Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation

Total Page:16

File Type:pdf, Size:1020Kb

Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation energies Article Electrical Properties of Polyethylene/Polypropylene Compounds for High-Voltage Insulation Sameh Ziad Ahmed Dabbak 1, Hazlee Azil Illias 1,* ID , Bee Chin Ang 2, Nurul Ain Abdul Latiff 1 and Mohamad Zul Hilmey Makmud 1,3,* ID 1 Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] (S.Z.A.D.); [email protected] (N.A.A.L.) 2 Department of Chemical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia; [email protected] 3 Complex of Science and Technology, Faculty of Science and Natural Resources, University Malaysia Sabah, Kota Kinabalu 88400, Malaysia * Correspondence: [email protected] (H.A.I.); [email protected] (M.Z.H.M.); Tel.: +60-3-7967-4483 (H.A.I.) Received: 12 April 2018; Accepted: 30 May 2018; Published: 4 June 2018 Abstract: In high-voltage insulation systems, the most commonly used material is polymeric material because of its high dielectric strength, high resistivity, and low dielectric loss in addition to good chemical and mechanical properties. In this work, various polymer compounds were prepared, consisting of low-density polyethylene (LDPE), high-density polyethylene (HDPE), polypropylene (PP), HDPE/PP, and LDPE/PP polymer blends. The relative permittivity and breakdown strength of each sample types were evaluated. In order to determine the physical properties of the prepared samples, the samples were also characterized using differential scanning calorimetry (DSC). The results showed that the dielectric constant of PP increased with the increase of HDPE and LDPE content. The breakdown measurement data for all samples were analyzed using the cumulative probability plot of Weibull distribution. From the acquired results, it was found that the dielectric strengths of LDPE and HDPE were higher than that of PP. Consequently, the addition of LDPE and HDPE to PP increased the breakdown strength of PP, but a variation in the weight ratio (30%, 50% and 70%) did not change significantly the breakdown strength. The DSC measurements showed two exothermic crystallization peaks representing two crystalline phases. In addition, the DSC results showed that the blended samples were physically bonded, and no co-crystallization occurred in the produced blends. Keywords: insulation materials; dielectric strength; dielectric characterization; high-voltage engineering 1. Introduction Thermoplastic polymers, such as polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), and polystyrene (PS) are the main products of industrial engineering, which are employed in several electrical application fields. In high-voltage equipment, polymers are commonly used in the insulation systems because of their exceptional mechanical, electrical, chemical, and thermal properties and their low production cost. In insulation materials, which are produced by mixing different polymers at different weight ratios, polymers are used to modify the physical and mechanical properties of the final products, maintaining a lower production cost. High-density polyethylene (HDPE), low-density polyethylene (LDPE), and PP are the most widely used polymers in the world market, employed for electrical equipment, automotive engineering material, and packaging. The most useful properties of PE and PP are oil resistance, rigidity, good Energies 2018, 11, 1448; doi:10.3390/en11061448 www.mdpi.com/journal/energies Energies 2018, 11, 1448 2 of 13 stiffness, and thermal stability [1]. Conversely, the utilization of PP and PE is restricted in certain areas owing to some weak properties such as melt viscosity. The weak properties of LDPE include a lack of mechanical and thermal resistance. Hence, numerous researchers are working on improving the properties of LDPE by mixing it with other polymers that have high temperature resistance [2,3]. In addition, the poor impact strength of PP and its weak Young’s modulus restrict its applications. These poor properties may be enhanced by mixing PP with PE [4–7]. In these blends, the impact and tensile strength are improved [8,9]. The polymer blends also compromise significant processing benefits in the melting polymer fraction [10]. The breakdown strength attracted major interest in early polymer studies. In 1955, the dielectric strength of insulation materials and its relation with the electric field strength between high voltage and ground electrodes were studied. It was found that by increasing the internal ionization through an increase of the electric field strength, an electron avalanche would form, leading to insulation breakdown if the electric field reached a very high value. The insulation breakdown is also caused by the expansion of electrical treeing in polymers, particularly in LDPE, which affects the material, wrecking its formation. Essentially, the electrical trees are instigated when the material is exposed to excessive electrical field stress over long periods of time. Defects occur, which are triggered by electrical