Simulation of Electromagnetic Pulse Propagation Through Dielectric Slabs with Finite Conductivity Using Characteristic-Based Method

Total Page:16

File Type:pdf, Size:1020Kb

Simulation of Electromagnetic Pulse Propagation Through Dielectric Slabs with Finite Conductivity Using Characteristic-Based Method PIERS ONLINE, VOL. 2, NO. 6, 2006 609 Simulation of Electromagnetic Pulse Propagation through Dielectric Slabs with Finite Conductivity Using Characteristic-based Method Mingtsu Ho Department of Electronic Engineering, WuFeng Institute of Technology Chia Yi 621, Taiwan Abstract| This paper presents one-dimensional simulation results of electromagnetic pulse propagation through various dielectric slabs. The material used in the numerical model is assumed to be homogeneous and isotropic such that its dielectric constant, relative permeability, and conductivity are not functions of the time and independent of the electric and magnetic ¯eld intensities. The computational results are generated by the characteristic-based method and compared in a side-by-side fashion. The e®ects of medium conductivity on the reflected and transmitted pulses are recorded and shown as time elapses. Also revealed is how the medium conductivity a®ects the electromagnetic pulses for dielectric slabs that are impedance matched to free space, i. e., "r = ¹r. The frequency-domain results are illustrated that are obtained through the application of FFT to the time-domain data. DOI: 10.2529/PIERS060825013017 1. INTRODUCTION The method of moment (MoM) and the ¯nite-di®erence time-domain (FDTD) technique have been the two most popular computational electrodynamics modeling techniques ever since they were proposed in 60 s [1, 2]. The latter can be formulated for either time- or frequency-domain analysis while the former is only in frequency-domain. Numerical simulation results always provide researchers a much more perceptive view of a variety of electromagnetic phenomena and therefore give researchers a better understanding of the problem of interest. This is in contrast to most textbooks where electromagnetic problems are highlighted in frequency-dependent formulations. Furthermore, through proper Fourier transformation one can easily maneuver the computational results, from time-domain transient data to frequency-domain spectrum analysis or vice versa. The characteristic-based method was proposed in mid-90 s and found to produce results in good agreement with data produced by FDTD [3]. Unlike MoM and FDTD, the present numer- ical method is an implicit numerical procedure, places all ¯eld components in grid center, solves Maxwell's equations by balancing all fluxes across cell faces within each computational cell, and yet pays the cost of recasting the governing equations from the Cartesian coordinates into the body- conforming coordinates. It is shown that the characteristic-based method can predict the reflection of electromagnetic ¯elds from moving/vibrating perfect conductor in one dimension [4] and the reflection/transmission of electromagnetic ¯eld propagation onto moving dielectric half space [5]. In order to investigate the e®ects of medium conductivity on the electromagnetic ¯eld as it propagates through the medium, one has to include the conductivity in the governing equations, Maxwell's equations. Luebbers et al. simulated the interaction of a Gaussian pulse plane wave with a dielectric slab of ¯nite thickness, constant relative permittivity and conductivity in one-dimension using FDTD [6]. In formulation, FDTD explicitly speci¯es the medium properties at grid node in accordance with the designation of the electric ¯eld and the magnetic ¯eld components that are interleaved in time and space. These medium properties are permittivity ("), permeability (¹), and conductivity (σ). The inclusion of the conductivity term in the governing equation is simply meaning a source term, ¡σE. In the FDTD expression, conductivity is multiplied by the numerical time step (¢t) and then combined with permittivity at each grid point. In the characteristic-based algorithm, it is an extra quantity added to the calculated flux di®erence for every cell inside the medium. Since the main objective of this paper is to simulate and demonstrate the computational re- sults of electromagnetic pulse propagation through di®erent conducting dielectric slabs using the characteristic-based method, the comparison between numerical methods will not be covered here. PIERS ONLINE, VOL. 2, NO. 6, 2006 610 The computational results are illustrated as follows. The e®ects of medium conductivity on the reflected and transmitted electromagnetic ¯elds are plotted as functions of the time. Especially, for the case when the medium is impedance matched to free space (the reflection coe±cient is zero in magnitude), we also demonstrate how conductivity a®ects the electromagnetic pulse by assum- ing this impedance matched medium is also conductive. Two groups of plots of the time-domain reflected and transmitted electric ¯elds and their spectra are shown and compared. 