bioRxiv preprint doi: https://doi.org/10.1101/681718; this version posted December 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Mitochondrial genome of non-photosynthetic mycoheterotrophic plant Hypopitys 2 monotropa,its structure, gene expression and RNA editing 3 4 Viktoria Y. Shtratnikova1, Mikhail I. Schelkunov2,3, Aleksey A. Penin2, Maria D. Logacheva1,2,3 5 6 1A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 7 Moscow, Russian Federation 8 2Laboratory of Plant Genomics, Institute for Information Transmission Problems of the Russian 9 Academy of Sciences, Moscow, Russian Federation 10 3Skolkovo Institute of Science and Technology, Moscow, Russian Federation 11 12 Corresponding Author: 13 Maria D. Logacheva1,2,3 14 1Lomonosov Moscow State University, Leninskie Gory, GSP-1, Moscow 119991, Russia 15 2BolshoyKaretny lane, 19/1, Moscow 127051, Russia 16 3Skolkovo Institute of Science and Technology, Nobel St. 3, Moscow 143026, Russia 17 18 Email address:
[email protected] 19 20 Abstract 21 Heterotrophic plants – the plants that lost the ability to photosynthesis – are characterized by a 22 number of changes at all levels of organization. Heterotrophic plants divide into two large 23 categories – parasitic and mycoheterotrophic. The question of to what extent these changes are 24 similar in these two categories is still open. Plastid genomes of non-photosynthetic plants are 25 well characterized and they demonstrate similar patterns of reduction in both groups. In contrast, 26 little is known about mitochondrial genomes of mycoheterotrophic plants.