trees, that further deteriorate the material dielectric strength, upsurge the electrical stress, and speed up the partial discharge (PD) process [11]. The tracking resistance was studied for linear low-density polyethylene and natural rubber LLDPE/NR blends with different weight ratios by measuring carbon track development and leakage current. It was found that the mixture of 80:20 LLDPE/NR was a better blend because of its lowest degradation [12]. The breakdown strength and stress tracking measurements were carried out for blends containing different ratios of recycled HDPE in resins with HDPE. It was revealed that the dielectric strength was not good for the recycled blends in comparison to the pure material because of the existence of conductive impurity [13]. These studies focused on the factors engaged in a breakdown mechanism. These factors include the dielectric properties, physical structure and deformity, additives and pollution, and space charge injection. The mechanism that leads to breakdown is still unclear, despite it is well known that breakdown is a result of conducting channels crossing the insulation material. A low electrical conductivity in an insulation material is required to avoid the possibility of breakdown. It depends on the amount and the concentration of charge carriers, the charge of the charge carriers, and their mobility. The direct current (DC) conductivity of polymer blends containing HDPE and LDPE was measured. It was found that the blend of LDPE with 5% HDPE had a reduced conductivity [14]. Although many studies on dielectric strength of pure polymer materials with micro- or nanoparticles have been carried out, the electrical properties, especially for high-voltage applications of polymer blends, are limited. Most of the polymer blends studies were performed on the blends mechanical and physical properties. However, it is also essential to assess the breakdown strength of blended materials in order to investigate their capability to be used in high-voltage insulation systems. Therefore, in this work, the breakdown strength of different blends of HDPE/PP and LDPE/PP was investigated. Weibull distribution was plotted to determine the probability occurrence and to analyze alternating current (AC) breakdown strength. The data were used to evaluate the dielectric strength of the blended compounds compared to the pure samples. In addition, the dielectric responses of polymer blends as a function of frequency were compared. Differential scanning calorimetry (DSC) was used on all prepared blended samples to characterize their thermal properties, such as the amount of crystallinity and the melting temperature. 2. Samples and Experimental Process 2.1. Sample Preparation The materials used in this work, high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP), were obtained from Sigma Aldrich (St. Louis, MO, USA) with Energies 2018, 11, 1448 3 of 13 product numbers of 428019, 428043 and 427888, respectively. From the product specification sheets, the melt flow index of HDPE, LDPE, and PP are 42, 25, and 12 g/10 min respectively, and the density Energies 2018, 11, x FOR PEER REVIEW 3 of 13 3 is 0.947, 0.92 and 0.9 g/cm , respectively. The average molecular weight Mw of PP is about 250,000. 3 Theis required 0.947, 0.92 samples and 0.9of g/cm pure, respectively. polymers,in The addition average to molecular the HDPE/PP weight and LDPE/PPof PP is about blends 250,000. with weightThe ratiosrequired of 3:7, samples 5:5, and of 7:3,pure were polymers, produced in addi for eachtion to mixture. the HDPE/PP The mixed and specimens LDPE/PP wereblends marked with as HP1,weight HP2, ratios HP3, of 3:7, and 5:5, LP1, and LP2, 7:3, LP3were for produc HDPE/PPed for each and LDPE/PP,mixture. The respectively. mixed specimens The selection were marked on the mixingas HP1, ratio HP2, of HDPE/PP HP3, and LP1, and LDPE/PPLP2, LP3 for blends HDPE/P wasP basedand LDPE/PP, on past worksrespectively. [2,4,8,15 The–18 selection]. The materials on the weremixing mixed ratio mechanically of HDPE/PP using and LDPE/PP a twin screwblends extruder,was based with on past a 150 works rpm [2,4,8,15–18]. screw rotating The materials speed for 5 min.were Themixed barrel mechanically extruder using temperature a twin screw was setextr fromuder, 140with to a 180150 ◦rpmC from screw the rotating hopper speed to the for die.5 Thinmin. samples The barrel with extruder 150–250 temperatureµm thickness was were set from prepared 140 °C using to 180 an °C adjustable from the hopper temperature to the die. hydraulic Thin press.samples The temperature with 150–250 ofµm the thickness stainless were steel prepared mold, whichusing an was adjustable covered temperature by aluminum hydraulic foil, was press. kept fromThe 170 temperature to 180 ◦C of with the astainless pressure steel of mold, 35 bar which for 10 was min covered to grant by aluminum complete melting.foil, was kept Slow from cooling 170 was°C carried to 180 out°C with by turning a pressure off of the 35 heater bar for and 10 min waiting to grant for complete the sample melting.
