Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plasma Enhanced Chemical Vapor Deposition of Organic Polymers
processes Review Plasma Enhanced Chemical Vapor Deposition of Organic Polymers Gerhard Franz Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences (MUAS), 34 Lothstrasse, Munich, D-80335 Bavaria, Germany; [email protected] Abstract: Chemical Vapor Deposition (CVD) with its plasma-enhanced variation (PECVD) is a mighty instrument in the toolbox of surface refinement to cover it with a layer with very even thickness. Remarkable the lateral and vertical conformity which is second to none. Originating from the evaporation of elements, this was soon applied to deposit compound layers by simultaneous evaporation of two or three elemental sources and today, CVD is rather applied for vaporous reactants, whereas the evaporation of solid sources has almost completely shifted to epitaxial processes with even lower deposition rates but growth which is adapted to the crystalline substrate. CVD means first breaking of chemical bonds which is followed by an atomic reorientation. As result, a new compound has been generated. Breaking of bonds requires energy, i.e., heat. Therefore, it was a giant step forward to use plasmas for this rate-limiting step. In most cases, the maximum temperature could be significantly reduced, and eventually, also organic compounds moved into the preparative focus. Even molecules with saturated bonds (CH4) were subjected to plasmas—and the result was diamond! In this article, some of these strategies are portrayed. One issue is the variety of reaction paths which can happen in a low-pressure plasma. It can act as a source for deposition and etching which turn out to be two sides of the same medal. -
Electric Permittivity of Carbon Fiber
Carbon 143 (2019) 475e480 Contents lists available at ScienceDirect Carbon journal homepage: www.elsevier.com/locate/carbon Electric permittivity of carbon fiber * Asma A. Eddib, D.D.L. Chung Composite Materials Research Laboratory, Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260-4400, USA article info abstract Article history: The electric permittivity is a fundamental material property that affects electrical, electromagnetic and Received 19 July 2018 electrochemical applications. This work provides the first determination of the permittivity of contin- Received in revised form uous carbon fibers. The measurement is conducted along the fiber axis by capacitance measurement at 25 October 2018 2 kHz using an LCR meter, with a dielectric film between specimen and electrode (necessary because an Accepted 11 November 2018 LCR meter is not designed to measure the capacitance of an electrical conductor), and with decoupling of Available online 19 November 2018 the contributions of the specimen volume and specimen-electrode interface to the measured capaci- tance. The relative permittivity is 4960 ± 662 and 3960 ± 450 for Thornel P-100 (more graphitic) and Thornel P-25 fibers (less graphitic), respectively. These values are high compared to those of discon- tinuous carbons, such as reduced graphite oxide (relative permittivity 1130), but are low compared to those of steels, which are more conductive than carbon fibers. The high permittivity of carbon fibers compared to discontinuous carbons is attributed to the continuity of the fibers and the consequent substantial distance that the electrons can move during polarization. The P-100/P-25 permittivity ratio is 1.3, whereas the P-100/P-25 conductivity ratio is 67. -
Review of Technologies and Materials Used in High-Voltage Film Capacitors
polymers Review Review of Technologies and Materials Used in High-Voltage Film Capacitors Olatoundji Georges Gnonhoue 1,*, Amanda Velazquez-Salazar 1 , Éric David 1 and Ioana Preda 2 1 Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC H3C 1K3, Canada; [email protected] (A.V.-S.); [email protected] (É.D.) 2 Energy Institute—HEIA Fribourg, University of Applied Sciences of Western Switzerland, 3960 Sierre, Switzerland; [email protected] * Correspondence: [email protected] Abstract: High-voltage capacitors are key components for circuit breakers and monitoring and protection devices, and are important elements used to improve the efficiency and reliability of the grid. Different technologies are used in high-voltage capacitor manufacturing process, and at all stages of this process polymeric films must be used, along with an encapsulating material, which can be either liquid, solid or gaseous. These materials play major roles in the lifespan and reliability of components. In this paper, we present a review of the different technologies used to manufacture high-voltage capacitors, as well as the different materials used in fabricating high-voltage film capacitors, with a view to establishing a bibliographic database that will allow a comparison of the different technologies Keywords: high-voltage capacitors; resin; dielectric film Citation: Gnonhoue, O.G.; Velazquez-Salazar, A.; David, É.; Preda, I. Review of Technologies and 1. Introduction Materials Used in High-Voltage Film High-voltage films capacitors are important components for networks and various Capacitors. Polymers 2021, 13, 766. electrical devices. They are used to transport and distribute high-voltage electrical energy https://doi.org/10.3390/ either for voltage distribution, coupling or capacitive voltage dividers; in electrical sub- polym13050766 stations, circuit breakers, monitoring and protection devices; as well as to improve grid efficiency and reliability. -