2. GOVERNING EQUATIONS Maxwell's equations are the governing equations of electromagnetic problems. When electromag- netic waves propagate onto a medium with ¯nite conductivity, Maxwell's equations become @B~ + r £ E~ = 0; (1) @t @D~ ¡ r £ H~ = ¡σE;~ (2) @t r ¢ D~ = 0; (3) r ¢ B~ = 0; (4) where E~ and H~ are the electric and magnetic ¯eld intensities, D~ and B~ are the electric and magnetic flux densities, respectively. The two constitutive relations are D~ = "oE~ and B~ = ¹oH~ with "o and ¹o are the permittivity and permeability of vacuum. Inside medium, these two expressions are given by D~ = "E~ = "r"oE~ and B~ = ¹H~ = ¹r¹oH~ with "r and ¹r are the dielectric constant and relative permeability of medium. Finally, symbol σ is the medium conductivity. If the medium is conductive, then σE~ represents the current density. Once more, in the numerical model we assume ", ¹, and σ are not functions of the time. Since the present work focuses on one-dimensional electromagnetic ¯eld propagation problem, we can only consider a two-dimensional formulation and make the following assumptions. In the numerical model, the electric ¯eld intensity is polarized to z-direction and has a peak value of unity, the incident pulse initially propagates in the positive x-direction and normally illuminates upon a dielectric slab that may be featured with a constant conductivity. As stated earlier, the Maxwell's equations have to be recast from the Cartesian coordinate system (t; x; y) into curvilinear coordinate system (¿; »; ´) and are written as @Q @F @G + + = ¡σE (5) @¿ @» @´ z T T where Q = Jq, F = J (»xf + »yg), G¯ = J (´¯xf + ´yg), q = [Bx;By;Dz] , f = [0; ¡Ez; ¡Hy] , ¯@(x; y)¯ g = [E ; 0;H ]T , and J is equal to ¯ ¯. The numerical formulation is derived by applying z x ¯ @(»; ´) ¯ the central di®erence to (5) and are written as Qn+1 ¡ Qn ± F ± G + i + j = ¡σE (6) ¢¿ ¢» ¢´ z where ¤ ¤ ¤ ±k( ) = ( )k+1=2 ¡ ( )k¡1=2 (7) is known as the central-di®erence operator. Symbols Qn+1 and Qn are the variable vectors of two successive time levels, ¢» and ¢´ represent the cell size between discrete points in the computa- tional domain, ¢¿ is the numerical time step, the subscript (k) of the central-di®erence operator represents the direction in the curvilinear coordinate system and the one-half integer index in (7) indicates that the flux vectors F and G are evaluated at the cell face. The flux vector splitting technique is then applied to (6) and the lower-upper approximate factorization scheme is employed for the solution of the system of linear equations. The boundary condition treatments in the present simulation simply assure that the tangential components of both electric and magnetic ¯eld intensities are continuous across the interface be- tween two media, and that the out-going ¯elds will not be bounced back into the computational domain from the outer computational layer. PIERS ONLINE, VOL. 2, NO. 6, 2006 611 3. CASES STUDIED The problem of interest is de¯ned in Figure 1 where the electric ¯eld intensity is shown. As illustrated the incident pulse is Gaussian in form and propagates toward the dielectric slab. The Gaussian pulse has a width of about 0.695 ns, a truncated level of 100 dB, a span of 2 meters, and a highest frequency content of about one GHz. The dielectric slab is 30 cm thick and may be speci¯ed by a ¯nite conductivity whose magnitude is normalized by ´0 for the purpose of clear demonstration. For clear demonstration we further assume that the reference time zero is when the peak of the incident pulse is at x = 1 m and set a constant time interval ¢t = 0:2 m/C where the symbol C is the light speed and exactly equal to 3 £ 108 m/s in the present simulation. This means the numerical electromagnetic pulse propagates precisely 0.2 meters during the time interval ¢t. Figure 1: De¯nition of the problem. Figure 2: Propagation of electromagnetic pulse through two dielectric slabs. Solid lines: σ = 1; Dotted lines: σ = 0. ; Figure 3: Propagation of electromagnetic pulse Figure 4: Propagation of electromagnetic pulse through two impedance-matched dielectric slabs. through two conducting dielectric slabs. Solid lines: Solid lines: σ = 1; Dotted lines: σ = 0. "r = 2, ¹r = 2; Dotted lines: "r = 4, ¹r = 1. The medium used in the simulation is assumed to be homogeneous and isotropic. In order to observe the e®ects of medium conductivity on the electromagnetic ¯elds, we further specify the properties of dielectric slabs as follows. They may be made of either non-magnetic material with "r = 4 and ¹r = 1 or material with "r = 2 and ¹r = 2 whose impedance is matched to the free space. 