Varieties of Modules: Kinds, Levels, Origins, and Behaviors RASMUS G
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Modularity As a Concept Modern Ideas About Mental Modularity Typically Use Fodor (1983) As a Key Touchstone
COGNITIVE PROCESSING International Quarterly of Cognitive Science Mental modularity, metaphors, and the marriage of evolutionary and cognitive sciences GARY L. BRASE University of Missouri – Columbia Abstract - As evolutionary approaches in the behavioral sciences become increasingly prominent, issues arising from the proposition that the mind is a collection of modular adaptations (the multi-modular mind thesis) become even more pressing. One purpose of this paper is to help clarify some valid issues raised by this thesis and clarify why other issues are not as critical. An aspect of the cognitive sciences that appears to both promote and impair progress on this issue (in different ways) is the use of metaphors for understand- ing the mind. Utilizing different metaphors can yield different perspectives and advancement in our understanding of the nature of the human mind. A second purpose of this paper is to outline the kindred natures of cognitive science and evolutionary psychology, both of which cut across traditional academic divisions and engage in functional analyses of problems. Key words: Evolutionary Theory, Cognitive Science, Modularity, Metaphors Evolutionary approaches in the behavioral sciences have begun to influence a wide range of fields, from cognitive neuroscience (e.g., Gazzaniga, 1998), to clini- cal psychology (e.g., Baron-Cohen, 1997; McGuire and Troisi, 1998), to literary theory (e.g., Carroll, 1999). At the same time, however, there are ongoing debates about the details of what exactly an evolutionary approach – often called evolu- tionary psychology— entails (Holcomb, 2001). Some of these debates are based on confusions of terminology, implicit arguments, or misunderstandings – things that can in principle be resolved by clarifying current ideas. -
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B
Transformations of Lamarckism Vienna Series in Theoretical Biology Gerd B. M ü ller, G ü nter P. Wagner, and Werner Callebaut, editors The Evolution of Cognition , edited by Cecilia Heyes and Ludwig Huber, 2000 Origination of Organismal Form: Beyond the Gene in Development and Evolutionary Biology , edited by Gerd B. M ü ller and Stuart A. Newman, 2003 Environment, Development, and Evolution: Toward a Synthesis , edited by Brian K. Hall, Roy D. Pearson, and Gerd B. M ü ller, 2004 Evolution of Communication Systems: A Comparative Approach , edited by D. Kimbrough Oller and Ulrike Griebel, 2004 Modularity: Understanding the Development and Evolution of Natural Complex Systems , edited by Werner Callebaut and Diego Rasskin-Gutman, 2005 Compositional Evolution: The Impact of Sex, Symbiosis, and Modularity on the Gradualist Framework of Evolution , by Richard A. Watson, 2006 Biological Emergences: Evolution by Natural Experiment , by Robert G. B. Reid, 2007 Modeling Biology: Structure, Behaviors, Evolution , edited by Manfred D. Laubichler and Gerd B. M ü ller, 2007 Evolution of Communicative Flexibility: Complexity, Creativity, and Adaptability in Human and Animal Communication , edited by Kimbrough D. Oller and Ulrike Griebel, 2008 Functions in Biological and Artifi cial Worlds: Comparative Philosophical Perspectives , edited by Ulrich Krohs and Peter Kroes, 2009 Cognitive Biology: Evolutionary and Developmental Perspectives on Mind, Brain, and Behavior , edited by Luca Tommasi, Mary A. Peterson, and Lynn Nadel, 2009 Innovation in Cultural Systems: Contributions from Evolutionary Anthropology , edited by Michael J. O ’ Brien and Stephen J. Shennan, 2010 The Major Transitions in Evolution Revisited , edited by Brett Calcott and Kim Sterelny, 2011 Transformations of Lamarckism: From Subtle Fluids to Molecular Biology , edited by Snait B. -
The Impact of Component Modularity on Design Evolution: Evidence from the Software Industry
