Defining the Value of a Comparative Approach to Cancer Drug Development

Total Page:16

File Type:pdf, Size:1020Kb

Defining the Value of a Comparative Approach to Cancer Drug Development Author Manuscript Published OnlineFirst on December 28, 2015; DOI: 10.1158/1078-0432.CCR-15-2347 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 1 Defining the value of a comparative approach to cancer drug development 2 LeBlanc AK, Mazcko C, Khanna C. 3 Comparative Oncology Program, Center for Cancer Research, National Cancer Institute, 4 National Institutes of Health, Bethesda, MD 20892. 5 Short title: Comparative Oncology in Drug Development 6 7 Abstract 8 Comparative oncology as a tool in drug development requires a deeper examination of the 9 value of the approach and examples of where this approach can satisfy unmet needs. This 10 review seeks to demonstrate types of drug development questions that are best answered 11 by the comparative oncology approach. We believe common perceived risks of the 12 comparative approach relate to uncertainty of how regulatory bodies will prioritize or 13 react to data generated from these unique studies conducted in diseased animals, and how 14 these new data will affect ongoing human clinical trials. We contend that it is reasonable to 15 consider these data as potentially informative and valuable to cancer drug development, 16 but as supplementary to conventional preclinical studies and human clinical trials 17 particularly as they relate to the identification of drug-associated adverse events. 18 19 Introduction 20 The study of naturally occurring cancer in companion animals, known as comparative 21 oncology, forms the basis of a translational drug development strategy that primarily 22 includes tumor-bearing pet dogs in clinical trials of novel cancer therapies destined for use 23 in human cancer patients.(1-5) The recognition of spontaneous cancer development in 1 Downloaded from clincancerres.aacrjournals.org on September 24, 2021. © 2015 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 28, 2015; DOI: 10.1158/1078-0432.CCR-15-2347 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 24 companion animals, and potential for inclusion of such animals in drug development 25 studies, is based upon observations of canine malignancies that share morphologic, 26 histologic and biologic characteristics with human cancers. Dogs’ physical size, amenability 27 to serial biologic sample collections, compressed survival compared to humans, 28 comparable tumor biology, intact immunity and relevant responses to cytotoxic therapies 29 provide clear support to their inclusion as a complementary animal model. (4,5) 30 31 Currently the field of comparative oncology is focused on tumor-bearing dogs as they 32 comprise the majority of those presented to veterinarians for cancer diagnosis and 33 management, which is in turn facilitated by scientific knowledge of malignancies they 34 develop, the collective veterinary clinical experience with anticancer therapies such as 35 chemotherapy and radiation, and availability of basic annotation of the canine genome and 36 immune system. A major milestone was establishment of the National Cancer Institute’s 37 Comparative Oncology Program (NCI-COP) at the National Institutes of Health in 2004. A 38 component of this program is the Comparative Oncology Trials Consortium (NCI-COTC; 39 http://ccr.cancer.gov/resources/cop/COTC.asp), an infrastructure uniting study sponsors, 40 such as pharmaceutical and biotechnology companies, with 21 academic veterinary centers 41 within North America to support multicenter clinical trials of investigational therapeutics, 42 wherein centralized trial support and data management is provided by the NCI.(6,7) This 43 mechanism provides access to a clinical trial infrastructure that delivers trial results in a 44 facile manner, considerate of timelines generally required in drug development strategies. 