upon distance in several practical applications. This paper proposes a novel algorithm for learning a class of an instance based on a similarity measure which does not calculate distance, for k-Nearest Neighbor (k-NN) classification. © 20142015 The Authors.Authors. PublishedPublished by by Elsevier Elsevier B.V. B.V. This is an open access article under the CC BY-NC-ND license Peer-review(http://creativecommons.org/licenses/by-nc-nd/4.0/ under responsibility of organizing committee). of the International Conference on Information and Communication TechnologiesPeer-review under (ICICT responsibility 2014). of organizing committee of the International Conference on Information and Communication Technologies (ICICT 2014) Keywords: Classification Algorithm; Data Mining; Nearest Neighbor; Similarity Measures; 1. Introduction Classification techniques is a domain of much enthusiasm toward established researchers, due to their wide range of applications, viz; handwriting recognition, biometric identification, computer-aided diagnosis and many more. Among so many classification techniques, the conventional k-nearest Neighbor (k-NN) classification technique is one of the simplest and oldest. In this technique, k nearest neighbors to the queried instance are found and then the class of the queried instance is determined by a majority rule i.e.
    [Show full text]