IRIS Toxicological Review of Benzo[A]Pyrene

Total Page:16

File Type:pdf, Size:1020Kb

IRIS Toxicological Review of Benzo[A]Pyrene EPA/635/R-10/006 DRAFT - DO NOT CITE OR QUOTE www.epa.gov/iris TOXICOLOGICAL REVIEW OF BENZO[a]PYRENE (CAS No. 50-32-8) In Support of Summary Information on the Integrated Risk Information System (IRIS) June 2011 NOTICE This document is an Interagency Science Consultation draft. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. It is being circulated for review of its technical accuracy and science policy implications. U.S. Environmental Protection Agency Washington, DC DISCLAIMER This document is a preliminary draft for review purposes only. This information is distributed solely for the purpose of pre-dissemination peer review under applicable information quality guidelines. It has not been formally disseminated by EPA. It does not represent and should not be construed to represent any Agency determination or policy. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. ii DRAFT - DO NOT CITE OR QUOTE 1 CONTENTS TOXICOLOGICAL REVIEW OF BENZO[a]PYRENE (CAS No. 50-32-8) 2 3 4 LIST OF TABLES ....................................................................................................................... VII 5 LIST OF FIGURES ....................................................................................................................... X 6 LIST OF ABBREVIATIONS AND ACRONYMS .................................................................... XII 7 FOREWORD ............................................................................................................................. XVI 8 AUTHORS, CONTRIBUTORS, AND REVIEWERS ............................................................ XVII 9 10 1. INTRODUCTION ..................................................................................................................... 1 11 12 2. CHEMICAL AND PHYSICAL INFORMATION ................................................................... 3 13 14 3. TOXICOKINETICS .................................................................................................................. 9 15 3.1. ABSORPTION .................................................................................................................... 9 16 3.1.1. Inhalation Exposure ...................................................................................................... 9 17 3.1.1.1. Inhalation Exposure in Humans ........................................................................... 9 18 3.1.1.2. Inhalation Exposure in Animals.......................................................................... 11 19 3.1.2. Oral Exposure ............................................................................................................. 17 20 3.1.2.1. Oral Exposure in Humans .................................................................................. 18 21 3.1.2.2. Oral Exposure in Animals ................................................................................... 18 22 3.1.3. Dermal Exposure ........................................................................................................ 20 23 3.1.3.1. Dermal Exposure in Humans .............................................................................. 20 24 3.1.3.2. Dermal Exposure in Animals .............................................................................. 23 25 3.1.4. Other Types of Exposure ............................................................................................ 25 26 3.2. DISTRIBUTION ............................................................................................................... 26 27 3.2.1. Inhalation Exposure .................................................................................................... 26 28 3.2.2. Oral Exposure ............................................................................................................. 28 29 3.2.3. Dermal and Other Exposures...................................................................................... 29 30 3.3. METABOLISM ................................................................................................................ 32 31 3.3.1. Phase I Metabolism .................................................................................................... 34 32 3.3.1.1. CYP450-dependent Reactions ............................................................................. 34 33 3.3.1.2. Non-CYP-related metabolic pathways ................................................................ 38 34 3.3.2. Phase II Metabolism ................................................................................................... 40 35 3.3.3. Tissue-specific Metabolism ........................................................................................ 43 36 3.3.3.1. Respiratory Tract Tissues ................................................................................... 43 37 3.3.3.2. GI Tract and Liver Tissues ................................................................................. 