45 Further, a body of published work now exists to demonstrate the feasibility and 46 applicability of the dog cancer model in drug development to ensure data that is both 2 Downloaded from clincancerres.aacrjournals.org on September 24, 2021. © 2015 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 28, 2015; DOI: 10.1158/1078-0432.CCR-15-2347 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 47 scientifically sound and robust, thus supporting inclusion into FDA applications. Although 48 not formal FDA guidance, direction for clinical trial conduct and data reporting exists for 49 drugs evaluated in comparative oncology studies in the pre and post-Investigational New 50 Drug (IND) settings, and has been used effectively by groups actively involved in these 51 efforts. (8) 52 Methods 53 Today’s challenge is how to best capture and convey the value of these studies, given the 54 timeline for drug development and the diversity of data that collectively informs decisions 55 in the development path. Various attempts at defining value have been made, including a 56 financial model that proposes savings of billions of research and development dollars, 57 achieved primarily through the effective design of better phase II human studies.(9) We 58 propose that the value of the comparative approach lies in the answers to critical drug 59 development questions that are not answered in human trials or conventional preclinical 60 models. Herein we present a summary of the types of questions that are best asked and 61 answered by comparative oncology studies (Table 1), along with a discussion of selected 62 studies that generated answers to such questions, thus are demonstrative of the value of 63 the comparative oncology approach. 64 Results 65 Small molecules and the relationship of pharmacokinetics, pharmacodynamics, and clinical 66 assessment of tolerability and efficacy 67 A highly soluble prodrug of ganetespib, STA-1474, was studied in dogs with cancer to 68 establish clinical toxicity, to identify surrogate biomarkers of response and 69 pharmacokinetics between two proposed dosing schedules, and to provide evidence of 3 Downloaded from clincancerres.aacrjournals.org on September 24, 2021. © 2015 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 28, 2015; DOI: 10.1158/1078-0432.CCR-15-2347 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 70 biologic activity. This study met all defined objectives, and assisted in devising a dosing 71 strategy to provide prolonged drug exposure to support efficient inhibition of drug target 72 via modulation of a surrogate biomarker in blood (HSP70 upregulation in peripheral blood 73 mononuclear cells (PBMCs)) and tumor levels of c-kit (an HSP90 client protein). 74 Collectively, this data informed the design of human clinical trials of ganetespib and 75 demonstrates the strengths of a naturally-occurring canine model by highlighting the ease 76 of serial biopsy procurement, rapid assessment of differential dose and schedule, and 77 correlative assessment of multiple clinical parameters.(10) In another similar example, an 78 orally-bioavailable XPO1inhibitor verdinexor, a companion agent to a lead human 79 compound KPT-330 (Selinexor, Karyopharm Therapeutics), was studied in tumor-bearing 80 dogs. Based upon profound clinical benefit observed in dogs with non-Hodgkin’s lymphoma 81 (NHL) and the marked similarities between canine and human NHL, the data generated 82 within this study provided critical new information in support of related compounds in 83 humans with hematologic malignancies.(11) Selinexor is currently being evaluated in 84 Phase I and II clinical trials for a variety of human cancers. 85 86 Biomarker validation and optimization of pharmacodynamics (PD) assays within the context 87 of drug exposure in tumor-bearing dogs 88 The irreversible inhibitor of Bruton tyrosine kinase (Btk), ibrutinib, was studied in dogs 89 with B-cell lymphoma to establish tolerability, preliminary efficacy data, and to validate a 90 pharmacodynamic (PD) assay within PBMCs and tumor tissue. Validation of the 91 fluorescently labeled derivative of ibrutinib to monitor occupancy of Btk by the drug has 4 Downloaded from clincancerres.aacrjournals.org on September 24, 2021. © 2015 American Association for Cancer Research. Author Manuscript Published OnlineFirst on December 28, 2015; DOI: 10.1158/1078-0432.CCR-15-2347 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. 92 led to adoption of this approach as PD readout in subsequent human trials, while also 93 supporting the use of ibrutinib in humans with B cell malignancies.(12,13) 94 Another valuable example is study of hydroxychloroquine, an autophagy inhibitor, given to 95 dogs with NHL. The PD response evaluated in both PBMCs and tumor tissue, obtained via 96 serial peripheral lymph node biopsies, demonstrated that reliance on surrogate PBMC for 97 demonstration of sufficient drug levels for effective autophagy inhibition within tumor 98 tissue cannot always be inferred, thus underscoring the strength of the canine cancer 99 model.(14) 100 101 Immune-modulating agents for cancer therapy 102 A comparative oncology study of an immunocytokine, NHS-IL12, administered 103 subcutaneously to dogs with malignant melanoma was conducted to identify tolerability 104 and immunologic activity of this agent across a range of doses.(15) Pharmacokinetic and 105 pharmacodynamic endpoints, in the form
