False Dichotomy Between Growth and Clean Water? the Harpeth River Experience with Citizen Suits and Beyond
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
List of TMDL Implementation Plans with Tmdls Organized by Basin
Latest 305(b)/303(d) List of Streams List of Stream Reaches With TMDLs and TMDL Implementation Plans - Updated June 2011 Total Maximum Daily Loadings TMDL TMDL PLAN DELIST BASIN NAME HUC10 REACH NAME LOCATION VIOLATIONS TMDL YEAR TMDL PLAN YEAR YEAR Altamaha 0307010601 Bullard Creek ~0.25 mi u/s Altamaha Road to Altamaha River Bio(sediment) TMDL 2007 09/30/2009 Altamaha 0307010601 Cobb Creek Oconee Creek to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Cobb Creek Oconee Creek to Altamaha River FC 2012 Altamaha 0307010601 Milligan Creek Uvalda to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 2006 Altamaha 0307010601 Milligan Creek Uvalda to Altamaha River FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Oconee Creek Headwaters to Cobb Creek DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010601 Oconee Creek Headwaters to Cobb Creek FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010602 Ten Mile Creek Little Ten Mile Creek to Altamaha River Bio F 2012 Altamaha 0307010602 Ten Mile Creek Little Ten Mile Creek to Altamaha River DO TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010603 Beards Creek Spring Branch to Altamaha River Bio F 2012 Altamaha 0307010603 Five Mile Creek Headwaters to Altamaha River Bio(sediment) TMDL 2007 09/30/2009 Altamaha 0307010603 Goose Creek U/S Rd. S1922(Walton Griffis Rd.) to Little Goose Creek FC TMDL 2001 TMDL PLAN 08/31/2003 Altamaha 0307010603 Mushmelon Creek Headwaters to Delbos Bay Bio F 2012 Altamaha 0307010604 Altamaha River Confluence of Oconee and Ocmulgee Rivers to ITT Rayonier -
Channel Evolution in Modified Alluvial Streams
16 TRANSPOIU'AT/ON RESEARCH RECORD 1151 Channel Evolution in Modified Alluvial Streams ANDREW SIMON AND CLIFF R. HUPP Modification of alluvial channels ln western Tennessee bas (dso), or both, such that rapid and observable morphologic created Increased energy conditions along main stems and changes occur. tributaries and Initiated longitudinal c11annel adjustment Channelization (dredging and straightening) is a common Changes In bed level are functions of the magnitude a.nd extent engineering practice for controlJing flooding or draining wet of the Imposed disturbance and the location of the adjusting reach In the 6uvlal network. Streambed degradation ls de lands. Quantification of subsequent channel responses can be scribed by simple power equations. Computed exponents ae '!!!l'.!:!b!e L'1 estinrnting ili"' P.ffPr.t!! on river-crossing structures fine the magnitude of downcuttlng wl1b time and decrease and Jands adjacent to these channels. The purposes of this study nonlinearly with distance upstream from the area ofmaxJmum arc (a) to assess the channel changes and network trend of bed disturbance (AMD). Aggradatlon begins Immediately In level response after modifications between 1959 and 1972 of reaches downstream or the AM.D and In upstream reaches alluvial channels in western Tennessee (Figure I) and (b) to after overadjustment by tl1e degradation process. Aggradatlon develop a conceptual model of bank slope development to rates Increase linearly with distance downstream from the AMD and can be estimated rrom local degradation rates. qualitatively assess bank stability and potential channel widen CJrnnnel widening hy ma.'is wasting follows degradation and ing. Such a model will be useful in identifyii1g trends of continues through nggradatlonaJ phases. -
Rule 391-3-6-.03. Water Use Classifications and Water Quality Standards