47 38 3.3.3.3. Skin ...................................................................................................................... 48 39 3.3.3.4. Reproductive Tissues and Fetal Metabolism ...................................................... 50 40 3.3.3.5. Other Tissues ...................................................................................................... 53 41 3.4. ELIMINATION ................................................................................................................ 53 42 3.4.1. Inhalation Exposure .................................................................................................... 53 43 3.4.2. Oral Exposure ............................................................................................................. 56 44 3.4.3. Dermal Exposure and Other Exposure Routes ........................................................... 57 45 3.5. PHYSIOLOGICALLY BASED PHARMACOKINETIC (PBPK) MODELS ................. 59 46 47 4. HAZARD IDENTIFICATION ................................................................................................ 64 48 4.1. HUMANS STUDIES ........................................................................................................ 64 49 4.1.1. Sources of Human Exposure ...................................................................................... 64 50 4.1.2. Biomonitoring of benzo[a]pyrene Exposure and Effects In Humans ........................ 64 iii DRAFT - DO NOT CITE OR QUOTE 1 4.1.2.1. Urinary Excretion of benzo[a]pyrene ................................................................. 65 2 4.1.2.2. Adduct Formation with DNA and Protein .......................................................... 66 3 4.1.2.2.1. DNA Adduct measures in blood ........................................................................ 69 4 4.1.2.2.2. Adduct measures in reproductive tissues .......................................................... 72 5 4.1.2.3. Benzo[a]pyrene-Induced Cytogenetic Damage .................................................. 73 6 4.1.3. Epidemiologic Findings in Humans ........................................................................... 75 7 4.1.3.1. Molecular Epidemiology and Case-Control Cancer Studies .............................. 76 8 4.1.3.2. Cohort Cancer Studies ........................................................................................ 77 9 4.1.3.3. Noncancer Disease Caused by benzo[a]pyrene ................................................. 81 10 4.2. SUBCHRONIC AND CHRONIC STUDIES AND CANCER BIOASSAYS IN 11 ANIMALS—ORAL, INHALATION, AND DERMAL .................................................. 85 12 4.2.1. Oral ............................................................................................................................. 85 13 4.2.1.1. Subchronic Studies .............................................................................................. 85 14 4.2.1.2. Chronic Studies and Cancer Bioassays .............................................................. 93 15 4.2.2. Inhalation .................................................................................................................. 106 16 4.2.2.1. Short-term and Subchronic Studies .................................................................. 106 17 4.2.2.2. Chronic Studies and Cancer Bioassays ............................................................ 106 18 4.2.3. Dermal Exposure ...................................................................................................... 108 19 4.2.3.1. Skin-Tumor Initiation-Promotion Assays ......................................................... 108 20 4.2.3.2. Carcinogenicity Dermal Bioassays................................................................... 109 21 4.3. REPRODUCTIVE/DEVELOPMENTAL STUDIES—ORAL, INHALATION, AND 22 DERMAL ........................................................................................................................ 118 23 4.3.1. Oral ........................................................................................................................... 118 24 4.3.2. Inhalation .................................................................................................................. 124 25 4.4. OTHER DURATION OR ENDPOINT-SPECIFIC STUDIES .....................................
Recommended publications
  • Issues) and Begin with the Summer Issue
