antibiotics Article Snapshot Study of Whole Genome Sequences of Escherichia coli from Healthy Companion Animals, Livestock, Wildlife, Humans and Food in Italy Elisa Massella 1, Cameron J. Reid 2, Max L. Cummins 2, Kay Anantanawat 2, Tiziana Zingali 2, Andrea Serraino 1 , Silvia Piva 1, Federica Giacometti 1 and Steven P. Djordjevic 2,* 1 Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy;
[email protected] (E.M.);
[email protected] (A.S.);
[email protected] (S.P.);
[email protected] (F.G.) 2 The ithree Institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia;
[email protected] (C.J.R.);
[email protected] (M.L.C.);
[email protected] (K.A.);
[email protected] (T.Z.) * Correspondence:
[email protected] Received: 15 September 2020; Accepted: 5 November 2020; Published: 6 November 2020 Abstract: Animals, humans and food are all interconnected sources of antimicrobial resistance (AMR), allowing extensive and rapid exchange of AMR bacteria and genes. Whole genome sequencing (WGS) was used to characterize 279 Escherichia coli isolates obtained from animals (livestock, companion animals, wildlife), food and humans in Italy. E. coli predominantly belonged to commensal phylogroups B1 (46.6%) and A (29%) using the original Clermont criteria. One hundred and thirty-six sequence types (STs) were observed, including different pandemic (ST69, ST95, ST131) and emerging (ST10, ST23, ST58, ST117, ST405, ST648) extraintestinal pathogenic Escherichia coli (ExPEC) lineages. Eight antimicrobial resistance genes (ARGs) and five chromosomal mutations conferring resistance to highest priority critically important antimicrobials (HP-CIAs) were identified (qnrS1, qnrB19, mcr-1, blaCTX-M1,15,55, blaCMY-2, gyrA/parC/parE, ampC and pmrB).