08-038 The Impact of Component Modularity on Design Evolution: Evidence from the Software Industry Alan MacCormack John Rusnak Carliss Baldwin Copyright © 2007 by Alan MacCormack, John Rusnak, and Carliss Baldwin. Working papers are in draft form. This working paper is distributed for purposes of comment and discussion only. It may not be reproduced without permission of the copyright holder. Copies of working papers are available from the author. Abstract Much academic work asserts a relationship between the design of a complex system and the manner in which this system evolves over time. In particular, designs which are modular in nature are argued to be more “evolvable,” in that these designs facilitate making future adaptations, the nature of which do not have to be specified in advance. In essence, modularity creates “option value” with respect to new and improved designs, which is particularly important when a system must meet uncertain future demands. Despite the conceptual appeal of this research, empirical work exploring the relationship between modularity and evolution has had limited success. Three major challenges persist: first, it is difficult to measure modularity in a robust and repeatable fashion; second, modularity is a property of individual components, not systems as a whole, hence we must examine these dynamics at the microstructure level; and third, evolution is a temporal phenomenon, in that the conditions at time t affect the nature of the design at time t+1, hence exploring this phenomenon requires longitudinal data. In this paper, we tackle these challenges by analyzing the evolution of a successful commercial software product over its entire lifetime, comprising six major “releases.” In particular, we develop measures of modularity at the component level, and use these to predict patterns of evolution between successive versions of the design. -
Task-Dependent Evolution of Modularity in Neural Networks1
Task-dependent evolution of modularity in neural networks1 Michael Husk¨ en, Christian Igel, and Marc Toussaint Institut fur¨ Neuroinformatik, Ruhr-Universit¨at Bochum, 44780 Bochum, Germany Telephone: +49 234 32 25558, Fax: +49 234 32 14209 fhuesken,igel,[email protected] Connection Science Vol 14, No 3, 2002, p. 219-229 Abstract. There exist many ideas and assumptions about the development and meaning of modu- larity in biological and technical neural systems. We empirically study the evolution of connectionist models in the context of modular problems. For this purpose, we define quantitative measures for the degree of modularity and monitor them during evolutionary processes under different constraints. It turns out that the modularity of the problem is reflected by the architecture of adapted systems, although learning can counterbalance some imperfection of the architecture. The demand for fast learning systems increases the selective pressure towards modularity. 1 Introduction The performance of biological as well as technical neural systems crucially depends on their ar- chitectures. In case of a feed-forward neural network (NN), architecture may be defined as the underlying graph constituting the number of neurons and the way these neurons are connected. Particularly one property of architectures, modularity, has raised a lot of interest among researchers dealing with biological and technical aspects of neural computation. It appears to be obvious to emphasise modularity in neural systems because the vertebrate brain is highly modular both in an anatomical and in a functional sense. It is important to stress that there are different concepts of modules. `When a neuroscientist uses the word \module", s/he is usually referring to the fact that brains are structured, with cells, columns, layers, and regions which divide up the labour of information processing in various ways' 1This paper is a revised and extended version of the GECCO 2001 Late-Breaking Paper by Husk¨ en, Igel, & Toussaint (2001). -
Modularity in Animal Development and Evolution: Elements of a Conceptual Framework for Evodevo
JOURNAL OF EXPERIMENTAL ZOOLOGY (MOL DEV EVOL) 285:307–325 (1999) Modularity in Animal Development and Evolution: Elements of a Conceptual Framework for EvoDevo GEORGE VON DASSOW*AND ED MUNRO Department of Zoology, University of Washington, Seattle, Washington 98195-1800 ABSTRACT For at least a century biologists have been talking, mostly in a black-box sense, about developmental mechanisms. Only recently have biologists succeeded broadly in fishing out the contents of these black boxes. Unfortunately the view from inside the black box is almost as obscure as that from without, and developmental biologists increasingly confront the need to synthesize known facts about developmental phenomena into mechanistic descriptions of com- plex systems. To evolutionary biologists, the emerging understanding of developmental mecha- nisms is an opportunity to understand the origins of variation not just in the selective milieu but also in the variability of the developmental process, the substrate for morphological change. Ultimately, evolutionary developmental biology (EvoDevo) expects to articulate how the diversity of organic form results from adaptive variation in development. This ambition demands a shift in the way biologists describe causality, and the central problem of EvoDevo is to understand how the architecture of development confers evolvability. We argue in this essay that it makes little sense to think of this question in terms of individual gene function or isolated morphometrics, but rather in terms of higher-order modules such as gene networks and homologous characters. We outline the conceptual challenges raised by this shift in perspective, then present a selection of case studies we believe to be paradigmatic for how biologists think about modularity in devel- opment and evolution. -
The Emergence of Modularity in Biological Systems
The Emergence of Modularity in Biological Systems Zhenyu Wang Dec. 2007 Abstract: Modularity is a ubiquitous phenomenon in various biological systems, both in genotype and in phenotype. Biological modules, which consist of components relatively independent in functions as well as in morphologies, have facilitated daily performance of biological systems and their long time evolution in history. How did modularity emerge? A mechanism with horizontal gene transfer and a biological version of spin-glass model is addressed here. When the spontaneous symmetry is broken in an evolving environment, here comes modularity. Further improvement is also discussed at the end. 1 Introduction Modularity is an important concept with broad applications in computer science, especially in programming. A module, usually composed of various components, is a relatively independent entity in its operation with respect to other entities in the whole system. For a programmer, the employment of a module will increase the efficiency of coding, decrease the potential of errors, enhance the stability of the operation and facilitate the further improvement of the program. Coincidently, the nature thinks the same in its programming life: various biological systems are also in a modular fashion! Let us take the model organism fruit fly Drosophila melanogaster as an example to sip the ubiquitous modularity in biological systems. In view of morphology, Drosophila is a typical modular insect, whose adult is composed of an anterior head, followed by three thoracic segments, and eight abdominal segments at posterior[1](Fig. 1). Such a kind of segmentation is induced by a cascade of transcription factors in the embryo. First, maternal effect genes which are expressed in the mother’s ovary cells distribute cytoplasmic determinants unevenly in fertilized eggs, which thus determines anterior-posterior and dorsal-ventral axis. -
Building a Popular Science Library Collection for High School to Adult Learners: ISSUES and RECOMMENDED RESOURCES
Building a Popular Science Library Collection for High School to Adult Learners: ISSUES AND RECOMMENDED RESOURCES Gregg Sapp GREENWOOD PRESS BUILDING A POPULAR SCIENCE LIBRARY COLLECTION FOR HIGH SCHOOL TO ADULT LEARNERS Building a Popular Science Library Collection for High School to Adult Learners ISSUES AND RECOMMENDED RESOURCES Gregg Sapp GREENWOOD PRESS Westport, Connecticut • London Library of Congress Cataloging-in-Publication Data Sapp, Gregg. Building a popular science library collection for high school to adult learners : issues and recommended resources / Gregg Sapp. p. cm. Includes bibliographical references and index. ISBN 0–313–28936–0 1. Libraries—United States—Special collections—Science. I. Title. Z688.S3S27 1995 025.2'75—dc20 94–46939 British Library Cataloguing in Publication Data is available. Copyright ᭧ 1995 by Gregg Sapp All rights reserved. No portion of this book may be reproduced, by any process or technique, without the express written consent of the publisher. Library of Congress Catalog Card Number: 94–46939 ISBN: 0–313–28936–0 First published in 1995 Greenwood Press, 88 Post Road West, Westport, CT 06881 An imprint of Greenwood Publishing Group, Inc. Printed in the United States of America TM The paper used in this book complies with the Permanent Paper Standard issued by the National Information Standards Organization (Z39.48–1984). 10987654321 To Kelsey and Keegan, with love, I hope that you never stop learning. Contents Preface ix Part I: Scientific Information, Popular Science, and Lifelong Learning 1 -
Interview with Martin Gardner Page 602