    AN ILLUSTRATED QUARTERLY BLAKE SALES, BLAKE RESEARCH: THE ANNUAL CHECKLISTS VOLUME 34 NUMBER 4 SPRING 2001 £%Uae AN ILLUSTRATED QUARTERLY VOLUME 34 NUMBER 4 SPRING 2001 CONTENTS Articles Newsletter Blake in the Marketplace, 2000 Met Exhibition Through June, Blake Society Lectures, by Robert N. Essick 100 The Erdman Papers 159 William Blake and His Circle: A Checklist of Publications and Discoveries in 2000 By G. E. Bentley, Jr., with the Assistance of Keiko Aoyama for Japanese Publications 129 ADVISORY BOARD G. E. Bentley, Jr., University of Toronto, retired Nelson Hilton, University of Georgia Martin Butlin, London Anne K. Mellor, University of California, Los Angeles Detlef W. Dbrrbecker, University of Trier Joseph Viscomi, University of North Carolina at Chapel Hill Robert N. Essick, University of California, Riverside David Worrall, St. Mary's College Angela Esterhammer, University of Western Ontario CONTRIBUTORS SUBSCRIPTIONS are $60 for institutions, $30 for individuals. All subscriptions are by the volume (1 year, 4 issues) and begin with the summer issue. Subscription payments re• G. E. BENTLEY, JR. has just completed The Stranger from ceived after the summer issue will be applied to the 4 issues Paradise in the Belly of the Beast: A Biography of William of the current volume. Foreign addresses (except Canada Blake. and Mexico) require a $10 per volume postal surcharge for surface, and $25 per volume surcharge for air mail delivery. ROBERT N. ESSICK is Professor of English at the University U.S. currency or international money order necessary. Make of California, Riverside. checks payable to Blake/An Illustrated Quarterly. Address all subscription orders and related communications to Sarah Jones, Blake, Department of English, University of Roches• ter, Rochester, NY 14627.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • UGT1A7 and UGT1A9 Polymorphisms Predict Response and Toxicity in Colorectal Cancer Patients Treated with Capecitabine/Irinotecan
    1226 Vol. 11, 1226–1236, February 1, 2005 Clinical Cancer Research UGT1A7 and UGT1A9 Polymorphisms Predict Response and Toxicity in Colorectal Cancer Patients Treated with Capecitabine/Irinotecan Leslie E. Carlini,1 Neal J. Meropol,1 John Bever,2 irinotecan. Specifically, patients with genotypes conferring Michael L. Andria,2 Todd Hill,2 Philip Gold,3 low UGT1A7 activity and/or the UGT1A9 (dT)9/9 genotype may be particularly likely to exhibit greater antitumor Andre Rogatko,1 Hao Wang,1 and response with little toxicity. Rebecca L. Blanchard1 1 2 Fox Chase Cancer Center, Philadelphia, Pennsylvania; Roche INTRODUCTION Laboratories, Inc., Nutley, New Jersey; and 3Swedish Cancer Institute, Seattle, Washington Colorectal cancer (CRC) is the third most common cancer in both men and women and the third most prevalent cause of cancer-related death (1). A common approach to the systemic ABSTRACT management of metastatic colorectal cancer is a combination Purpose: Capecitabine and irinotecan are commonly of fluoropyrimidine (e.g., 5-fluorouracil or capecitabine) used in the treatment of metastatic colorectal cancer (CRC). and irinotecan (reviewed in ref. 2). Fluoropyrimidines act We hypothesized that germline polymorphisms within genes primarily through the inhibition of thymidylate synthase (TS), related to drug target (thymidylate synthase) or metabolizing resulting in impaired DNA synthesis and cell death. Irinotecan is enzymes (UDP-glucuronosyltransferase, UGT) would impact a camptothecin compound that inhibits DNA topoisomerase I, response and toxicity to the combination of capecitabine plus resulting in an accumulation of DNA damage and cell death. irinotecan (CPT-11). Irinotecan is a prodrug that undergoes conversion by liver Experimental Design: Sixty-seven patients with measur- carboxylesterases to form the active compound SN-38, 7-ethyl- able CRC were treated with irinotecan i.v.
    [Show full text]
  • Toxicogenomic Approach to Impact Assessment of Whole Wastewater Effluents and Development of Effluent- Title Responsive Biomarker
    Toxicogenomic Approach to Impact Assessment of Whole Wastewater Effluents and Development of Effluent- Title Responsive Biomarker Author(s) 山村, 宏江 Citation 北海道大学. 博士(工学) 甲第11137号 Issue Date 2013-09-25 DOI 10.14943/doctoral.k11137 Doc URL http://hdl.handle.net/2115/77180 Type theses (doctoral) File Information Hiroe_Yamamura.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Doctoral Thesis Toxicogenomic Approach to Impact Assessment of Whole Wastewater Effluents and Development of Effluent-Responsive Biomarker Hiroe Hara-Yamamura Acknowledgement My doctoral research works presented here cannot be completed without a numerous number of tangible and intangible supports from my peers, my supervisor, instructors, friends, and family. I would first express my deepest gratitude to Prof. Satoshi OKABE for his technical advices and crisp ideas which often came to break the deadlock of my research progress, and for continued provision of another chance to me, even in the least fruitful season. Indeed, my three years in Prof. OKABE’s lab was “luxuri- ous” time in my life with a lot of supports, encouragements, and chances. In addition, I appreciate both Prof. Daisuke SANO and Dr. Satoshi ISHII for offering their insights on my experimental design and data analysis as well as giving me words of encouragements from time to time. Also, thank you to Prof. Takashi KUSUI from Toyama Prefectural University for his assistance to bioassay techniques and valuable discussion dur- ing my 1st year and 2nd year evaluation presentations. Furthermore, I would like to express my gratitude to specific efforts kindly provide by: Mr. Kenzo Kudo, Prof.