4. RESULTS For the purpose of easy and clear comparison, two sequences of plots of electric ¯elds for elec- tromagnetic pulse propagation through two di®erent dielectric slabs are given in Figure 2. It is PIERS ONLINE, VOL. 2, NO. 6, 2006 612 shown that the reflected electric ¯eld from conducting slab is stronger in magnitude than that from lossless slab, and that the attenuation of the transmitted ¯eld as it propagates through the lossy medium. Also noticed are that the reflected electric ¯eld bears a dragging tail due to the medium conductivity, and that the electromagnetic pulse is slow down by one half as it propagates through the dielectric slab.
Recommended publications
  • Pdhonline Course E402 (4 PDH)
    PDHonline Course E402 (4 PDH) Electromagnetic Pulse and its impact on the Electric Power Industry Instructor: Lee Layton, P.E 2016 PDH Online | PDH Center 5272 Meadow Estates Drive Fairfax, VA 22030-6658 Phone & Fax: 703-988-0088 www.PDHonline.org www.PDHcenter.com An Approved Continuing Education Provider www.PDHcenter.com PDHonline Course E402 www.PDHonline.org Electromagnetic Pulse and its impact on the Electric Power Industry Lee Layton, P.E Table of Contents Section Page Introduction ………………………………………… 3 Chapter 1: History of EMP ……….……………….. 5 Chapter 2: Characteristics of EMP……..…………. 9 Chapter 3: Electric Power System Infrastructure … 20 Chapter 4: Electric System Vulnerabilities ………. 29 Chapter 5: Mitigation Strategies ………………….. 38 Conclusion ……………………………………..…. 46 The photograph on the cover is of the July 1962 detonation of the Starfish Prime. © Lee Layton. Page 2 of 46 www.PDHcenter.com PDHonline Course E402 www.PDHonline.org Introduction An electromagnetic pulse (EMP) is a burst of electromagnetic radiation that results from the detonation of a nuclear weapon and/or a suddenly fluctuating magnetic field. The resulting rapidly changing electric fields and magnetic fields may couple with electric systems to produce damaging current and voltage surges. In military terminology, a nuclear bomb detonated hundreds of kilometers above the Earth's surface is known as a high-altitude electromagnetic pulse (HEMP) device. Nuclear electromagnetic pulse has three distinct time components that result from different physical phenomena. Effects of a HEMP device depend on a very large number of factors, including the altitude of the detonation, energy yield, gamma ray output, interactions with the Earth's magnetic field, and electromagnetic shielding of targets.
    [Show full text]
  • Intentional Electromagnetic Interference (IEMI) and Its Impact on the U.S
    Meta-R-323 Intentional Electromagnetic Interference (IEMI) and Its Impact on the U.S. Power Grid William Radasky Edward Savage Metatech Corporation 358 S. Fairview Ave., Suite E Goleta, CA 93117 January 2010 Prepared for Oak Ridge National Laboratory Attn: Dr. Ben McConnell 1 Bethel Valley Road P.O. Box 2008 Oak Ridge, Tennessee 37831 Subcontract 6400009137 Metatech Corporation • 358 S. Fairview Ave., Suite E • Goleta, California • (805) 683-5681 Registered Mail: P.O. Box 1450 • Goleta, California 93116 Metatech FOREWORD This report has been written to provide an overview of Intentional Electromagnetic Interference (IEMI) threats to the electric power infrastructure. It is based on the past 10 years of research by the authors and their colleagues who have been active in the field. Some of the information provided here is adapted from the IEEE Special Issue on HPEM and IEMI published in the IEEE EMC Transactions in August 2004. Additional information is presented from recent published papers and conference proceedings. This report begins in Section 1 by explaining the background and terminology involved with IEMI. Section 2 summarizes the types of EM weapons that have been built and the IEMI environments that they produce. Section 3 provides insight concerning the basic EM coupling process for IEMI and why certain threat waveforms and frequencies are important to commercial systems. Section 4 provides a selection of commercial equipment susceptibility data covering important categories of equipment that may be affected by IEMI. Section 5 discusses more specific aspects of the IEMI threat for the power system, and Section 6 indicates the IEC standardization efforts that can be useful to understanding the threat of IEMI and the means to protect equipment from the threat.