Recommended publications
  • 1 Activity of the Second Generation BTK Inhibitor Acalabrutinib In
    Activity of the Second Generation BTK Inhibitor Acalabrutinib in Canine and Human B-cell Non-Hodgkin Lymphoma Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Bonnie Kate Harrington Graduate Program in Comparative and Veterinary Medicine The Ohio State University 2018 Dissertation Committee John C. Byrd, M.D., Advisor Amy J. Johnson, Ph.D. Krista La Perle, D.V.M., Ph.D. William C. Kisseberth, D.V.M., Ph.D. 1 Copyrighted by Bonnie Kate Harrington 2018 2 Abstract Acalabrutinib (ACP-196) is a second-generation inhibitor of Bruton’s Tyrosine Kinase (BTK) with increased target selectivity and potency compared to ibrutinib. In these studies, we evaluated acalabrutinib in spontaneously occurring canine lymphoma, a model of B-cell malignancy reported to be similar to human diffuse large B-cell lymphoma (DLBCL), as well as primary human chronic lymphocytic leukemia (CLL) cells. We demonstrated that acalabrutinib potently inhibited BTK activity and downstream B-cell receptor (BCR) effectors in CLBL1, a canine B-cell lymphoma cell line, primary canine lymphoma cells, and primary CLL cells. Compared to ibrutinib, acalabrutinib is a more specific inhibitor and lacked off-target effects on the T-cell and NK cell kinase IL-2 inducible T-cell kinase (ITK) and epidermal growth factor receptor (EGFR). Accordingly, acalabrutinib did not antagonize antibody dependent cell cytotoxicity mediated by NK cells. Finally, acalabrutinib inhibited proliferation and viability in CLBL1 cells and primary CLL cells and abrogated chemotactic migration in primary CLL cells. To support our in vitro findings, we conducted a clinical trial using companion dogs with spontaneously occurring B-cell lymphoma.
    [Show full text]
  • Progression of a Solitary, Malignant Cutaneous Plasma-Cell Tumour to Multiple Myeloma in a Cat
    Case Report Progression of a solitary, malignant cutaneous plasma-cell tumour to multiple myeloma in a cat A. Radhakrishnan1, R. E. Risbon1, R. T. Patel1, B. Ruiz2 and C. A. Clifford3 1 Mathew J. Ryan Veterinary Hospital of the University of Pennsylvania, Philadelphia, PA, USA 2 Antech Diagnostics, Farmingdale, NY, USA 3 Red Bank Veterinary Hospital, Red Bank, NJ, USA Abstract An 11-year-old male domestic shorthair cat was examined because of a soft-tissue mass on the left tarsus previously diagnosed as a malignant extramedullary plasmacytoma. Findings of further diagnostic tests carried out to evaluate the patient for multiple myeloma were negative. Five Keywords hyperproteinaemia, months later, the cat developed clinical evidence of multiple myeloma based on positive Bence monoclonal gammopathy, Jones proteinuria, monoclonal gammopathy and circulating atypical plasma cells. This case multiple myeloma, pancytopenia, represents an unusual presentation for this disease and documents progression of an plasmacytoma extramedullary plasmacytoma to multiple myeloma in the cat. Introduction naemia, although it also can occur with IgG or IgA Plasma-cell neoplasms are rare in companion ani- hypersecretion (Matus & Leifer, 1985; Dorfman & mals. They represent less than 1% of all tumours in Dimski, 1992). Clinical signs of hyperviscosity dogs and are even less common in cats (Weber & include coagulopathy, neurologic signs (dementia Tebeau, 1998). Diseases represented in this category and ataxia), dilated retinal vessels, retinal haemor- of neoplasia include multiple myeloma (MM), rhage or detachment, and cardiomyopathy immunoglobulin M (IgM) macroglobulinaemia (Dorfman & Dimski, 1992; Forrester et al., 1992). and solitary plasmacytoma (Vail, 2001). These con- Coagulopathy can result from the M-component ditions can result in an excess secretion of Igs interfering with the normal function of platelets or (paraproteins or M-component) which produce a clotting factors.