Recommended publications
  • Plasma Enhanced Chemical Vapor Deposition of Organic Polymers
    processes Review Plasma Enhanced Chemical Vapor Deposition of Organic Polymers Gerhard Franz Department of Applied Sciences and Mechatronics, Munich University of Applied Sciences (MUAS), 34 Lothstrasse, Munich, D-80335 Bavaria, Germany; [email protected] Abstract: Chemical Vapor Deposition (CVD) with its plasma-enhanced variation (PECVD) is a mighty instrument in the toolbox of surface refinement to cover it with a layer with very even thickness. Remarkable the lateral and vertical conformity which is second to none. Originating from the evaporation of elements, this was soon applied to deposit compound layers by simultaneous evaporation of two or three elemental sources and today, CVD is rather applied for vaporous reactants, whereas the evaporation of solid sources has almost completely shifted to epitaxial processes with even lower deposition rates but growth which is adapted to the crystalline substrate. CVD means first breaking of chemical bonds which is followed by an atomic reorientation. As result, a new compound has been generated. Breaking of bonds requires energy, i.e., heat. Therefore, it was a giant step forward to use plasmas for this rate-limiting step. In most cases, the maximum temperature could be significantly reduced, and eventually, also organic compounds moved into the preparative focus. Even molecules with saturated bonds (CH4) were subjected to plasmas—and the result was diamond! In this article, some of these strategies are portrayed. One issue is the variety of reaction paths which can happen in a low-pressure plasma. It can act as a source for deposition and etching which turn out to be two sides of the same medal.
    [Show full text]
  • Electric Permittivity of Carbon Fiber
    Carbon 143 (2019) 475e480 Contents lists available at ScienceDirect Carbon journal homepage: www.elsevier.com/locate/carbon Electric permittivity of carbon fiber * Asma A. Eddib, D.D.L. Chung Composite Materials Research Laboratory, Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260-4400, USA article info abstract Article history: The electric permittivity is a fundamental material property that affects electrical, electromagnetic and Received 19 July 2018 electrochemical applications. This work provides the first determination of the permittivity of contin- Received in revised form uous carbon fibers. The measurement is conducted along the fiber axis by capacitance measurement at 25 October 2018 2 kHz using an LCR meter, with a dielectric film between specimen and electrode (necessary because an Accepted 11 November 2018 LCR meter is not designed to measure the capacitance of an electrical conductor), and with decoupling of Available online 19 November 2018 the contributions of the specimen volume and specimen-electrode interface to the measured capaci- tance. The relative permittivity is 4960 ± 662 and 3960 ± 450 for Thornel P-100 (more graphitic) and Thornel P-25 fibers (less graphitic), respectively. These values are high compared to those of discon- tinuous carbons, such as reduced graphite oxide (relative permittivity 1130), but are low compared to those of steels, which are more conductive than carbon fibers. The high permittivity of carbon fibers compared to discontinuous carbons is attributed to the continuity of the fibers and the consequent substantial distance that the electrons can move during polarization. The P-100/P-25 permittivity ratio is 1.3, whereas the P-100/P-25 conductivity ratio is 67.