    [Show full text]
  • Electromagnetic Pulse (EMP) Protection and Restoration Guidelines for Equipment and Facilities with Appendices a - C
    UNCLASSIFIED Electromagnetic Pulse (EMP) Protection and Restoration Guidelines for Equipment and Facilities With Appendices A - C December 22th, 2016 Version 1.0 Developed by the National Coordinating Center for Communications (NCC) National Cybersecurity & Communications Integration Center (NCCIC) Arlington, Virginia UNCLASSIFIED UNCLASSIFIED EMP Protection and Restoration Guidelines for Equipment and Facilities Acknowledgements The EMP protection guidelines presented in this report were initially developed by Dr. George H. Baker, based on his previous work where he led the Department of Defense program to develop EMP protection standards while at the Defense Nuclear Agency (DNA) and the Defense Threat Reduction Agency (DTRA). He is currently serving as a consultant to the Department of Homeland Security (DHS) and is emeritus professor of applied science at James Madison University (JMU). He presently serves on the Board of Directors of the Foundation for Resilient Societies, the Board of Advisors for the Congressional Task Force on National and Homeland Security, the JMU Research and Public Service Advisory Board, the North American Electric Reliability Corporation GMD Task Force, the EMP Coalition, and as a Senior Scientist for the Congressional EMP Commission. A second principal author is Dr. William A. Radasky. Dr. Radasky received a B.S. degree with a double major in Electrical Engineering and Engineering Science from the U.S. Air Force Academy in 1968. He also received M.S. and Ph.D. degrees in Electrical Engineering from the University of New Mexico in 1971 and the University of California, Santa Barbara in 1981, respectively with an emphasis on the theory and applications of electromagnetics. Dr. Radasky started his career as a research engineer at the Air Force Weapons Laboratory in Albuquerque, New Mexico in 1968 working on the theory of the electromagnetic pulse (EMP).
    [Show full text]
  • High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments
    Order Code RL32544 High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments Updated July 21, 2008 Clay Wilson Specialist in Technology and National Security Foreign Affairs, Defense, and Trade Division High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments Summary Electromagnetic Pulse (EMP) is an instantaneous, intense energy field that can overload or disrupt at a distance numerous electrical systems and high technology microcircuits, which are especially sensitive to power surges. A large scale EMP effect can be produced by a single nuclear explosion detonated high in the atmosphere. This method is referred to as High-Altitude EMP (HEMP). A similar, smaller-scale EMP effect can be created using non-nuclear devices with powerful batteries or reactive chemicals. This method is called High Power Microwave (HPM). Several nations, including reported sponsors of terrorism, may currently have a capability to use EMP as a weapon for cyber warfare or cyber terrorism to disrupt communications and other parts of the U.S. critical infrastructure. Also, some equipment and weapons used by the U.S. military may be vulnerable to the effects of EMP. The threat of an EMP attack against the United States is hard to assess, but some observers indicate that it is growing along with worldwide access to newer technologies and the proliferation of nuclear weapons. In the past, the threat of mutually assured destruction provided a lasting deterrent against the exchange of multiple high-yield nuclear warheads. However, now even a single, low-yield nuclear explosion high above the United States, or over a battlefield, can produce a large-scale EMP effect that could result in a widespread loss of electronics, but no direct fatalities, and may not necessarily evoke a large nuclear retaliatory strike by the U.S.