    [Show full text]
  • Endogenous Protein Interactome of Human UDP-Glucuronosyltransferases Exposed by Untargeted Proteomics
    ORIGINAL RESEARCH published: 03 February 2017 doi: 10.3389/fphar.2017.00023 Endogenous Protein Interactome of Human UDP-Glucuronosyltransferases Exposed by Untargeted Proteomics Michèle Rouleau, Yannick Audet-Delage, Sylvie Desjardins, Mélanie Rouleau, Camille Girard-Bock and Chantal Guillemette * Pharmacogenomics Laboratory, Canada Research Chair in Pharmacogenomics, Faculty of Pharmacy, Centre Hospitalier Universitaire de Québec Research Center, Laval University, Québec, QC, Canada The conjugative metabolism mediated by UDP-glucuronosyltransferase enzymes (UGTs) significantly influences the bioavailability and biological responses of endogenous molecule substrates and xenobiotics including drugs. UGTs participate in the regulation of cellular homeostasis by limiting stress induced by toxic molecules, and by Edited by: controlling hormonal signaling networks. Glucuronidation is highly regulated at genomic, Yuji Ishii, transcriptional, post-transcriptional and post-translational levels. However, the UGT Kyushu University, Japan protein interaction network, which is likely to influence glucuronidation, has received Reviewed by: little attention. We investigated the endogenous protein interactome of human UGT1A Ben Lewis, Flinders University, Australia enzymes in main drug metabolizing non-malignant tissues where UGT expression is Shinichi Ikushiro, most prevalent, using an unbiased proteomics approach. Mass spectrometry analysis Toyama Prefectural University, Japan of affinity-purified UGT1A enzymes and associated protein complexes in liver,
    [Show full text]
  • Flavolignans from Silymarin As Nrf2 Bioactivators and Their Therapeutic Applications
    biomedicines Review Flavolignans from Silymarin as Nrf2 Bioactivators and Their Therapeutic Applications 1, 2, 3 Nancy Vargas-Mendoza y , Ángel Morales-González y , Mauricio Morales-Martínez , Marvin A. Soriano-Ursúa 4, Luis Delgado-Olivares 5 , Eli Mireya Sandoval-Gallegos 5, Eduardo Madrigal-Bujaidar 6, Isela Álvarez-González 6 , Eduardo Madrigal-Santillán 1,* and José A. Morales-Gonzalez 1,* 1 Laboratorio de Medicina de Conservación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México Escuela Superior de Medicina, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico; [email protected] 2 Escuela Superior de Cómputo, Instituto Politécnico Nacional, Av. Juan de Dios Bátiz s/n esquina Miguel Othón de Mendizabal, Unidad Profesional Adolfo López Mateos, Mexico City CP 07738, Mexico; [email protected] 3 Licenciatura en Nutrición, Universidad Intercontinental, Insurgentes Sur 4303, Santa Úrsula Xitla, Alcaldía Tlalpan, Mexico City CP 14420, Mexico; [email protected] 4 Academia de Fisiología Humana, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Col. Casco de Santo Tomás, Del. Miguel Hidalgo, Mexico City 11340, Mexico; [email protected] 5 Centro de Investigación Interdisciplinario, Área Académica de Nutrición, Instituto de Ciencias de la Salud. Universidad Autónoma del Estado de Hidalgo. Circuito Actopan-Tilcuauttla, s/n, Ex hacienda La Concepción, San Agustín Tlaxiaca, Hidalgo CP 42160, Mexico; [email protected] (L.D.-O.); [email protected] (E.M.S.-G.) 6 Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”. Av. Wilfrido Massieu. Col., Zacatenco, Mexico City 07738, Mexico; [email protected] (E.M.-B.); [email protected] (I.Á.-G.) * Correspondence: [email protected] (E.M.-S.); [email protected] (J.A.M.-G.); Tel.: +52-55-5729-6300 (E.M.-S.