VELOCITY of PROPAGATION by RON HRANAC
Originally appeared in the March 2010 issue of Communications Technology. VELOCITY OF PROPAGATION By RON HRANAC If you’ve looked at a spec sheet for coaxial cable, you’ve no doubt seen a parameter called velocity of propagation. For instance, the published velocity of propagation for CommScope’s F59 HEC-2 headend cable is "84% nominal," and Times Fiber’s T10.500 feeder cable has a published value of "87% nominal." What do these numbers mean, and where do they come from? We know that the speed of light in free space is 299,792,458 meters per second, which works out to 299,792,458/0.3048 = 983,571,056.43 feet per second, or 983,571,056.43/5,280 = 186,282.4 miles per second. The reciprocal of the free space value of the speed of light in feet per second is the time it takes for light to travel 1 foot: 1/983,571,056.43 = 1.02E-9 second, or 1.02 nanosecond. In other words, light travels a foot in free space in about a billionth of a second. Light is part of the electromagnetic spectrum, as is RF. That means RF zips along at the same speed that light does. "The major culprit that slows the waves down is the dielectric — and it slows TEM waves down a bunch." Now let’s define velocity of propagation: It’s the speed at which an electromagnetic wave propagates through a medium such as coaxial cable, expressed as a percentage of the free space value of the speed of light. -
Importance of Varying Permittivity on the Conductivity of Polyelectrolyte Solutions
Importance of Varying Permittivity on the Conductivity of Polyelectrolyte Solutions Florian Fahrenberger, Owen A. Hickey, Jens Smiatek, and Christian Holm∗ Institut f¨urComputerphysik, Universit¨atStuttgart, Allmandring 3, Stuttgart 70569, Germany (Dated: September 8, 2018) Dissolved ions can alter the local permittivity of water, nevertheless most theories and simulations ignore this fact. We present a novel algorithm for treating spatial and temporal variations in the permittivity and use it to measure the equivalent conductivity of a salt-free polyelectrolyte solution. Our new approach quantitatively reproduces experimental results unlike simulations with a constant permittivity that even qualitatively fail to describe the data. We can relate this success to a change in the ion distribution close to the polymer due to the built-up of a permittivity gradient. The dielectric permittivity " measures the polarizabil- grained approach is necessary due to the excessive sys- ity of a medium subjected to an electric field and is one of tem size. Molecular Dynamics (MD) simulations of only two fundamental constants in Maxwell's equations. charged systems typically work with the restricted prim- The relative permittivity of pure water at room temper- itive model by simulating the ions as hard spheres while ature is roughly 78.5, but charged objects dissolved in accounting for the solvent implicitly through a con- the fluid significantly reduce the local dielectric constant stant background dielectric. Crucially, the solvent me- because water dipoles align with the local electric field diates hydrodynamic interactions and reduces the elec- created by the object rather than the external field [1{3]. trostatic interactions due to its polarizability. -
An Introduction to Peek Extrusions
No. 3, APRIL 2017 RESINATE Your quarterly newsletter to keep you informed about trusted products, smart solutions, and valuable updates. POWERING MOTOR PERFORMANCE: AN INTRODUCTION TO PEEK EXTRUSIONS KEVIN J. BIGHAM, Ph.D. © 2017 POWERING MOTOR PERFORMANCE: AN INTRODUCTION TO PEEK EXTRUSIONS 1 ABSTRACT PEEK is a polymer that is a highly versatile and thus popular thermoplastic. As a polarizable dielectric, PEEK has also become popular for its insulating characteristics and is increasingly being explored towards these applications. We at Zeus examined these aspects of PEEK and its potential for applications involving electric motors. We compared motor performance of a readily obtainable 0.75 horsepower, 4-pole, 460 volt, AC induction motor with same motor rebuilt with Zeus PEEK insulated magnet wire and other PEEK insulating products. We found that the motor rebuilt with Zeus PEEK insulated wire performed equal to or better than the OEM motor in nearly every general performance attribute that was tested. INTRODUCTION TO PEEK POLYMER Polyether ether ketone, or PEEK, is a highly popular thermoplastic polymer. A This organic compound is part of the family of PAEK (polyaryl ether ketone) polymers which includes other familiar names such as PEK (polyether ketone), and PEKK (polyether ketone ketone). B PEEK, like many PAEK family members, is a semi-crystalline polymer at room temperature and is composed of ether and ketone linkages on either side of single aryl moieties (Fig. 1). As a thermoplastic, C PEEK does not decompose at its melt temperature making it very amenable to melt processing where it can be made into Figure 1: Polyether ether ketone polymer, or a highly diverse collection of other forms. -
