Área De Estudio
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Genus Laccobius in China: New Species and New Records (Coleoptera: Hydrophilidae)
Zootaxa 3635 (4): 402–418 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2013 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3635.4.4 http://zoobank.org/urn:lsid:zoobank.org:pub:2426930B-7131-49DA-B1BF-682BE3826928 The genus Laccobius in China: new species and new records (Coleoptera: Hydrophilidae) FENGLONG JIA1, ELIO GENTILI2,5& MARTIN FIKÁČEK3,4 1Institute of Entomology, Life Science School, Sun Yat-sen University, Guangzhou, 510275, Guangdong, China. E-mail: [email protected] 2Via San Gottardo 37, I-21030 Varese-Rasa, Italy; E-mail: [email protected] 3Department of Entomology, National Museum, Kunratice 1, CZ-148 00 Praha, Czech Republic. E-mail: [email protected] 4Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, CZ-128 44 Praha 2, Czech Republic 5Corresponding author Abstract The species of the water scavenger beetle genus Laccobius Erichson, 1837 occuring in China are reviewed. Two new species are described: Laccobius (Glyptolaccobius) qinlingensis sp. nov. (Shaanxi) and L. (Cyclolaccobius) hainanensis sp. nov. (Hainan). Five species are recorded for the first time: Laccobius (Dimorpholaccobius) bipunctatus (Fabricius, 1775), L. (D.) striatulus (Fabricius, 1801) and L. (Compsolaccobius) pallidissimus Reitter, 1899 (all from Xinjiang), L. (Microlaccobius) tonkinensis Gentili, 1979 (Shaanxi), and L. (Compsolaccobius) decorus (Gyllenhal, 1827) (Qinghai). Additional faunistic data from China are provided for the following species: L. (Cyclolaccobius) hingstoni Orchymont, 1926, L. (C.) nitidus Gentili, 1984, L. (C.) politus Gentili, 1979, L. (C.) yunnanensis Gentili, 2003, L. (Dimorpholaccobius) simulans Orchymont, 1923, L. (s.str.) binotatus Orchymont, 1934, L. -
“Two-Tailed” Baetidae of Ohio January 2013
Ohio EPA Larval Key for the “two-tailed” Baetidae of Ohio January 2013 Larval Key for the “two-tailed” Baetidae of Ohio For additional keys and descriptions see: Ide (1937), Provonsha and McCafferty (1982), McCafferty and Waltz (1990), Lugo-Ortiz and McCafferty (1998), McCafferty and Waltz (1998), Wiersema (2000), McCafferty et al. (2005) and McCafferty et al. (2009). 1. Forecoxae with filamentous gill (may be very small), gills usually with dark clouding, cerci without dark band near middle, claws with a smaller second row of teeth. .............................. ............................................................................................................... Heterocloeon (H.) sp. (Two species, H. curiosum (McDunnough) and H. frivolum (McDunnough), are reported from Ohio, however, the larger hind wing pads used by Morihara and McCafferty (1979) to distinguish H. frivolum have not been verified by OEPA.) Figures from Ide, 1937. Figures from Müller-Liebenau, 1974. 1'. Forecoxae without filamentous gill, other characters variable. .............................................. 2 2. Cerci with alternating pale and dark bands down its entire length, body dorsoventrally flattened, gills with a dark clouded area, hind wing pads greatly reduced. ............................... ......................................................................................... Acentrella parvula (McDunnough) Figure from Ide, 1937. Figure from Wiersema, 2000. 2'. Cerci without alternating pale and dark bands, other characters variable. ............................ -
Hydraenidae of Djibouti, with Description of Two New Species (Coleoptera: Hydraenidae)
50 Koleopt. Rdsch. 