    [Show full text]
  • Multiple Myeloma in Horses, Dogs and Cats: a Comparative Review Focused on Clinical Signs and Pathogenesis
    Chapter 15 Multiple Myeloma in Horses, Dogs and Cats: A Comparative Review Focused on Clinical Signs and Pathogenesis A. Muñoz, C. Riber, K. Satué, P. Trigo, M. Gómez-Díez and F.M. Castejón Additional information is available at the end of the chapter http://dx.doi.org/10.5772/54311 1. Introduction Multiple myeloma (MM) or plasma cell myeloma is a neoplastic proliferation of plasma cells that primarily involves the bone marrow but may originate from extramedullary sites [1-4]. Although it is uncommon in veterinary medicine, it has been reported in several species, in‐ cluding cats, dogs and, horses [1,3,5-10]. The frequency of MM in cats is slightly <1% of all malignant neoplasms. Canine MMs account for only 0.3% of all malignancies in dogs. MMs account approximately 2% of all hematopoietic neoplasms in both dogs and cats [4]. Most of the reports in the literature are limited to 1 to 16 case studies [4,11-16]. However, in a recent report regarding the incidence of bone disorders diagnosed in dogs, MM was the second most frequently diagnosed neoplastic condition in canine bone marrow [17]. Similarly, MM is an extremely rare disorder in horses. Ten cases, nine from the literature and a new case, were described by Edwards et al. [1] and only six additional cases have been described lastly [3,6-8,18]. Because of the uncommonly diagnosis of equine MM, the prevalence of this neoplasm is unknown in the horse. 2. Data of the patients with multiple myeloma MM is generally a disease of older animals, although some reports exist in young animals.
    [Show full text]
  • Comparative Oncology
    INSTITUTIONAL RESEARCH Healthcare and Technology INDUSTRY NOTE Member FINRA/SIPC Toll Free: 866-928-0928 www.DawsonJames.com 1 N. Federal Highway, 5th floor Boca Raton, FL 33432 December 8, 2015 Comparative Oncology: A New “Breed” of Trial Sherry Grisewood, CFA Set to Improve Clinical Success in Oncology Managing Partner, Life Science Research 917-331-9963 sgrisewood @dawsonjames.com Summary Launching the Dawson James Comparative Biology and Veterinary Biotech Sector Universe Our research indicates that few of our peers are looking at companies who specifically are adopting comparative biology approaches to clinical development for new drugs or to veterinary biotechnology as an emerging subsector of the biotech world. We are introducing a universe of companies that fit a distinct profile for this new sector as many of the therapies being explored through comparative biology trials or under development in veterinary applications of biotechnology are truly transformative. As such, they may offer unique solutions in the treatment of cancer, neurological diseases, degenerative diseases such as osteoarthritis, rare diseases and in regenerative medicine. In coming weeks, we will expand on this initial universe of companies by adding various specialty “satellite” groups of companies to highlight selected therapeutic technologies, such as gene therapy, as well as bridging technologies and devices, such as imaging/visualization technologies, and molecular diagnostics that are being employed as enabling technologies by these companies. We will also feature selected indications, such as neuro-oncology, where these enabling technologies and comparative biology are coming together to offer potentially new treatment paradigms compared to traditional small molecule drug development. We believe that by identifying a suite of companies representative of this emerging sector, our investors may find potentially unique and undiscovered opportunities.