Chapter 5 Capacitance and Dielectrics
Chapter 5 Capacitance and Dielectrics 5.1 Introduction...........................................................................................................5-3 5.2 Calculation of Capacitance ...................................................................................5-4 Example 5.1: Parallel-Plate Capacitor ....................................................................5-4 Interactive Simulation 5.1: Parallel-Plate Capacitor ...........................................5-6 Example 5.2: Cylindrical Capacitor........................................................................5-6 Example 5.3: Spherical Capacitor...........................................................................5-8 5.3 Capacitors in Electric Circuits ..............................................................................5-9 5.3.1 Parallel Connection......................................................................................5-10 5.3.2 Series Connection ........................................................................................5-11 Example 5.4: Equivalent Capacitance ..................................................................5-12 5.4 Storing Energy in a Capacitor.............................................................................5-13 5.4.1 Energy Density of the Electric Field............................................................5-14 Interactive Simulation 5.2: Charge Placed between Capacitor Plates..............5-14 Example 5.5: Electric Energy Density of Dry Air................................................5-15 -
Introduction] [Tuning-Capacitors] [Coupling Methods] [My First STL] [My Second STL] [Motor Drive for Capacitor] [References]
This page provides a top-level description of Small Transmitting Loop (STL) antennas (a.k.a. "Magnetic Loop Antenna", MLA), and my two versions of such an antenna for 80 mtrs and up. My smaller 40-20 loop is described here. My helically wound "Slinky" loop is described here. [Introduction] [Tuning-capacitors] [Coupling methods] [My first STL] [My second STL] [Motor drive for capacitor] [References] INTRODUCTION I wanted a small transmitting loop (STL) antenna that covers at least the 80 and 40 meter bands (preferable 80 - 20). Why? I want to do 80 mtrs DX, but I have no room for a decent 80 m wire-antenna, nor would I be able to install such an antenna high enough above ground. I have had some success with short, loaded vertical antennas with a single elevated radial, see here and here. But I cannot install those permanently at my QTH. Below 10 MHz, our apartment building generates a large amount of "electro-smog" QRM. An STL tends to be less sensitive to picking up electrical noise in the near-field (< 1 λ), which appears to be the reason why this type of antenna is also referred to as a "magnetic loop antenna". STLs have a radiation pattern with directivity. They are also small enough to rotate with a small motor, or TV-antenna rotor. They are less conspicuous (to my friends of the home-owners association "police") than a wire antenna that is strung along the outside of the building. I don't want to have to mess with radials, counterpoises, RF-grounds, etc. -
Measurement of Dielectric Material Properties Application Note
with examples examples with solutions testing practical to show written properties. dielectric to the s-parameters converting for methods shows Italso analyzer. a network using materials of properties dielectric the measure to methods the describes note The application | | | | Products: Note Application Properties Material of Dielectric Measurement R&S R&S R&S R&S ZNB ZNB ZVT ZVA ZNC ZNC Another application note will be will note application Another <Application Note> Kuek Chee Yaw 04.2012- RAC0607-0019_1_4E Table of Contents Table of Contents 1 Overview ................................................................................. 3 2 Measurement Methods .......................................................... 3 Transmission/Reflection Line method ....................................................... 5 Open ended coaxial probe method ............................................................ 7 Free space method ....................................................................................... 8 Resonant method ......................................................................................... 9 3 Measurement Procedure ..................................................... 11 4 Conversion Methods ............................................................ 11 Nicholson-Ross-Weir (NRW) .....................................................................12 NIST Iterative...............................................................................................13 New non-iterative .......................................................................................14 -
Capacitors and Dielectrics Dielectric - a Non-Conducting Material (Glass, Paper, Rubber….)