87 (2017) Koleopterologische Rundschau 87 51–84 Wien, September 2017 Hydraenidae of Djibouti, with description of two new species (Coleoptera: Hydraenidae) M.A. JÄCH & J.A. DELGADO Abstract The family Hydraenidae (Coleoptera) is recorded from Djibouti (East Africa) for the first time. Two new species are described: Limnebius (Bilimneus) josianae, and Ochthebius (s.str.) loulae (O. atriceps group). Three species are recorded from the African Continent for the first time: Hydraena (Hydraen- opsis) arabica BALFOUR-BROWNE, 1951, Limnebius (Bilimneus) arabicus BALFOUR-BROWNE, 1951, and Ochthebius (s.str.) micans BALFOUR-BROWNE, 1951 (O. punctatus group). One species, Hydraena (Hydraenopsis) quadricollis WOLLASTON, 1864, is recorded from Djibouti for the first time. One species of the Ochthebius marinus group, strongly resembling O. chappuisi ORCHYMONT, 1948, described after four females from southern Ethiopia (Omo River) and northern Kenya (Lake Turkana), could not be identified with certainty. Habitus photographs and line drawings of the genitalia of all seven species known from Djibouti (except Limnebius arabicus) are provided. In addition, the male genitalia of two other species of Ochthebius LEACH, 1815 are also illustrated. Keys to the species of the three genera of Hydraenidae from Djibouti are also provided. Key words: Coleoptera, Hydraenidae, Hydraena, Limnebius, Ochthebius, taxonomy, new species, Djibouti, East Africa. Introduction So far, no Hydraenidae have ever been recorded from Djibouti. During an expedition to Djibouti, organized by the Association Djibouti Nature (www.djiboutinature.org), numerous water beetles were collected by the senior author and M. Madl in January/February 2016. During this expe- dition a total of seven species of Hydraenidae, including two new species, has been collected. -
A Check List of Gerromorpha (Hemiptera) from India
Rec. zool. Surv. India: 100 (Part 1-2) : 55-97, 2002 A CHECK LIST OF GERROMORPHA (HEMIPTERA) FROM INDIA G. THIRUMALAI Zoological Survey of India, Southern Regional Station, Chennai 600 028. INTRODUCflON The Infraorder Gerromorpha comprises of semi-aquatic bugs characterised by long conspicuous antennae, longer than head and inserted in front of eyes. They are distributed in all kinds of climatic zones, except the coldest and driest parts. This infraorder contains 8 families namely, Gerridae, Veliidae, Hydrometridae, Mesoveliidae, Hebridae, Macroveliidae, Paraphrynoveliidae and Hennatobatidae (Andersen, 1982a). Knowledge of Indian semi-aquatic Hemiptera is limited to the taxonomic preliminaries, recording species from different parts of the country. (Distant, 1903a; 1910 a&b; Annandale, 1919; Bergroth, 1915a; Paiva, 1919a & b; Dover, 1928; Hafiz & Mathai, 1938; Hafiz & Riberio, 1939; Hafiz & Pradhan, 1947; Pradhan, 1950a, b& 1975; Gupta, 1981; Selvanayagam, 1981; Roy et al. 1988; Ghosh et al. 1989; Polhenlus & Starmuhlner, 1990; Bal & Basu, 1994 & 1997; Chen & Zettel, 1999). The revisionary work of Andersen (1975, 1980, 1990 & 1993); Den Boer (1969); Hungerford & Matsuda (1958a & b, 1960, 1962b & 1965); Herring (1961); Polhemus & Andersen (1984); Andersen & Foster (1992); Andersen & Chen (1993); Chen & Nieser (1993a & b); Polhemus & Karunaratne (1993); Polhemus (1994); Polhemus & Polhemus (1994 & 1995a) on a few genera of Gerridae; Lundblad (1936) on the genera Rhagovelia Mayr and Tetraripis Lundblad; Andersen (1981 b, 1983 & 1989); Polhemus -
Coleoptera: Hydrophilidae) Are Specialist Predators of Snails
Eur. J. Entomol. 112(1): 145–150, 2015 doi: 10.14411/eje.2015.016 ISSN 1210-5759 (print), 1802-8829 (online) Larvae of the water scavenger beetle, Hydrophilus acuminatus (Coleoptera: Hydrophilidae) are specialist predators of snails TOSHIO INODA1, YUTA INODA1 and JUNE KATHYLEEN RULLAN 2 1 Shibamata 5-17-10, Katsushika, Tokyo 125-0052, Japan; e-mail: [email protected] 2 University of the Philippines, Manila, Philippines; e-mail: [email protected] Key words. Coleoptera, Hydrophilidae, Hydrophilus acuminatus, feeding preferences, snail specialist Abstract. Hydrophilus acuminatus larvae are known to feed on aquatic prey. However, there is no quantitative study of their feeding habits. In order to determine the feeding preferences and essential prey of larvae of H. acuminatus, both field and laboratory experi- ments were carried out. Among the five potential species of prey,Austropeplea ollula (Mollusca: Lymnaeidae), Physa acuta (Mollusca: Physidae), Asellus hilgendorfi (Crustacea: Asellidae), Palaemon paucidens (Crustacea: Palaemonidae) and larvae of Propsilocerus akamusi (Insecta: Chironomidae), the first instar larvae of H. acuminatus strongly prefered the Austropeplea and Physa snails in both cafeteria and single-prey species experiments. Larvae that were provided with only snails also successfully developed into second instar larvae, while larvae fed Palaemon, Propsilocerus larvae or Asellus died during the first instar. In addition, the size of adult H. acuminatus reared from first-instar larvae and fed only snails during their entire development was not different from that of adult H. acuminatus collected in the field. This indicates that even though the larvae ofH. acuminatus can feed on several kinds of invertebrates, they strongly prefer snails and without them cannot complete their development. -