    [Show full text]
  • Review of Technologies and Materials Used in High-Voltage Film Capacitors
    polymers Review Review of Technologies and Materials Used in High-Voltage Film Capacitors Olatoundji Georges Gnonhoue 1,*, Amanda Velazquez-Salazar 1 , Éric David 1 and Ioana Preda 2 1 Department of Mechanical Engineering, École de technologie supérieure, Montreal, QC H3C 1K3, Canada; [email protected] (A.V.-S.); [email protected] (É.D.) 2 Energy Institute—HEIA Fribourg, University of Applied Sciences of Western Switzerland, 3960 Sierre, Switzerland; [email protected] * Correspondence: [email protected] Abstract: High-voltage capacitors are key components for circuit breakers and monitoring and protection devices, and are important elements used to improve the efficiency and reliability of the grid. Different technologies are used in high-voltage capacitor manufacturing process, and at all stages of this process polymeric films must be used, along with an encapsulating material, which can be either liquid, solid or gaseous. These materials play major roles in the lifespan and reliability of components. In this paper, we present a review of the different technologies used to manufacture high-voltage capacitors, as well as the different materials used in fabricating high-voltage film capacitors, with a view to establishing a bibliographic database that will allow a comparison of the different technologies Keywords: high-voltage capacitors; resin; dielectric film Citation: Gnonhoue, O.G.; Velazquez-Salazar, A.; David, É.; Preda, I. Review of Technologies and 1. Introduction Materials Used in High-Voltage Film High-voltage films capacitors are important components for networks and various Capacitors. Polymers 2021, 13, 766. electrical devices. They are used to transport and distribute high-voltage electrical energy https://doi.org/10.3390/ either for voltage distribution, coupling or capacitive voltage dividers; in electrical sub- polym13050766 stations, circuit breakers, monitoring and protection devices; as well as to improve grid efficiency and reliability.
    [Show full text]
  • VELOCITY of PROPAGATION by RON HRANAC
    Originally appeared in the March 2010 issue of Communications Technology. VELOCITY OF PROPAGATION By RON HRANAC If you’ve looked at a spec sheet for coaxial cable, you’ve no doubt seen a parameter called velocity of propagation. For instance, the published velocity of propagation for CommScope’s F59 HEC-2 headend cable is "84% nominal," and Times Fiber’s T10.500 feeder cable has a published value of "87% nominal." What do these numbers mean, and where do they come from? We know that the speed of light in free space is 299,792,458 meters per second, which works out to 299,792,458/0.3048 = 983,571,056.43 feet per second, or 983,571,056.43/5,280 = 186,282.4 miles per second. The reciprocal of the free space value of the speed of light in feet per second is the time it takes for light to travel 1 foot: 1/983,571,056.43 = 1.02E-9 second, or 1.02 nanosecond. In other words, light travels a foot in free space in about a billionth of a second. Light is part of the electromagnetic spectrum, as is RF. That means RF zips along at the same speed that light does. "The major culprit that slows the waves down is the dielectric — and it slows TEM waves down a bunch." Now let’s define velocity of propagation: It’s the speed at which an electromagnetic wave propagates through a medium such as coaxial cable, expressed as a percentage of the free space value of the speed of light.