Presented below are water quality standards that are in effect for Clean Water Act purposes. EPA is posting these standards as a convenience to users and has made a reasonable effort to assure their accuracy. Additionally, EPA has made a reasonable effort to identify parts of the standards that are not approved, disapproved, or are otherwise not in effect for Clean Water Act purposes. Rule 391-3-6-.03. Water Use Classifications and Water Quality Standards ( 1) Purpose. The establishment of water quality standards. (2) W ate r Quality Enhancement: (a) The purposes and intent of the State in establishing Water Quality Standards are to provide enhancement of water quality and prevention of pollution; to protect the public health or welfare in accordance with the public interest for drinking water supplies, conservation of fish, wildlife and other beneficial aquatic life, and agricultural, industrial, recreational, and other reasonable and necessary uses and to maintain and improve the biological integrity of the waters of the State. ( b) The following paragraphs describe the three tiers of the State's waters. (i) Tier 1 - Existing instream water uses and the level of water quality necessary to protect the existing uses shall be maintained and protected. (ii) Tier 2 - Where the quality of the waters exceed levels necessary to support propagation of fish, shellfish, and wildlife and recreation in and on the water, that quality shall be maintained and protected unless the division finds, after full satisfaction of the intergovernmental coordination and public participation provisions of the division's continuing planning process, that allowing lower water quality is necessary to accommodate important economic or social development in the area in which the waters are located. -
Total Maximum Daily Load Evaluation for Seventy-Two Stream Segments
Total Maximum Daily Load Evaluation for Seventy-Two Stream Segments in the Oconee River Basin for Fecal Coliform Submitted to: The U.S. Environmental Protection Agency Region 4 Atlanta, Georgia Submitted by: The Georgia Department of Natural Resources Environmental Protection Division Atlanta, Georgia January 2007 Total Maximum Daily Load Evaluation January 2007 Oconee River Basin (Fecal Coliform) Table of Contents Section Page EXECUTIVE SUMMARY ............................................................................................................. iv 1.0 INTRODUCTION ................................................................................................................... 1 1.1 Background ....................................................................................................................... 1 1.2 Watershed Description......................................................................................................1 1.3 Water Quality Standard.....................................................................................................5 2.0 WATER QUALITY ASSESSMENT ...................................................................................... 15 3.0 SOURCE ASSESSMENT .................................................................................................... 16 3.1 Point Source Assessment ............................................................................................... 16 3.2 Nonpoint Source Assessment........................................................................................ -
Great River Road Tennessee
Great River Road Tennessee Corridor Management Plan Corridor Management Plan Recognitions Mayor AC Wharton Shelby County Byway Consultant Mayor Jeff Huffman Tipton County David L. Dahlquist Mayor Rod Schuh Lauderdale County Governor Phil Bredesen President Mayor Richard Hill Dyer County State of Tennessee David L. Dahlquist Associates, L.L.C. Mayor Macie Roberson Lake County State Capitol 5204 Shriver Avenue Mayor Benny McGuire Obion County Nashville, TN 37243 Des Moines, IA 50312 Commissioner Susan Whitaker Pickering Firm, Inc Department of Tourist Development Byway Planning Team Architecture – Engineering – Planning – Surveying Wm. Snodgrass/Tennessee Tower 312 8th Avenue North, 25th Floor Bob Pitts, PE Nashville, TN 37243 Mississippi River Corridor – Tennessee, Inc. Principal Owner Board of Directors Director, Civil Engineering Services Ms. Marty Marbry 6775 Lenox Center Court – Suite 300 West Tennessee – Tourist Development Memphis, TN 38115 Regional Marketing & Public Relations John Sheahan Chairman/CEO John Threadgill Secretary Historical Consultant Commissioner Gerald Nicely Dr. Carroll Van West Tennessee Department of Transportation Jim Bondurant Chair – Obion - Task Force Committe Director 505 Deaderick St. Rosemary Bridges Chair – Tipton - Task Force Committee Center for Historic Preservation James K. Polk Bldg. – 7th Floor Peter Brown Chair – Dyer - Task Force Committee Middle Tennessee State University Nashville, TN 37243 Laura Holder Tennessee Civil War National Heritage Area P.O. Box 80 – MTSU Pamela Marshall Public Affairs -