    [Show full text]
  • Electromagnetic Pulse: Effects on the U.S. Power Grid
    Electromagnetic Pulse: Effects on the U.S. Power Grid Executive Summary The nation’s power grid is vulnerable to the effects of an electromagnetic pulse (EMP), a sudden burst of electromagnetic radiation resulting from a natural or man-made event. EMP events occur with little or no warning and can have catastrophic effects, including causing outages to major portions of the U.S. power grid possibly lasting for months or longer. Naturally occurring EMPs are produced as part of the normal cyclical activity of the sun while man-made EMPs, including Intentional Electromagnetic Interference (IEMI) devices and High Altitude Electromagnetic Pulse (HEMP), are produced by devices designed specifically to disrupt or destroy electronic equipment or by the detonation of a nuclear device high above the earth’s atmosphere. EMP threats have the potential to cause wide scale long-term losses with economic costs to the United States that vary with the magnitude of the event. The cost of damage from the most extreme solar event has been estimated at $1 to $2 trillion with a recovery time of four to ten years,1 while the average yearly cost of installing equipment to mitigate an EMP event is estimated at less than 20 cents per year for the average residential customer. Naturally occurring EMP events resulting from magnetic storms that flare on the surface of the sun are inevitable. Although we do not know when the next significant solar event will occur, we do know that the geomagnetic storms they produce have occurred at varying intensities throughout history. We are currently entering an interval of increased solar activity and are likely to encounter an increasing number of geomagnetic events on earth.
    [Show full text]
  • U.S. Department of Energy Electromagnetic Pulse Resilience Action Plan
    DOE Electromagnetic Pulse Resilience Action Plan U.S. Department of Energy Electromagnetic Pulse Resilience Action Plan JANUARY 2017 DOE Electromagnetic Pulse Resilience Action Plan For Further Information This document was prepared by the Infrastructure Security and Energy Restoration Division (ISER) of the U.S. Department of Energy’s Office of Electricity Delivery and Energy Reliability (OE) under the direction of Patricia Hoffman, Assistant Secretary, and Devon Streit, Deputy Assistant Secretary. Specific questions about this document may be directed to John Ostrich ([email protected]) or Puesh Kumar ([email protected]) who lead the Risk and Hazards Analysis Program in ISER. Contributors include the Idaho National Laboratory and other Department of Energy (DOE) National Laboratories, as well as government and industry partners. Special thanks to Dr. George Baker, Ms. Lisa Bendixen, and Dr. William Tedeschi. January 10, 2017 i DOE Electromagnetic Pulse Resilience Action Plan Table of Contents Introduction ................................................................................................................................. 1 Background on EMP .................................................................................................................. 1 The Joint EMP Resilience Strategy ............................................................................................. 2 EMP Action Plans .....................................................................................................................
    [Show full text]
  • Electromagnetic Pulse (EMP)
    AccessScience from McGraw-Hill Education Page 1 of 7 www.accessscience.com Electromagnetic pulse (EMP) Contributed by: Robert A. Pfeffer Publication year: 2014 A transient electromagnetic signal produced by a nuclear explosion in or above the Earth’s atmosphere. Though not considered dangerous to people, the electromagnetic pulse (EMP) is a potential threat to many electronic systems. Discovery The existence of a nuclear-generated EMP has been known for many years. Originally predicted by scientists involved with the early development of nuclear weapons, it was not considered to be a serious threat to people or equipment. Then in the early 1960s some of the high-altitude nuclear tests conducted in the Pacific led to some strange occurrences many miles from ground zero. In Hawaii, for example, some 1300 km (800 mi) from the Johnston Island test, EMP was credited with setting off burglar alarms and turning off street lights. In later tests that were conducted in Nevada, significant EMP-induced signals were coupled to cables. These experimental results gave credibility to the potential military use of EMP and encouraged investigators to more accurately describe its origin, electromagnetic characteristics, and coupling to systems, and to develop an affordable method for system protection. Initial nuclear radiation In a typical nuclear detonation, parts of the shell casing and other materials are rapidly reduced to a very hot, compressed gas, which upon expansion gives rise to enormous amounts of mechanical and thermal energy. At the same time the nuclear reactions release tremendous amounts of energy as initial nuclear radiation (INR). This INR is in the form of rapidly moving neutrons and high-energy electromagnetic radiation, called x-rays and gamma rays.