ISSN 0002-9920 of the American Mathematical Society june/july 2005 Volume 52, Number 6 Interview with Martin Gardner page 602 On the Notices Publication of Krieger's Translation of Weil' s 1940 Letter page 612 Taichung, Taiwan Meeting page 699 ., ' Martin Gardner (see page 611) AMERICAN MATHEMATICAL SOCIETY A Mathematical Gift, I, II, Ill The interplay between topology, functions, geometry, and algebra Shigeyuki Morita, Tokyo Institute of Technology, Japan, Koji Shiga, Yokohama, Japan, Toshikazu Sunada, Tohoku University, Sendai, Japan and Kenji Ueno, Kyoto University, Japan This three-volume set succinctly addresses the interplay between topology, functions, geometry, and algebra. Bringing the beauty and fun of mathematics to the classroom, the authors offer serious mathematics in an engaging style. Included are exercises and many figures illustrating the main concepts. It is suitable for advanced high-school students, graduate students, and researchers. The three-volume set includes A Mathematical Gift, I, II, and III. For a complete description, go to www.ams.org/bookstore-getitem/item=mawrld-gset Mathematical World, Volume 19; 2005; 136 pages; Softcover; ISBN 0-8218-3282-4; List US$29;AII AMS members US$23; Order code MAWRLD/19 Mathematical World, Volume 20; 2005; 128 pages; Softcover; ISBN 0-8218-3283-2; List US$29;AII AMS members US$23; Order code MAWRLD/20 Mathematical World, Volume 23; 2005; approximately 128 pages; Softcover; ISBN 0-8218-3284-0; List US$29;AII AMS members US$23; Order code MAWRLD/23 Set: Mathematical World, Volumes 19, 20, and 23; 2005; Softcover; ISBN 0-8218-3859-8; List US$75;AII AMS members US$60; Order code MAWRLD-GSET Also available as individual volumes .. -
Evolution of Networks for Body Plan Patterning; Interplay of Modularity, Robustness and Evolvability
Evolution of Networks for Body Plan Patterning; Interplay of Modularity, Robustness and Evolvability Kirsten H. ten Tusscher1,2*, Paulien Hogeweg1 1 Theoretical Biology and Bioinformatics Group, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands, 2 Scientific Computing, Simula Research Laboratory, Oslo, Norway Abstract A major goal of evolutionary developmental biology (evo-devo) is to understand how multicellular body plans of increasing complexity have evolved, and how the corresponding developmental programs are genetically encoded. It has been repeatedly argued that key to the evolution of increased body plan complexity is the modularity of the underlying developmental gene regulatory networks (GRNs). This modularity is considered essential for network robustness and evolvability. In our opinion, these ideas, appealing as they may sound, have not been sufficiently tested. Here we use computer simulations to study the evolution of GRNs’ underlying body plan patterning. We select for body plan segmentation and differentiation, as these are considered to be major innovations in metazoan evolution. To allow modular networks to evolve, we independently select for segmentation and differentiation. We study both the occurrence and relation of robustness, evolvability and modularity of evolved networks. Interestingly, we observed two distinct evolutionary strategies to evolve a segmented, differentiated body plan. In the first strategy, first segments and then differentiation domains evolve (SF strategy). In the second scenario segments and domains evolve simultaneously (SS strategy). We demonstrate that under indirect selection for robustness the SF strategy becomes dominant. In addition, as a byproduct of this larger robustness, the SF strategy is also more evolvable. Finally, using a combined functional and architectural approach, we determine network modularity. -
Modularity in Signaling Systems
Modularity in Signaling Systems Domitilla Del Vecchio Department of Mechanical Engineering, Laboratory for Information and Decision Systems (LIDS), MIT, 77 Massachusetts Ave, Cambridge, MA 02139 E-mail: [email protected] Modularity in Signaling Systems 2 Abstract. Modularity is a property by which the behavior of a system does not change upon interconnection. It is crucial for understanding the behavior of a complex system from the behavior of the composing subsystems. Whether modularity holds in biology is an intriguing and largely debated question. In this paper, we discuss this question taking a control systems theory view and focusing on signaling systems. In particular, we argue that, despite signaling systems are constituted of structural modules, such as covalent modification cycles, modularity does not hold in general. As in any engineering system, impedance-like effects, called retroactivity, appear at interconnections and alter the behavior of connected modules. We further argue that while signaling systems have evolved sophisticated ways to counter-act retroactivity and enforce modularity, retroactivity may also be exploited to finely control the information processing of signaling pathways. Testable predictions and experimental evidence are discussed with their implications. 