    [Show full text]
  • Importance of Varying Permittivity on the Conductivity of Polyelectrolyte Solutions
    Importance of Varying Permittivity on the Conductivity of Polyelectrolyte Solutions Florian Fahrenberger, Owen A. Hickey, Jens Smiatek, and Christian Holm∗ Institut f¨urComputerphysik, Universit¨atStuttgart, Allmandring 3, Stuttgart 70569, Germany (Dated: September 8, 2018) Dissolved ions can alter the local permittivity of water, nevertheless most theories and simulations ignore this fact. We present a novel algorithm for treating spatial and temporal variations in the permittivity and use it to measure the equivalent conductivity of a salt-free polyelectrolyte solution. Our new approach quantitatively reproduces experimental results unlike simulations with a constant permittivity that even qualitatively fail to describe the data. We can relate this success to a change in the ion distribution close to the polymer due to the built-up of a permittivity gradient. The dielectric permittivity " measures the polarizabil- grained approach is necessary due to the excessive sys- ity of a medium subjected to an electric field and is one of tem size. Molecular Dynamics (MD) simulations of only two fundamental constants in Maxwell's equations. charged systems typically work with the restricted prim- The relative permittivity of pure water at room temper- itive model by simulating the ions as hard spheres while ature is roughly 78.5, but charged objects dissolved in accounting for the solvent implicitly through a con- the fluid significantly reduce the local dielectric constant stant background dielectric. Crucially, the solvent me- because water dipoles align with the local electric field diates hydrodynamic interactions and reduces the elec- created by the object rather than the external field [1{3]. trostatic interactions due to its polarizability.
    [Show full text]
  • An Introduction to Peek Extrusions
    No. 3, APRIL 2017 RESINATE Your quarterly newsletter to keep you informed about trusted products, smart solutions, and valuable updates. POWERING MOTOR PERFORMANCE: AN INTRODUCTION TO PEEK EXTRUSIONS KEVIN J. BIGHAM, Ph.D. © 2017 POWERING MOTOR PERFORMANCE: AN INTRODUCTION TO PEEK EXTRUSIONS 1 ABSTRACT PEEK is a polymer that is a highly versatile and thus popular thermoplastic. As a polarizable dielectric, PEEK has also become popular for its insulating characteristics and is increasingly being explored towards these applications. We at Zeus examined these aspects of PEEK and its potential for applications involving electric motors. We compared motor performance of a readily obtainable 0.75 horsepower, 4-pole, 460 volt, AC induction motor with same motor rebuilt with Zeus PEEK insulated magnet wire and other PEEK insulating products. We found that the motor rebuilt with Zeus PEEK insulated wire performed equal to or better than the OEM motor in nearly every general performance attribute that was tested. INTRODUCTION TO PEEK POLYMER Polyether ether ketone, or PEEK, is a highly popular thermoplastic polymer. A This organic compound is part of the family of PAEK (polyaryl ether ketone) polymers which includes other familiar names such as PEK (polyether ketone), and PEKK (polyether ketone ketone). B PEEK, like many PAEK family members, is a semi-crystalline polymer at room temperature and is composed of ether and ketone linkages on either side of single aryl moieties (Fig. 1). As a thermoplastic, C PEEK does not decompose at its melt temperature making it very amenable to melt processing where it can be made into Figure 1: Polyether ether ketone polymer, or a highly diverse collection of other forms.