Ohio EPA Macroinvertebrate Taxonomic Level December 2019 1 Table 1. Current Taxonomic Keys and the Level of Taxonomy Routinely U
Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Table 1. Current taxonomic keys and the level of taxonomy routinely used by the Ohio EPA in streams and rivers for various macroinvertebrate taxonomic classifications. Genera that are reasonably considered to be monotypic in Ohio are also listed. Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Species Pennak 1989, Thorp & Rogers 2016 Porifera If no gemmules are present identify to family (Spongillidae). Genus Thorp & Rogers 2016 Cnidaria monotypic genera: Cordylophora caspia and Craspedacusta sowerbii Platyhelminthes Class (Turbellaria) Thorp & Rogers 2016 Nemertea Phylum (Nemertea) Thorp & Rogers 2016 Phylum (Nematomorpha) Thorp & Rogers 2016 Nematomorpha Paragordius varius monotypic genus Thorp & Rogers 2016 Genus Thorp & Rogers 2016 Ectoprocta monotypic genera: Cristatella mucedo, Hyalinella punctata, Lophopodella carteri, Paludicella articulata, Pectinatella magnifica, Pottsiella erecta Entoprocta Urnatella gracilis monotypic genus Thorp & Rogers 2016 Polychaeta Class (Polychaeta) Thorp & Rogers 2016 Annelida Oligochaeta Subclass (Oligochaeta) Thorp & Rogers 2016 Hirudinida Species Klemm 1982, Klemm et al. 2015 Anostraca Species Thorp & Rogers 2016 Species (Lynceus Laevicaudata Thorp & Rogers 2016 brachyurus) Spinicaudata Genus Thorp & Rogers 2016 Williams 1972, Thorp & Rogers Isopoda Genus 2016 Holsinger 1972, Thorp & Rogers Amphipoda Genus 2016 Gammaridae: Gammarus Species Holsinger 1972 Crustacea monotypic genera: Apocorophium lacustre, Echinogammarus ischnus, Synurella dentata Species (Taphromysis Mysida Thorp & Rogers 2016 louisianae) Crocker & Barr 1968; Jezerinac 1993, 1995; Jezerinac & Thoma 1984; Taylor 2000; Thoma et al. Cambaridae Species 2005; Thoma & Stocker 2009; Crandall & De Grave 2017; Glon et al. 2018 Species (Palaemon Pennak 1989, Palaemonidae kadiakensis) Thorp & Rogers 2016 1 Ohio EPA Macroinvertebrate Taxonomic Level December 2019 Taxon Subtaxon Taxonomic Level Taxonomic Key(ies) Informal grouping of the Arachnida Hydrachnidia Smith 2001 water mites Genus Morse et al. -
A Comparison of the External Morphology and Functions of Labial Tip Sensilla in Semiaquatic Bugs (Hemiptera: Heteroptera: Gerromorpha)
Eur. J. Entomol. 111(2): 275–297, 2014 doi: 10.14411/eje.2014.033 ISSN 1210-5759 (print), 1802-8829 (online) A comparison of the external morphology and functions of labial tip sensilla in semiaquatic bugs (Hemiptera: Heteroptera: Gerromorpha) 1 2 JOLANTA BROŻeK and HERBERT ZeTTeL 1 Department of Zoology, Faculty of Biology and environmental Protection, University of Silesia, Bankowa 9, PL 40-007 Katowice, Poland; e-mail: [email protected] 2 Natural History Museum, entomological Department, Burgring 7, 1010 Vienna, Austria; e-mail: [email protected] Key words. Heteroptera, Gerromorpha, labial tip sensilla, pattern, morphology, function, apomorphic characters Abstract. The present study provides new data on the morphology and distribution of the labial tip sensilla of 41 species of 20 gerro- morphan (sub)families (Heteroptera: Gerromorpha) obtained using a scanning electron microscope. There are eleven morphologically distinct types of sensilla on the tip of the labium: four types of basiconic uniporous sensilla, two types of plate sensilla, one type of peg uniporous sensilla, peg-in-pit sensilla, dome-shaped sensilla, placoid multiporous sensilla and elongated placoid multiporous sub- apical sensilla. Based on their external structure, it is likely that these sensilla are thermo-hygrosensitive, chemosensitive and mechano- chemosensitive. There are three different designs of sensilla in the Gerromorpha: the basic design occurs in Mesoveliidae and Hebridae; the intermediate one is typical of Hydrometridae and Hermatobatidae, and the most specialized design in Macroveliidae, Veliidae and Gerridae. No new synapomorphies for Gerromorpha were identified in terms of the labial tip sensilla, multi-peg structures and shape of the labial tip, but eleven new diagnostic characters are recorded for clades currently recognized in this infraorder. -