    [Show full text]
  • Electromagnetic Pulse - Nuclear EMP - Futurescience.Com
    Electromagnetic Pulse - Nuclear EMP - futurescience.com Nuclear Electromagnetic Pulse by Jerry Emanuelson Futurescience, LLC The topic of nuclear electromagnetic pulse (EMP) is very mysterious to most people, and it is quite commonly misunderstood. It is also the subject of a large amount of misinformation. (It is a persistent problem that many people want to ignore the science and make it into a political issue.) There are separate pages on EMP personal protection, Soviet nuclear EMP tests in 1962, and on other topics including a separate page of notes and technical references. Much of the information here describes the possible effects of EMP on the continental United States, but the information can be used to describe the effects on any industrialized country. In testimony before the United States Congress House Armed Services Committee on October 7, 1999, the eminent physicist Dr. Lowell Wood, in talking about Starfish Prime and the related EMP-producing nuclear tests in 1962, stated, "Most fortunately, these tests took place over Johnston Island in the mid-Pacific rather than the Nevada Test Site, or electromagnetic pulse would still be indelibly imprinted in the minds of the citizenry of the western U.S., as well as in the history books. As it was, significant damage was done to both civilian and military electrical systems throughout the Hawaiian Islands, over 800 miles away from ground zero. The origin and nature of this damage was successfully obscured at the time -- aided by its mysterious character and the essentially incredible truth." http://www.futurescience.com/emp.html (1 of 14) [3/23/2010 2:38:20 PM] Electromagnetic Pulse - Nuclear EMP - futurescience.com The Starfish Prime Nuclear Test from more than 800 miles away Although nuclear EMP was known since the earliest days of nuclear weapons testing, the magnitude of the effects of nuclear EMP were not known until a 1962 test of a thermonuclear weapon in space called the Starfish Prime test.
    [Show full text]
  • A Survey of Electromagnetic Influence on Uavs from an EHV Power
    electronics Article A Survey of Electromagnetic Influence on UAVs from an EHV Power Converter Stations and Possible Countermeasures Yanchu Li 1,* , Qingqing Ding 2, Keyue Li 2, Stanimir Valtchev 3 , Shufang Li 1,* and Liang Yin 1 1 Beijing Key Laboratory of Network System Architecture and Convergence, Beijing Laboratory of Advanced Information Network, Beijing University of Posts and Telecommunications, Beijing 100876, China; [email protected] 2 Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; [email protected] (Q.D.); [email protected] (K.L.) 3 Department of Electrical and Computer Engineering, NOVA School of Sciences and Technology, University NOVA of Lisbon, 2829-516 Lisboa, Portugal; [email protected] * Correspondence: [email protected] (Y.L.); [email protected] (S.L.) Abstract: It is inevitable that high-intensity, wide-spectrum electromagnetic emissions are generated by the power electronic equipment of the Extra High Voltage (EHV) power converter station. The surveillance flight of Unmanned Aerial Vehicles (UAVs) is thus, situated in a complex electromag- netic environment. The ubiquitous electromagnetic interference demands higher electromagnetic protection requirements from the UAV construction and operation. This article is related to the UAVs patrol inspections of the power line in the vicinity of the EHV converter station. The article analyzes the electromagnetic interference characteristics of the converter station equipment in the surrounding space and the impact of the electromagnetic emission on the communication circuits of the UAV. Citation: Li, Y.; Ding, Q.; Li, K.; The anti-electromagnetic interference countermeasures strive to eliminate or reduce the threats of Valtchev, S.; Li, S.; Yin, L.