    [Show full text]
  • Leveraging Comparative Oncology to Maximize Translational Outcomes
    Leveraging Comparative Oncology to Maximize Translational Outcomes Cheryl London, DVM, PhD Research Professor, Tufts University Associated Faculty Professor, Ohio State University Consortium for Canine Comparative Oncology (C3O) Symposium Thomas Executive Conference Center, JB Duke Hotel February 17, 2017 High failure rate in oncology drug development Failure rate is not financially sustainable Amid flurry of new cancer drugs, how many offer real benefits? By Liz Szabo, Kaiser Health News Updated 4:01 AM ET Story highlights •Pushed by those who want earlier access to medications, FDA has approved a flurry of oncology drugs in recent years •A few have been home runs, allowing patients with limited life expectancies to live for years •But many more offer only marginal benefits, a researcher says Overall cancer survival has barely changed over the past decade. The 72 cancer therapies approved from 2002 to 2014 gave patients only 2.1 more months of life than older drugs, according to a study in JAMA Otolaryngology-Head & Neck Surgery. And those are the successes. Two-thirds of cancer drugs approved in the past two years have no evidence showing that they extend survival at all. The result: For every cancer patient who wins the lottery, there are many others who get little to no benefit from the latest drugs. Reasons for Failure Other 6% Financial 7% Safety 21% Efficacy 66% Most rodent models lack critical features of spontaneous neoplasia Many models use immunodeficient mice that lack key microenvironment components Cancer typically develops
    [Show full text]
  • Purdue Comparative Oncology Program Newsletter
    Page 1 RESEARCH FOR ALL KIND. PURDUE COMPARATIVE ONCOLOGY PROGRAM NEWSLETTER // FALL 2019 Purdue University College of Veterinary Medicine | Lynn Hall, 625 Harrison Street, West Lafayette, IN 47907 | purdue.edu/vet/pcop WELCOME! We are glad to share our revived Purdue Comparative Oncology (PCOP) Newsletter with you. The newsletter was a popular feature of our program a few years ago. After a break in production, and after many request for it, we are reviving the PCOP Newsletter to share our work and its impact with you. There is so much to share! Although our program has been doing high impact comparative oncology research since 1979, some of our most important contributions have come from work in recent years and work that is ongoing now! The best description of our program is: “Cancer Research to Benefit Pet Animals and People”. We conduct studies in pet dogs with cancer to learn important information that will improve the outlook for pet animals and for humans facing cancer. Our work is possible because certain types of naturally-occurring cancer in pet dogs are very similar to those same cancers in humans, and provide good “models” for human cancer. Plus, the competency of the immune system and the complexity of the cancer in dogs are much more relevant to the human condition than that in experimental models. It is a “win-win-win” program. Each dog benefits, and new information is gained to help thousands of other dogs and humans. We also want to take this opportunity to say THANK YOU! Our program is fortunate to work with incredibly dedicated pet owners and other individuals who are essential to our advances in helping improve the outlook for dogs and humans facing cancer.
    [Show full text]
  • Comparative Oncology
    Centre for Advanced Imaging Comparative Oncology Naturally occurring cancers in companion animals, such Australian Cancer Research Foundation – as dogs, share clinical and biological similarities to human cancers that are difficult to replicate in other model Facility for Molecular Imaging Agents in systems. Cancer (AFMIAC) The purpose of Comparative Oncology is to make use AFMIAC brings together cutting-edge capabilities for of these cancers as models to bridge the gap between the synthesis of novel cancer diagnostic agents and for conventional preclinical models and human trials, preclinical and human imaging. The Australian Cancer facilitating clinical translation of new cancer drugs, devices, Research Foundation funding has enabled the acquisition and imaging procedures while at the same time providing of a large bore digital PET-CT scanner for large animal and treatment to the animal. human research at CAI. The University of Queensland’s Centre for Advanced Advanced molecular imaging technologies offer an Imaging (CAI) has established the first research program in unprecedented potential to visualise the fundamental Australia utilising Comparative Oncology. processes underlying cancer initiation, tissue invasion, metastasis and recurrence. In 2018, the program accomplished the world’s first canine PET-CT scan using the radiotracer 64Cu–nanomedicine; a Access to CAI facilities is available on a fee for service basis; novel nanomedicine engineered by the CAI Thurecht Group our expert staff are available to provide assistance with to specifically target prostate cancer. experimental design, optimisation, data and image analysis and interpretation. Image top: Group Leader, Associate Professor Kris Proudly supported by Thurecht, with a canine patient. Image below left: PET-CT scan of a dog using the radiotracer 68Ga-PSMA (prostate-specific membrane antigen).