    [Show full text]
  • Nº Ref Uniprot Proteína Péptidos Identificados Por MS/MS 1 P01024
    Document downloaded from http://www.elsevier.es, day 26/09/2021. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. Nº Ref Uniprot Proteína Péptidos identificados 1 P01024 CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2 por 162MS/MS 2 P02751 FINC_HUMAN Fibronectin OS=Homo sapiens GN=FN1 PE=1 SV=4 131 3 P01023 A2MG_HUMAN Alpha-2-macroglobulin OS=Homo sapiens GN=A2M PE=1 SV=3 128 4 P0C0L4 CO4A_HUMAN Complement C4-A OS=Homo sapiens GN=C4A PE=1 SV=1 95 5 P04275 VWF_HUMAN von Willebrand factor OS=Homo sapiens GN=VWF PE=1 SV=4 81 6 P02675 FIBB_HUMAN Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 78 7 P01031 CO5_HUMAN Complement C5 OS=Homo sapiens GN=C5 PE=1 SV=4 66 8 P02768 ALBU_HUMAN Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 66 9 P00450 CERU_HUMAN Ceruloplasmin OS=Homo sapiens GN=CP PE=1 SV=1 64 10 P02671 FIBA_HUMAN Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 58 11 P08603 CFAH_HUMAN Complement factor H OS=Homo sapiens GN=CFH PE=1 SV=4 56 12 P02787 TRFE_HUMAN Serotransferrin OS=Homo sapiens GN=TF PE=1 SV=3 54 13 P00747 PLMN_HUMAN Plasminogen OS=Homo sapiens GN=PLG PE=1 SV=2 48 14 P02679 FIBG_HUMAN Fibrinogen gamma chain OS=Homo sapiens GN=FGG PE=1 SV=3 47 15 P01871 IGHM_HUMAN Ig mu chain C region OS=Homo sapiens GN=IGHM PE=1 SV=3 41 16 P04003 C4BPA_HUMAN C4b-binding protein alpha chain OS=Homo sapiens GN=C4BPA PE=1 SV=2 37 17 Q9Y6R7 FCGBP_HUMAN IgGFc-binding protein OS=Homo sapiens GN=FCGBP PE=1 SV=3 30 18 O43866 CD5L_HUMAN CD5 antigen-like OS=Homo
    [Show full text]
  • Linkage Disequilibrium of UGT1A1*6 and UGT1A1*28 in Relation to UGT1A6 and UGT1A7 Polymorphisms
    801-806 11/9/06 12:25 Page 801 ONCOLOGY REPORTS 16: 801-806, 2006 801 Linkage disequilibrium of UGT1A1*6 and UGT1A1*28 in relation to UGT1A6 and UGT1A7 polymorphisms NAOHITO URAWA, YOSHINAO KOBAYASHI, JUN ARAKI, RYOSUKE SUGIMOTO, MOTOH IWASA, MASAHIKO KAITO and YUKIHKO ADACHI Division of Clinical Medicine and Biomedical Sciences, Department of Gastroenterology and Hepatology, Institute of Medical Science, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan Received April 17, 2006; Accepted May 17, 2006 Abstract. UDP-glucuronosyltransferase (UGT) enzymes are first time that the LD of UGT1A1*6 in relation to UGT1A6 responsible for the glucuronidation and detoxification of many and 1A7 polymorphisms is far stronger than UGT1A1*28. endogenous or exogenous xenobiotics. Gilbert's syndrome The UGT1A1*6 allele appears to be independent of the (GS) and Crigler Najjar syndrome type 2 (CNS-II) are UGT1A1*28 allele. Although patients with GS and CNS-II characterized by unconjugated hyperbilirubinemia due to are believed to have good prognosis, a subgroup of GS or reduced enzymatic activity of UGT1A1. Recent studies have CNS-II patients with the UGT1A1*6 polymorphism might be demonstrated the frequent co-existence of UGT1A1*28 (-53 at risk of abnormal drug metabolism and of developing [TA]6>7) with other polymorphisms of UGT1A6 and malignant disease. UGT1A7. This finding suggests the occurrence of linkage disequilibrium (LD) among UGT1A1, UGT1A6 and UGT1A7 Introduction polymorphisms. UGT1A1*6 (211G>A, G71R) and UGT1A1*28 are common in Asian populations. In the present study, we UDP-glucuronosyltransferase (UGT) enzymes are responsible investigated the LD of UGT1A1*6 and UGT1A1*28 in for the glucuronidation and detoxification of many xenobiotics relation to UGT1A6 and UGT1A7 polymorphisms.