Archaeological Investigations in the Obion River Drainage: the West
.~~- -~.- .~---~~~~~~~- ARCHAEOLOGICAL INVESTIGATIONS IN THE OBION RIVER DRAINAGE: THE WEST TENNESSEE TRIBUTARIES PROJECT by Robert C. Mainfort, Jr. with contributions by Jamie C. Brandon Emanuel Breitburg Shawn Chapman Mary L. Kwas William L. Lawrence June E. Mirecki Andrea B. Shea Tennessee Department of Environment and Conservation Division of Archaeology, Research Series No. 10 1994 . ~4~\·JRobert C. Mainfort, . Principal Investigator ii Tennessee Department of Environment and Conservation Division of Archaeology, Research Series No. 10 Copyright © 1994 - Tennessee Division of Archaeology TENNESSEE DEPARTrvIENT OF ENVIRONrvIENT AND CONSERVATION, DIVISION OF ARCHAEOLOGY, RESEARCH SERIES publications are isssued at irregular intervals. Individual volumes are produced by staff members and other qualified individuals in order to promote the exchange of scholarly information concerning the history and prehistory of the State of Tennessee. Copies of all publications in the series may be obtained from the Tennessee Department of Environment and Conservation, 401 Church Street, 13th Floor, Nashville, Tennessee 37243, (615)532-1516. Pursuant to the State of Tennessee's policy of non-discrimination, the Tennessee Department of Environment and Conservation does not discriminate on the basis of race sex, religion, color, national or ethnic origin, age, disability, or military service in its policies, or in the admission or access to, or treatment or employment in, its programs, -services or activities. Equal Employment Opportunityl Affirmative Action!ADA inquiries or complaints should be directed to the Tennessee Department of Environment and Conservation, EEOlAAIADA Coordinator, 401 Church Street, 21st Floor, Nashville, TN 37243, (615)532-0103. Hearing impaired callers may use the Tennessee Relay Service (1-800-848-0298). Tennessee Department of Environment and Con servation, Authorization No. -
Guide to TN Watersheds
What Is a Watershed? A watershed is all the land area that drains into a given body of water. Small watersheds combine to become big watersheds, sometimes called basins. When water from a few acres drains into a little stream, those few acres are its watershed. When that stream flows into a larger stream, and that larger stream flows into a bigger river, then the initial small watershed is now part of that river’s watershed. Watersheds are a logical way to think about the connection between the land and the quality of water we enjoy. How we manage and treat the land has a direct impact on the ability of water to support a number of im- portant public uses like swimming, fishing, aquatic species habitat and drinking water supply. We all live downstream from someone, and what happens in a watershed does not just stay in that watershed. Managing Programs by Watershed Tennessee’s water-protection program focuses on watersheds because it’s the Advisory Groups best way to evaluate, protect and improve the quality of all the waters in the state. Watershedof Arkansas Diagram WatershedCourtesy When pollutants threaten or prevent our waters from meeting clean-water goals, we can look at all of the pollution sources in the affected watershed and develop Water from rainfall that doesn’t evaporate runs more comprehensive control strategies. into ditches, streams, creeks, rivers, wetlands Tennessee recognizes 55 watersheds, and TDEC has developed a watershed or lakes. A watershed is the land area from management plan for each of them. Visit www.tn.gov/environment/watersheds which water drains into a river, stream or lake. -
502642 Tulane Zoology & Botany Book.Indd