    [Show full text]
  • Colorectal Cancer Under 50 PAGE 6
    THE MAGAZINE OF UC DAVIS COMPREHENSIVE CANCER CENTER VOL 23 NO 1 / WINTER 2021 Colorectal cancer under 50 PAGE 6 Pancreatic cancer on the rise PAGE 10 Equalizing health PAGE 11 Learning from dogs fighting cancer PAGE 24 Cancer care in the era of COVID-19 PAGE 20 Dear Reader, BREAKING BARRIERS TO BEAT CANCER℠ Cancer does not respect pandemics. Synthesis is published Since the beginning of the current COVID-19 crisis, our UC Davis twice each year by the UC Davis Comprehensive Comprehensive Cancer Center has kept its doors open, providing Cancer Center. people with cancer the world-class services and care that they need. If you receive multiple Despite the many operational challenges and personal risks, our dedi- copies of this publication, cated team of physicians, providers, nurses and staff have come in please share them. To add every single day to ensure that our patients receive uninterrupted care. your name to the mailing list or change your address, In this issue of Synthesis, you will find inspiring stories of Northern please call 916-734-9450. Californians who didn’t let fear of the virus stop them from going to their EXECUTIVE EDITOR doctor. Their decision to continue pursuing cancer care in the face of a pandemic has Primo “Lucky” Lara, Jr., M.D. been inspiring to many and is very likely to positively influence their outcome. Director, UC Davis Comprehensive Cancer Center You will also read about lessons learned from COVID-19 in the realm of cancer health EDITORS disparities: that is, how health outcomes are shaped by conditions such as where you Stephanie Winn live, what you eat and drink, and how you make a living.
    [Show full text]
  • Defining the Value of a Comparative Approach to Cancer Drug Development
    Published OnlineFirst December 28, 2015; DOI: 10.1158/1078-0432.CCR-15-2347 Perspectives Clinical Cancer Research Defining the Value of a Comparative Approach to Cancer Drug Development Amy K. LeBlanc, Christina N. Mazcko, and Chand Khanna Abstract Comparative oncology as a tool in drug development requires a generated from these unique studies conducted in diseased ani- deeper examination of the value of the approach and examples of mals, and how these new data will affect ongoing human clinical where this approach can satisfy unmet needs. This review seeks to trials. We contend that it is reasonable to consider these data as demonstrate types of drug development questions that are best potentially informative and valuable to cancer drug development, answered by the comparative oncology approach. We believe but as supplementary to conventional preclinical studies and common perceived risks of the comparative approach relate to human clinical trials particularly as they relate to the identification uncertainty of how regulatory bodies will prioritize or react to data of drug-associated adverse events. Clin Cancer Res; 1–6. Ó2015 AACR. Introduction trial support and data management is provided by the NCI (6, 7). This mechanism provides access to a clinical trial infrastructure The study of naturally occurring cancer in companion animals, that delivers trial results in a facile manner, considerate of time- known as comparative oncology, forms the basis of a translational lines generally required in drug development strategies. Further- drug development strategy that primarily includes tumor-bearing more, a body of published work now exists to demonstrate the pet dogs in clinical trials of novel cancer therapies destined for use feasibility and applicability of the dog cancer model in drug in human cancer patients (1–5).
    [Show full text]
  • Comparative Pathology of Canine Soft Tissue Sarcomas: Possible Models of Human Non-Rhabdomyosarcoma Soft Tissue Sarcomas
    Comparative Pathology of Canine Soft Tissue Sarcomas: Possible Models of Human Non-rhabdomyosarcoma Soft Tissue Sarcomas Milovancev, M., Hauck, M., Keller, C., Stranahan, L. W., Mansoor, A., & Malarkey, D. E. (2015). Comparative Pathology of Canine Soft Tissue Sarcomas: Possible Models of Human Non-rhabdomyosarcoma Soft Tissue Sarcomas. Journal of Comparative Pathology, 152(1), 22-27. doi:10.1016/j.jcpa.2014.09.005 10.1016/j.jcpa.2014.09.005 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse J. Comp. Path. 2015, Vol. 152, 22e27 Available online at www.sciencedirect.com ScienceDirect www.elsevier.com/locate/jcpa NEOPLASTIC DISEASE Comparative Pathology of Canine Soft Tissue Sarcomas: Possible Models of Human Non-rhabdomyosarcoma Soft Tissue Sarcomas { M. Milovancev*, M. Hauck†, C. Keller‡, , L. W. Stranahan†, x k A. Mansoor and D. E. Malarkey *Department of Clinical Sciences, Oregon State University, Corvallis, Oregon, † Department of Clinical Sciences, North Carolina State University, Raleigh, North Carolina, ‡ Pediatric Cancer Biology Program, Pape Family Pediatric x Research Institute, Department of Pediatrics, Oregon Health & Science University, Portland, Oregon, Department of k Pathology, Oregon Health & Science University, Portland, Oregon, Cellular and Molecular Pathology Branch, National { Institute of Environmental Health Sciences, Research Triangle Park, North Carolina and Children’s Cancer Therapy Development Institute (cc-TDI), Fort Collins, CO 80524, USA Summary Comparative analyses of canine and human soft tissue sarcomas (STSs) are lacking. This study compared the histological and immunohistochemical (labelling for desmin, smooth muscle actin [SMA], CD31, pancytoker- atin, S100 and CD34) appearance of 32 archived, formalin-fixed, paraffin wax-embedded canine STS tumour specimens by board-certified veterinary and medical pathologists, both blinded to the other’s interpretations.