    [Show full text]
  • Tesla Fields and Magnetic Shielding
    TESLA FIELDS AND MAGNETIC SHIELDING Oftentimes clients will ask about the effectiveness of vaults in shielding stored magnetic media from magnetic fields induced in the building by wiring grids, electrical transformers, lighting strikes to the building and of late solar flares. Here is a discussion with references from various web sites and FIRELOCK’s own research in this regard. Recent concerns about “Solar Flares” and tremendous magnetic fields associated with these solar flares One tesla is equal to 104 gauss. Magnetic field drops off as the cube of the distance from the source (for a dipole ). So that means that the critical factor is to eliminate magnetic fields near your media storage vault. The magnitude of a magnetic field is its strength; measured in Tesla. The critical point is that Magnetic Media is affected with an exposure to a field of 10 Milligausse over an extended period of time. A short exposure to a field of 500 to 1850 Oersteds will damage and then destroy the recorded magnetically recorded data. I would recommend that you not drive an electric car into the area surrounding magnetic media storage. These cars can emit a field that can affect the media. Clients often have staff who rotate media using personal vehicles and if that vehicle is an electrical vehicle then it poses a risk to the media. Fields over 1850 Oersteds can cause the media to lose the recorded message or damage it beyond normal use. I also suggest that you measure the magnetic field existing in your building due to electrical transformers, electrical lines not running through Arc Breakers or Ground Fault Circuits.
    [Show full text]
  • Controlling Frequency Dispersion in Electromagnetic Invisibility Cloaks Geoffroy Klotz, Nicolas Mallejac, Sebastien Guenneau, Stefan Enoch
    Controlling frequency dispersion in electromagnetic invisibility cloaks Geoffroy Klotz, Nicolas Mallejac, Sebastien Guenneau, Stefan Enoch To cite this version: Geoffroy Klotz, Nicolas Mallejac, Sebastien Guenneau, Stefan Enoch. Controlling frequency dis- persion in electromagnetic invisibility cloaks. Scientific Reports, Nature Publishing Group, 2019, 10.1038/s41598-019-42481-7. hal-01897279v2 HAL Id: hal-01897279 https://hal.archives-ouvertes.fr/hal-01897279v2 Submitted on 26 Apr 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Controlling frequency dispersion in electromagnetic invisibility cloaks Geoffroy Klotz*,1,2, Nicolas Malléjac1 , Sebastien Guenneau2, Stefan Enoch2 April 26, 2019 1 : CEA DAM/Le Ripault, BP 16, F-37260 Monts, France 2 : Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel, Marseille, France ∗ corresponding author : geoff[email protected] Abstract Electromagnetic cloaking, as challenging as it may be to the physicist and the engineer has become a topical subject over the past decade. Thanks to the transformations optics (TO) invisibility devices are in sight even though quite drastic limitations remain yet to be lifted. The extreme material properties which are deduced from TO can be achieved in practice using dispersive metamaterials. However, the bandwidth over which a meta- material cloak is efficient is drastically limited.
    [Show full text]
  • High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments
    Order Code RL32544 High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments Updated March 26, 2008 Clay Wilson Specialist in Technology and National Security Foreign Affairs, Defense, and Trade Division High Altitude Electromagnetic Pulse (HEMP) and High Power Microwave (HPM) Devices: Threat Assessments Summary Electromagnetic Pulse (EMP) is an instantaneous, intense energy field that can overload or disrupt at a distance numerous electrical systems and high technology microcircuits, which are especially sensitive to power surges. A large scale EMP effect can be produced by a single nuclear explosion detonated high in the atmosphere. This method is referred to as High-Altitude EMP (HEMP). A similar, smaller-scale EMP effect can be created using non-nuclear devices with powerful batteries or reactive chemicals. This method is called High Power Microwave (HPM). Several nations, including reported sponsors of terrorism, may currently have a capability to use EMP as a weapon for cyber warfare or cyber terrorism to disrupt communications and other parts of the U.S. critical infrastructure. Also, some equipment and weapons used by the U.S. military may be vulnerable to the effects of EMP. The threat of an EMP attack against the United States is hard to assess, but some observers indicate that it is growing along with worldwide access to newer technologies and the proliferation of nuclear weapons. In the past, the threat of mutually assured destruction provided a lasting deterrent against the exchange of multiple high-yield nuclear warheads. However, now even a single, specially- designed low-yield nuclear explosion high above the United States, or over a battlefield, can produce a large-scale EMP effect that could result in a widespread loss of electronics, but no direct fatalities, and may not necessarily evoke a large nuclear retaliatory strike by the U.S.
    [Show full text]