    [Show full text]
  • PHASE II DRUG METABOLIZING ENZYMES Petra Jancovaa*, Pavel Anzenbacherb,Eva Anzenbacherova
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010 Jun; 154(2):103–116. 103 © P. Jancova, P. Anzenbacher, E. Anzenbacherova PHASE II DRUG METABOLIZING ENZYMES Petra Jancovaa*, Pavel Anzenbacherb, Eva Anzenbacherovaa a Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic b Department of Pharmacology, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc E-mail: [email protected] Received: March 29, 2010; Accepted: April 20, 2010 Key words: Phase II biotransformation/UDP-glucuronosyltransferases/Sulfotransferases, N-acetyltransferases/Glutathione S-transferases/Thiopurine S-methyl transferase/Catechol O-methyl transferase Background. Phase II biotransformation reactions (also ‘conjugation reactions’) generally serve as a detoxifying step in drug metabolism. Phase II drug metabolising enzymes are mainly transferases. This review covers the major phase II enzymes: UDP-glucuronosyltransferases, sulfotransferases, N-acetyltransferases, glutathione S-transferases and methyltransferases (mainly thiopurine S-methyl transferase and catechol O-methyl transferase). The focus is on the presence of various forms, on tissue and cellular distribution, on the respective substrates, on genetic polymorphism and finally on the interspecies differences in these enzymes. Methods and Results. A literature search using the following databases PubMed, Science Direct and EBSCO for the years, 1969–2010. Conclusions. Phase II drug metabolizing enzymes play an important role in biotransformation of endogenous compounds and xenobiotics to more easily excretable forms as well as in the metabolic inactivation of pharmacologi- cally active compounds. Reduced metabolising capacity of Phase II enzymes can lead to toxic effects of clinically used drugs. Gene polymorphism/ lack of these enzymes may often play a role in several forms of cancer.
    [Show full text]
  • Endogenous Protein Interactome of Human
    Human UGT1A interaction network 1 Endogenous protein interactome of human UDP- 2 glucuronosyltransferases exposed by untargeted proteomics 3 4 5 Michèle Rouleau, Yannick Audet-Delage, Sylvie Desjardins, Mélanie Rouleau, Camille Girard- 6 Bock and Chantal Guillemette* 7 8 Pharmacogenomics Laboratory, Canada Research Chair in Pharmacogenomics, Centre 9 Hospitalier Universitaire (CHU) de Québec Research Center and Faculty of Pharmacy, Laval 10 University, G1V 4G2, Québec, Canada 11 12 13 14 15 *Corresponding author: 16 Chantal Guillemette, Ph.D. 17 Canada Research Chair in Pharmacogenomics 18 Pharmacogenomics Laboratory, CHU de Québec Research Center, R4720 19 2705 Boul. Laurier, Québec, Canada, G1V 4G2 20 Tel. (418) 654-2296 Fax. (418) 654-2298 21 E-mail: [email protected] 22 23 24 25 26 27 28 29 30 31 32 Running title: Human UGT1A interaction network 33 1 Human UGT1A interaction network 1 Number of: Pages: 26 2 Tables: 2 3 Figures: 5 4 References: 62 5 Supplemental Tables: 7 6 Supplemental Figures: 5 7 8 Number of words: Total: 7882 9 Abstract: 229 10 Introduction: 549 11 Results: 1309 12 Discussion: 1403 13 Body Text: 3261 14 15 16 17 18 Abbreviations: AP: affinity purification; UGT, UDP-glucuronosyltransferases; IP, immuno- 19 precipitation; PPIs, protein-protein interactions; UDP-GlcA, Uridine diphospho-glucuronic acid; 20 ER, endoplasmic reticulum; MS, mass spectrometry. 21 22 Keywords: UGT; Proteomics; Protein-protein interaction; Affinity purification; Mass 23 spectrometry; Metabolism; Human tissues; 24 2 Human UGT1A interaction network 1 ABSTRACT 2 3 The conjugative metabolism mediated by UDP-glucuronosyltransferase enzymes (UGTs) 4 significantly influences the bioavailability and biological responses of endogenous molecule 5 substrates and xenobiotics including drugs.