Capacitors and Dielectrics Dielectric - A non-conducting material (glass, paper, rubber….) Placing a dielectric material between the plates of a capacitor serves three functions: 1. Maintains a small separation between the plates 2. Increases the maximum operating voltage between the plates. 3. Increases the capacitance In order to prove why the maximum operating voltage and capacitance increases we must look at an atomic description of the dielectric. For now we will show that the capacitance increases by looking at an experimental result: Experiment Since VVCCoo, then Since Q is the same: Coo V CV C V o K CVo C K Dielectric Constant Co Since C > Co , then K > 1 C kCo V V o k kvacuum = 1 (vacuum) k = 1.00059 (air) kglass = 5-10 Material Dielectric Constant k Dielectric Strength (V/m) Air 1.00054 3 Paper 3.5 16 Pyrex glass 4.7 14 A real dielectric is not a perfect insulator and thus you will always have some leakage current between the plates of the capacitor. For a parallel-plate capacitor: C kCo kA C o d From this equation it appears that C can be made as large as possible by decreasing d and thus be able to store a very large amount of charge or equivalently a very large amount of energy. Is there a limit on how much charge (energy) a capacitor can store? YES!! +q K e- - F =qE E e e- E dielectric -q As charge ‘q’ is added to the capacitor plates, the E-field will increase until the dielectric becomes a conductor (dielectric breakdown). -
Product Information PA 2200
Product Information PA 2200 PA 2200 is a non-filled powder on basis of PA 12. General Properties Property Measurement Method Units Value DIN/ISO Water absorption ISO 62 / DIN 53495 100°C, saturation in water % 1.93 23°C, 96% RF % 1.33 23°C, 50% RF % 0.52 Property Measurement Method Unit Value DIN/ISO Coefficient of linear thermal ex- ISO 11359 / DIN 53752-A x10-4 /K 1.09 pansion Specific heat DIN 51005 J/gK 2.35 Thermal properties of sintered parts Property Measurement Method Unit Value DIN/ISO Thermal conductivity DIN 52616 vertical to sintered layers W/mK 0.144 parallel to sintered layers W/mK 0.127 EOS GmbH - Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling / München Telefon: +49 (0)89 / 893 36-0 AHO / 03.10 Telefax: +49 (0)89 / 893 36-285 PA2200_Product_information_03-10_en.doc 1 / 10 Internet: www.eos.info Product Information Short term influcence of temperature on mechanical properties An overview about the temperature dependence of mechanical properties of PA 12 can be re- trieved from the curves for dynamic shear modulus and loss factor as function of temperature according to ISO 537. PA 2200 dynamic mechanical analysis (torsion) Temp.: - 100 bis 188°C 1E+10 G' 1E+03 G" tan_delta 1E+02 1E+09 , 1E+01 1E+08 tan_delta 1E+00 1E+07 loss modulus G´´ [Pa] 1E-01 storage modulus G´ [Pa] modulus storage 1E+06 1E-02 1E+05 1E-03 -100 -50 0 50 100 150 200 Temperature [°C] In general parts made of PA 12 show high mechanical strength and elasticity under steady stress in a temperature range from - 40°C till + 80°C. -
Properties of Cryogenic Insulants J
Cryogenics 38 (1998) 1063–1081 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0011-2275(98)00094-0 0011-2275/98/$ - see front matter Properties of cryogenic insulants J. Gerhold Technische Universitat Graz, Institut fur Electrische Maschinen und Antriebestechnik, Kopernikusgasse 24, A-8010 Graz, Austria Received 27 April 1998; revised 18 June 1998 High vacuum, cold gases and liquids, and solids are the principal insulating materials for superconducting apparatus. All these insulants have been claimed to show fairly good intrinsic dielectric performance under laboratory conditions where small scale experiments in the short term range are typical. However, the insulants must be inte- grated into large scaled insulating systems which must withstand any particular stress- ing voltage seen by the actual apparatus over the full life period. Estimation of the amount of degradation needs a reliable extrapolation from small scale experimental data. The latter are reviewed in the light of new experimental data, and guidelines for extrapolation are discussed. No degradation may be seen in resistivity and permit- tivity. Dielectric losses in liquids, however, show some degradation, and breakdown as a statistical event must be scrutinized very critically. Although information for break- down strength degradation in large systems is still fragmentary, some thumb rules can be recommended for design. 1998 Elsevier Science Ltd. All rights reserved Keywords: dielectric properties; vacuum; fluids; solids; power applications; supercon- ductors The dielectric insulation design of any superconducting Of special interest for normal operation are the resis- power apparatus must be based on the available insulators. tivity, the permittivity, and the dielectric losses.