A NEW DARTER OF SUBGENUS OLIGOCEPHALUS, GENUS ETHEOSTOMA, FROM SOUTHEASTERN TEXAS AND SOUTHWESTERN LOUISIANA ROYAL D. SUTTKUS Tulane University Biodiversity Research Institute, Belle Chasse, LA 70037-3098 HENRY L. BART, JR. Tulane University Biodiversity Research Institute, Belle Chasse, LA 70037-3098 AND DAVID A. ETNIER University of Tennessee Knoxville, TN 37996-1610 ABSTRACT A new species of darter of subgenus Oligocephalus, genus Etheostoma, is herein de- scribed relative to three similar and geographically proximal Oligocephalus – E. aspri- gene (Forbes), E. collettei Birdsong & Knapp, and E. swaini (Jordan) – largely con- fined to the Gulf Coastal Plain and the Central Lowlands of the eastern United States. The new species occurs in the Neches, Sabine and Calcasieu river systems of east Tex- as and western Louisiana. It is most closely related to E. asprigene. It differs from all of the above species primarily in having a longer spinous dorsal fin base and a narrow- er transpelvic width. Nuptial males of the new species differ in breeding coloration and have significantly shorter snouts and caudal peduncles, and narrower bodies than nuptial males of E. asprigene and other Oligocephalus compared. The new species is most similar to E. aprigene in physiognomy and body pigmentation. Keywords: New species, Etheostoma asprigene, Oligocephalus, Neches River, Sabine River, Calcasieu River INTRODUCTION In this paper we describe a new species of darter of subgenus Oligocephalus, genus Etheostoma, and diagnose it relative to three similar and geographically proxi- mal Oligocephalus–E. asprigene (Forbes), E. collettei Birdsong & Knapp, and E. swaini (Jordan). We compare meristic and morphometric data of the new species with that of E. -
2020 Integrated 305(B)/303(D) List
2020 Integrated 305(b)/303(d) List - Streams Reach Name/ID Reach Location/County River Basin/ Assessment/ Cause/ Size/Unit Category/ Notes Use Data Provider Source Priority Alex Creek Mason Cowpen Branch to Altamaha Not Supporting DO 3 4a TMDL completed DO 2002. Altamaha River GAR030701060503 Wayne Fishing 1,55,10 NP Miles Altamaha River Confluence of Oconee and Altamaha Supporting 72 1 TMDL completed Fish Tissue (Mercury) 2002. Ocmulgee Rivers to ITT Rayonier GAR030701060401 Appling, Wayne, Jeff Davis Fishing 1,55 Miles Altamaha River ITT Rayonier to Altamaha Assessment 20 3 TMDL completed Fish Tissue (Mercury) 2002. More Penholoway Creek Pending data need to be collected and evaluated before it GAR030701060402 Wayne Fishing 10,55 Miles can be determined whether the designated use of Fishing is being met. Altamaha River Penholoway Creek to Altamaha Supporting 27 1 Butler River GAR030701060501 Wayne, Glynn, McIntosh Fishing 1,55 Miles Beards Creek Chapel Creek to Spring Altamaha Not Supporting Bio F 7 4a TMDL completed Bio F 2017. Branch GAR030701060308 Tattnall, Long Fishing 4 NP Miles Beards Creek Spring Branch to Altamaha Not Supporting Bio F 11 4a TMDL completed Bio F in 2012. Altamaha River GAR030701060301 Tattnall Fishing 1,55,10,4 NP, UR Miles Big Cedar Creek Griffith Branch to Little Altamaha Assessment 5 3 This site has a narrative rank of fair for Cedar Creek Pending macroinvertebrates. Waters with a narrative rank GAR030701070108 Washington Fishing 59 Miles of fair will remain in Category 3 until EPD completes the reevaluation of the metrics used to assess macroinvertebrate data. Big Cedar Creek Little Cedar Creek (at Altamaha Not Supporting FC 6 5 EPD needs to determine the "natural DO" for the Donovan Hwy) to Little area before a use assessment is made. -
South Fork Obion River Watershed (08010203) of the Mississippi River Basin
SOUTH FORK OBION RIVER WATERSHED (08010203) OF THE MISSISSIPPI RIVER BASIN WATERSHED WATER QUALITY MANAGEMENT PLAN TENNESSEE DEPARTMENT OF ENVIRONMENT AND CONSERVATION DIVISION OF WATER POLLUTION CONTROL WATERSHED MANAGEMENT SECTION SOUTH FORK OBION RIVER WATERSHED WATER QUALITY MANAGEMENT PLAN TABLE OF CONTENTS Glossary Summary Chapter 1. Watershed Approach to Water Quality Chapter 2. Description of the South Fork Obion River Watershed Chapter 3. Water Quality Assessment of the South Fork Obion River Watershed Chapter 4. Point and Nonpoint Source Characterization of the South Fork Obion River Watershed Chapter 5. Water Quality Partnerships in the South Fork Obion River Watershed Chapter 6. Restoration Strategies Appendix I Appendix II Appendix III Appendix IV Appendix V Glossary GLOSSARY 1Q20. The lowest average 1 consecutive days flow with average recurrence frequency of once every 20 years. 