    [Show full text]
  • Defining the Value of a Comparative Approach to Cancer Drug Development
    Published OnlineFirst December 28, 2015; DOI: 10.1158/1078-0432.CCR-15-2347 Perspectives Clinical Cancer Research Defining the Value of a Comparative Approach to Cancer Drug Development Amy K. LeBlanc, Christina N. Mazcko, and Chand Khanna Abstract Comparative oncology as a tool in drug development requires a generated from these unique studies conducted in diseased ani- deeper examination of the value of the approach and examples of mals, and how these new data will affect ongoing human clinical where this approach can satisfy unmet needs. This review seeks to trials. We contend that it is reasonable to consider these data as demonstrate types of drug development questions that are best potentially informative and valuable to cancer drug development, answered by the comparative oncology approach. We believe but as supplementary to conventional preclinical studies and common perceived risks of the comparative approach relate to human clinical trials particularly as they relate to the identification uncertainty of how regulatory bodies will prioritize or react to data of drug-associated adverse events. Clin Cancer Res; 1–6. Ó2015 AACR. Introduction trial support and data management is provided by the NCI (6, 7). This mechanism provides access to a clinical trial infrastructure The study of naturally occurring cancer in companion animals, that delivers trial results in a facile manner, considerate of time- known as comparative oncology, forms the basis of a translational lines generally required in drug development strategies. Further- drug development strategy that primarily includes tumor-bearing more, a body of published work now exists to demonstrate the pet dogs in clinical trials of novel cancer therapies destined for use feasibility and applicability of the dog cancer model in drug in human cancer patients (1–5).
    [Show full text]
  • Comparative Oncology Program
    The Problem: Non-Integrated Cancer Comparative Oncology Program Drug Development A central mission of the Center for Cancer Research (CCR), National Cancer Institute (NCI) is the development and delivery of novel cancer A Solution: Integration of treatment strategies to patients. Through a number of new initiatives, the Informative Non-Clinical CCR has created an essential infrastructure to improve the translational Models of Cancer With research process. As part of these efforts, the CCR recently launched the Clinical Drug Development CCR–Comparative Oncology Program (CCR-COP). The goal of this Efforts program is to include naturally occurring cancers seen in pet animals into studies of cancer biology and therapy. Through the inclusion of these non-murine cancer models, we are hopeful that a more efficient and Companion Animal informed drug development path may emerge. Malignancies as Comparative Model for Human Disease The Problem: Non-Integrated Cancer Drug Development Comparative Oncology Cancer drug development is costly, linear, and inefficient. Costs Program Reagent Kit associated with development incrementally rise as the path proceeds. The two most common causes of drug failure are toxicity or lack of efficacy. These failures are most costly once a drug enters phase I human Comparative Oncology trials but are even more costly if they occur after phase II trials, and Trial Consortium beyond. It is therefore essential that “go-no-go” decisions focus on the issue of toxicity and efficacy as early in the development path as possible. Many problems, which result from a lack of integration between those involved with “drug discovery” and those involved with “drug development,” limit the information needed to answer important questions faced in the design of clinical trials in human patients.
    [Show full text]