1. Introduction The idea that modularity is a general principle of biological organization and that signaling systems, in particular, are modularly assembled has been considered and discussed by several researchers [1,10,21]. In particular, a modular systems approach to understanding information transfer in signaling networks has been proposed as a way to defeat the complexity of networks [4,20,24,25]. For example, signaling pathways involved in caspase activation have been studied through a modular approach to determine the key contributors in triggering apoptosis [9]. -
Developmental Biology: a Very Short Introduction PDF Book
DEVELOPMENTAL BIOLOGY: A VERY SHORT INTRODUCTION PDF, EPUB, EBOOK Lewis Wolpert | 152 pages | 02 Sep 2011 | Oxford University Press | 9780199601196 | English | Oxford, United Kingdom Developmental Biology: A Very Short Introduction PDF Book Vertebrates 3. Fashion is a gigantic global industry, generating some three hundred billion dollars in revenue every year, and playing a significant role in the economic, political, cultural and social lives of a vast international audience. For questions on access or troubleshooting, please check our FAQs , and if you can't find the answer there, please contact us. Get A Copy. There have been an increasing amount of studies with iPS cells since there seems to be ethical issues with using ES cells, despite these being harvested when an embryo could still split and turn into twins telling scientists it should not be classified as human life. Sort order. This Very Short Introduction decodes the key themes, signs, and symbols found in Christian art: the Eucharist, the image of the Crucifixion, the Virgin Mary, the Saints, Old and New Testament narrative imagery, and iconography. Advanced Search. From a single cell--a fertilized egg--comes an elephant, a fly, or a human. Search Items. Members save with free shipping everyday! Details if other :. Evolutionary Genetics: Concepts, Analysis, and Practice. In this Very Short Introduction, renowned scientist Lewis Wolpert shows how the field of developmental biology seeks to answer these profound questions. See 1 question about Developmental Biology…. Request Examination Copy. For the last A distinguished developmental biologist himself, Wolpert offers a concise and highly readable account of what we now know about development, discussing the first vital steps of growth, the patterning created by Hox genes and the development of form, embryonic stem cells, the timing of gene expression and its management, chemical signaling, and growth. -
Autumn Newsletter 2021
AUTUMN NEWSLETTER 2021 Autumn NEWSLETTER – March 2021 Dear ANZSCDB members, ANZSCDB welcomes you to 2021, the year we emerge from the shadow of COVID-19 and work towards a return to the ‘normal’ routines of science, academia, research and industry. The local and global emergence from the pandemic is perhaps slower, more sporadic and less ‘normal’ than is ideal, and it still comes with significant hardship for many. However, hope abounds. We at ANZSCDB are committed to reconnecting with our members this year through a series of newsletters, satellite meetings and other forums, as detailed in this newsletter. While travel is still impeded, in-person conferences remain impractical and so we will be reaching out through locally held meetings which offer bi-national online access. We really hope that members will reach out and interact through these satellite meetings. Our interactions and shared science this year are critical to seed the planning of future meetings and conferences. Next year is the target for returning to full, in-person meetings, notably with ComBio planned for a return in 2022. The exceptional dedication and hard work of our Executive, Committees and State representatives will be on display through this year, ‘making it happen’ for all of us. Many are still in the midst of grant writing season and/or starting the year’s teaching. Both can be stressful for many reasons at this time, including our dwindling levels of government research funding and pressures on university budgets. I hope that this year also sees some improvement in this landscape. A reflection on the how the pandemic has unfolded and In this issue the world’s response over the past year, has profound missives for scientific research.