30Q2. The lowest average 3 consecutive days flow with average recurrence frequency of once every 2 years. 7Q10. The lowest average 7 consecutive days flow with average recurrence frequency of once every 10 years. 303(d). The section of the federal Clean Water Act that requires a listing by states, territories, and authorized tribes of impaired waters, which do not meet the water quality standards that states, territories, and authorized tribes have set for them, even after point sources of pollution have installed the minimum required levels of pollution control technology. 305(b). The section of the federal Clean Water Act that requires EPA to assemble and submit a report to Congress on the condition of all water bodies across the Country as determined by a biennial collection of data and other information by States and Tribes. -
2018 Integrated 305(B)
2018 Integrated 305(b)/303(d) List - Streams Reach Name/ID Reach Location/County River Basin/ Assessment/ Cause/ Size/Unit Category/ Notes Use Data Provider Source Priority Alex Creek Mason Cowpen Branch to Altamaha Not Supporting DO 3 4a TMDL completed DO 2002. Altamaha River GAR030701060503 Wayne Fishing 1,55,10 NP Miles Altamaha River Confluence of Oconee and Altamaha Supporting 72 1 TMDL completed TWR 2002. Ocmulgee Rivers to ITT Rayonier GAR030701060401 Appling, Wayne, Jeff Davis Fishing 1,55 Miles Altamaha River ITT Rayonier to Penholoway Altamaha Assessment 20 3 TMDL completed TWR 2002. More data need to Creek Pending be collected and evaluated before it can be determined whether the designated use of Fishing is being met. GAR030701060402 Wayne Fishing 10,55 Miles Altamaha River Penholoway Creek to Butler Altamaha Supporting 27 1 River GAR030701060501 Wayne, Glynn, McIntosh Fishing 1,55 Miles Beards Creek Chapel Creek to Spring Branch Altamaha Not Supporting Bio F 7 4a TMDL completed Bio F 2017. GAR030701060308 Tattnall, Long Fishing 4 NP Miles Beards Creek Spring Branch to Altamaha Altamaha Not Supporting Bio F 11 4a TMDL completed Bio F in 2012. River GAR030701060301 Tattnall Fishing 1,55,10,4 NP, UR Miles Big Cedar Creek Griffith Branch to Little Cedar Altamaha Assessment 5 3 This site has a narrative rank of fair for Creek Pending macroinvertebrates. Waters with a narrative rank of fair will remain in Category 3 until EPD completes the reevaluation of the metrics used to assess macroinvertebrate data. GAR030701070108 Washington Fishing 59 Miles Big Cedar Creek Little Cedar Creek to Ohoopee Altamaha Not Supporting DO, FC 3 4a TMDLs completed DO 2002 & FC (2002 & 2007). -
Hydroperiod •West Tennessee Geography
10/17/2011 DEGRADATION OF WEST TENNESSEE RIVERS AND FLOODPLAINS: A FASCINATING STORY OF BIOLOGY, GEOLOGY, AND POLITICS Sonja N. Oswalt S Outline EDIMENTATION •Brief overview of Basic River Geomorphology and Floodplain Dynamics • Hydrology; Hydroperiod •West Tennessee geography •The Issues and their Impacts on West Tennessee floodplains: • West Tennessee landuse IN • West Tennessee Soils W • Sedimentation EST • Normal versus Excessive T ENNESSEE • Channelization • Levees • Beavers and other natural processes • People •Restoration of a river system: what would it take? •Current status •Beyond West Tennessee--A Landscape Perspective •Recommended Reading (about W. Tennessee and other Fabulous wetland and river-related books that I highly recommend!) Factors Impacting Floodplain Vegetation Floodplain Geomorphology (study of the origin and evolution of floodplain landform) • Main channel meanders • Point bars, cut banks • Natural levee • Oxbow lake • Meander scars • Backswamps • Ridges and swales • Flats 1 10/17/2011 Factors Impacting Floodplain Vegetation Floodplain Hydrology (study of the occurrence, movement, distribution, and properties of water in the river and surrounding floodplain) • Hydroperiod: • Frequency (how often flooding occurs) • Duration (how long floodwater sticks around) • Water Depth • Flow Pattern Geomorphology + Hydrology = Hydrogeomorpology Factors Impacting Floodplain Vegetation Sedimentation in Floodplain Systems • Nutrient source for floodplain soils • Builds floodplain topography • Improves water quality as sediments