    [Show full text]
  • Blakeのtirielについて : Tirielはsir Joshua Reynoldsか
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Muroran-IT Academic Resource Archive BlakeのTirielについて : TirielはSir Joshua Reynoldsか その他(別言語等) On Blake's Tiriel : Tiriel is a book of のタイトル criticism on Reynolds 著者 狐野 利久 雑誌名 室蘭工業大学研究報告. 文科編 巻 8 号 1 ページ 149-163 発行年 1973-10-15 URL http://hdl.handle.net/10258/3348 Blake の η:'nel について 一一一 Tiriel は Sir Joshua Reynolds か一一司 狐野利久 On Bl ake's Tiriel -Tir ・iel is a book of criticism on Reynolds ー Rikyu Kono Ahstract 1 Tiriel Tiriel himself represents a very old religion of Law which is about to die. He reminds us of Urizen who is later on Blake's principal symbol of cold , worldly rationalism in his myths. 2 Tiriel Tiriel also reminds us of King Lea r. Both Tiriel and Lear are turned out by their children and wander wild in nature where they can not sleep nor rest because of madness and dismay ,and they call upon the thunder to destroy their children children in their outrage. Tiriel also , just lik 巴 King Lear , calls his offspring “ serpents". Blake had read Shakespeare's works in his youth. So we should say say that Tiriel has some echoes from King Lear. 3 Tiriel Tiriel destroys his sons and daughters except Hela to guide him back to the the vales of Har ,wh 巴re he had beed before. 1t is very natural ,1 think , that Hela represents the sense of Sight rather than the sense of Touch or Sex , because Tiriel is blind.
    [Show full text]
  • By William Blake
    Sale Catalogues of Blake's Works ftÄx VtàtÄÉzâxá Éy UÄt~x:á jÉÜ~á 1791-2013 A Catalogue Somewhat Raisonné By Toronto Spring 2013 1 Sale Catalogues of Blake's Works \Ç [ÉÅtzx àÉ `tÜà|Ç UâàÄ|Ç 2 Sale Catalogues of Blake's Works Table of Contents Dedication to Martin Butlin 2 Table of Illustrations 4 Introduction 5 Abbreviations and Symbols 7 Catalogues Number 1791-1799 8 9 1800-1809 21 12 1810-1819 29 20 1820-1829 28 29 1830-1839 31 41 1840-1849 21 53 1850-1859 28 62 1860-1869 28 84 1870-1879 25 102 1880-1889 45 113 1890-1899 69 139 1900-1909 77 166 1910-1919 114 193 1920-1929 125 230 1930-1939 92 277 1940-1949 63 319 1950-1959 59 345 1960-1969 50 360 1970-1979 110 371 1980-1989 67 402 1990-1999 64 423 2000-2009 34 445 2010-2013 15 461 1,023 3 Sale Catalogues of Blake's Works Table of Illustrations Illus. 1 Image of Francis Harvey's shop at 4 St James Street from A General Catalogue of Rare and Valuable Engraved Portraits On Sale by Francis Harvey (n.d.). Illus. 2 "??", from "William Blake's Original Sketch Book" reproduced in the catalogue of Stan V. Henkels, 21 November 1921, Lot 15. The sketch book "is probably the most important Blake item offered for sale in this country", with 50 original sketches by William Blake, together with "quite a number" by George Richmond; "all of Blake's sketches have that weird, mystical technique, which has never been even imitated by anybody since his death"; "the most skeptical would hesitate to pass an adverse opinion of them".
    [Show full text]