    [Show full text]
  • Chapter 5 Capacitance and Dielectrics
    Chapter 5 Capacitance and Dielectrics 5.1 Introduction...........................................................................................................5-3 5.2 Calculation of Capacitance ...................................................................................5-4 Example 5.1: Parallel-Plate Capacitor ....................................................................5-4 Interactive Simulation 5.1: Parallel-Plate Capacitor ...........................................5-6 Example 5.2: Cylindrical Capacitor........................................................................5-6 Example 5.3: Spherical Capacitor...........................................................................5-8 5.3 Capacitors in Electric Circuits ..............................................................................5-9 5.3.1 Parallel Connection......................................................................................5-10 5.3.2 Series Connection ........................................................................................5-11 Example 5.4: Equivalent Capacitance ..................................................................5-12 5.4 Storing Energy in a Capacitor.............................................................................5-13 5.4.1 Energy Density of the Electric Field............................................................5-14 Interactive Simulation 5.2: Charge Placed between Capacitor Plates..............5-14 Example 5.5: Electric Energy Density of Dry Air................................................5-15
    [Show full text]
  • Introduction]  [Tuning-Capacitors]  [Coupling Methods]  [My First STL]  [My Second STL]  [Motor Drive for Capacitor]  [References]
    This page provides a top-level description of Small Transmitting Loop (STL) antennas (a.k.a. "Magnetic Loop Antenna", MLA), and my two versions of such an antenna for 80 mtrs and up. My smaller 40-20 loop is described here. My helically wound "Slinky" loop is described here. [Introduction] [Tuning-capacitors] [Coupling methods] [My first STL] [My second STL] [Motor drive for capacitor] [References] INTRODUCTION I wanted a small transmitting loop (STL) antenna that covers at least the 80 and 40 meter bands (preferable 80 - 20). Why? I want to do 80 mtrs DX, but I have no room for a decent 80 m wire-antenna, nor would I be able to install such an antenna high enough above ground. I have had some success with short, loaded vertical antennas with a single elevated radial, see here and here. But I cannot install those permanently at my QTH. Below 10 MHz, our apartment building generates a large amount of "electro-smog" QRM. An STL tends to be less sensitive to picking up electrical noise in the near-field (< 1 λ), which appears to be the reason why this type of antenna is also referred to as a "magnetic loop antenna". STLs have a radiation pattern with directivity. They are also small enough to rotate with a small motor, or TV-antenna rotor. They are less conspicuous (to my friends of the home-owners association "police") than a wire antenna that is strung along the outside of the building. I don't want to have to mess with radials, counterpoises, RF-grounds, etc.
    [Show full text]
  • Measurement of Dielectric Material Properties Application Note
    with examples examples with solutions testing practical to show written properties. dielectric to the s-parameters converting for methods shows Italso analyzer. a network using materials of properties dielectric the measure to methods the describes note The application | | | | Products: Note Application Properties Material of Dielectric Measurement R&S R&S R&S R&S ZNB ZNB ZVT ZVA ZNC ZNC Another application note will be will note application Another <Application Note> Kuek Chee Yaw 04.2012- RAC0607-0019_1_4E Table of Contents Table of Contents 1 Overview ................................................................................. 3 2 Measurement Methods .......................................................... 3 Transmission/Reflection Line method ....................................................... 5 Open ended coaxial probe method ............................................................ 7 Free space method ....................................................................................... 8 Resonant method ......................................................................................... 9 3 Measurement Procedure ..................................................... 11 4 Conversion Methods ............................................................ 11 Nicholson-Ross-Weir (NRW) .....................................................................12 NIST Iterative...............................................................................................13 New non-iterative .......................................................................................14
    [Show full text]
  • Capacitors and Dielectrics Dielectric - a Non-Conducting Material (Glass, Paper, Rubber….)
    Capacitors and Dielectrics Dielectric - A non-conducting material (glass, paper, rubber….) Placing a dielectric material between the plates of a capacitor serves three functions: 1. Maintains a small separation between the plates 2. Increases the maximum operating voltage between the plates. 3. Increases the capacitance In order to prove why the maximum operating voltage and capacitance increases we must look at an atomic description of the dielectric. For now we will show that the capacitance increases by looking at an experimental result: Experiment Since VVCCoo, then Since Q is the same: Coo V CV C V o K CVo C K Dielectric Constant Co Since C > Co , then K > 1 C kCo V V o k kvacuum = 1 (vacuum) k = 1.00059 (air) kglass = 5-10 Material Dielectric Constant k Dielectric Strength (V/m) Air 1.00054 3 Paper 3.5 16 Pyrex glass 4.7 14 A real dielectric is not a perfect insulator and thus you will always have some leakage current between the plates of the capacitor. For a parallel-plate capacitor: C kCo kA C o d From this equation it appears that C can be made as large as possible by decreasing d and thus be able to store a very large amount of charge or equivalently a very large amount of energy. Is there a limit on how much charge (energy) a capacitor can store? YES!! +q K e- - F =qE E e e- E dielectric -q As charge ‘q’ is added to the capacitor plates, the E-field will increase until the dielectric becomes a conductor (dielectric breakdown).
    [Show full text]
  • Product Information PA 2200
    Product Information PA 2200 PA 2200 is a non-filled powder on basis of PA 12. General Properties Property Measurement Method Units Value DIN/ISO Water absorption ISO 62 / DIN 53495 100°C, saturation in water % 1.93 23°C, 96% RF % 1.33 23°C, 50% RF % 0.52 Property Measurement Method Unit Value DIN/ISO Coefficient of linear thermal ex- ISO 11359 / DIN 53752-A x10-4 /K 1.09 pansion Specific heat DIN 51005 J/gK 2.35 Thermal properties of sintered parts Property Measurement Method Unit Value DIN/ISO Thermal conductivity DIN 52616 vertical to sintered layers W/mK 0.144 parallel to sintered layers W/mK 0.127 EOS GmbH - Electro Optical Systems Robert-Stirling-Ring 1 D-82152 Krailling / München Telefon: +49 (0)89 / 893 36-0 AHO / 03.10 Telefax: +49 (0)89 / 893 36-285 PA2200_Product_information_03-10_en.doc 1 / 10 Internet: www.eos.info Product Information Short term influcence of temperature on mechanical properties An overview about the temperature dependence of mechanical properties of PA 12 can be re- trieved from the curves for dynamic shear modulus and loss factor as function of temperature according to ISO 537. PA 2200 dynamic mechanical analysis (torsion) Temp.: - 100 bis 188°C 1E+10 G' 1E+03 G" tan_delta 1E+02 1E+09 , 1E+01 1E+08 tan_delta 1E+00 1E+07 loss modulus G´´ [Pa] 1E-01 storage modulus G´ [Pa] modulus storage 1E+06 1E-02 1E+05 1E-03 -100 -50 0 50 100 150 200 Temperature [°C] In general parts made of PA 12 show high mechanical strength and elasticity under steady stress in a temperature range from - 40°C till + 80°C.
    [Show full text]
  • Properties of Cryogenic Insulants J
    Cryogenics 38 (1998) 1063–1081 1998 Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0011-2275(98)00094-0 0011-2275/98/$ - see front matter Properties of cryogenic insulants J. Gerhold Technische Universitat Graz, Institut fur Electrische Maschinen und Antriebestechnik, Kopernikusgasse 24, A-8010 Graz, Austria Received 27 April 1998; revised 18 June 1998 High vacuum, cold gases and liquids, and solids are the principal insulating materials for superconducting apparatus. All these insulants have been claimed to show fairly good intrinsic dielectric performance under laboratory conditions where small scale experiments in the short term range are typical. However, the insulants must be inte- grated into large scaled insulating systems which must withstand any particular stress- ing voltage seen by the actual apparatus over the full life period. Estimation of the amount of degradation needs a reliable extrapolation from small scale experimental data. The latter are reviewed in the light of new experimental data, and guidelines for extrapolation are discussed. No degradation may be seen in resistivity and permit- tivity. Dielectric losses in liquids, however, show some degradation, and breakdown as a statistical event must be scrutinized very critically. Although information for break- down strength degradation in large systems is still fragmentary, some thumb rules can be recommended for design. 1998 Elsevier Science Ltd. All rights reserved Keywords: dielectric properties; vacuum; fluids; solids; power applications; supercon- ductors The dielectric insulation design of any superconducting Of special interest for normal operation are the resis- power apparatus must be based on the available insulators. tivity, the permittivity, and the dielectric losses.
    [Show full text]