The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V
The Semiaquatic Hemiptera of Minnesota (Hemiptera: Heteroptera) Donald V. Bennett Edwin F. Cook Technical Bulletin 332-1981 Agricultural Experiment Station University of Minnesota St. Paul, Minnesota 55108 CONTENTS PAGE Introduction ...................................3 Key to Adults of Nearctic Families of Semiaquatic Hemiptera ................... 6 Family Saldidae-Shore Bugs ............... 7 Family Mesoveliidae-Water Treaders .......18 Family Hebridae-Velvet Water Bugs .......20 Family Hydrometridae-Marsh Treaders, Water Measurers ...22 Family Veliidae-Small Water striders, Rime bugs ................24 Family Gerridae-Water striders, Pond skaters, Wherry men .....29 Family Ochteridae-Velvety Shore Bugs ....35 Family Gelastocoridae-Toad Bugs ..........36 Literature Cited ..............................37 Figures ......................................44 Maps .........................................55 Index to Scientific Names ....................59 Acknowledgement Sincere appreciation is expressed to the following individuals: R. T. Schuh, for being extremely helpful in reviewing the section on Saldidae, lending specimens, and allowing use of his illustrations of Saldidae; C. L. Smith for reading the section on Veliidae, checking identifications, and advising on problems in the taxon omy ofthe Veliidae; D. M. Calabrese, for reviewing the section on the Gerridae and making helpful sugges tions; J. T. Polhemus, for advising on taxonomic prob lems and checking identifications for several families; C. W. Schaefer, for providing advice and editorial com ment; Y. A. Popov, for sending a copy ofhis book on the Nepomorpha; and M. C. Parsons, for supplying its English translation. The University of Minnesota, including the Agricultural Experi ment Station, is committed to the policy that all persons shall have equal access to its programs, facilities, and employment without regard to race, creed, color, sex, national origin, or handicap. The information given in this publication is for educational purposes only. -
Description of the Nymphs and Eggs of Acentrella Almohades Sp. N. from Morocco and Southern Spain (Ephemeroptera: Baetidae)
Aquatic Insects, Vol. 21 (1999), No. 4, pp. 241–247 0165-0424/99/2104-0241$15.00 © Swets & Zeitlinger Description of the Nymphs and Eggs of Acentrella almohades sp. n. from Morocco and Southern Spain (Ephemeroptera: Baetidae) Javier Alba–Tercedor1 and Majida El Alami2 1Universidad de Granada, Spain 2Université Abdelmalek Essâadi, Tétouan, Morocco ABSTRACT The nymph and egg of Acentrella almohades sp. n. are described and illustrated on the basis of material collected in southern Spain (in the upper reaches of the Guadalquivir River Basin) and Morocco (Rif Mountains and Atlas Mountains). Features distinguishing the new species from other European species are discussed and keyed. KEYWORDS: Nymph, egg, key, Ephemeroptera, Acentrella almohades sp. n. INTRODUCTION During a study of Ephemeroptera nymphs from Morocco and southern Spain, an undescribed new species close to A. sinaica was found, which we name Acentrel- la almohades sp. n. DESCRIPTION Acentrella almohades sp. n. (Figs. 1–18) Material: Holotype: & nymph (on slide no. 292), Oued Ksar Essghir, bridge of Ketama, 90 m. a.s.l., Tetouan, Rif Mountains (Morocco), 35º 46′ 97′′ N, 5º 31′ 33′′ W, 23–III–1997, M. El Alami leg. (in microscopic preparation No. 292). Paratypes: 1 ( nymph (on slide no. 294), 26 nymphs (8 ( and 18 &) from the same locality and date as the holotype. the same locality; 33 nymphs (11 ( and 23 &– one on slide no. 296–), Arroyo Salado, Martos, prov. Jaen (Spain), U.T.M: 30SVG0572, 2–IV–1983, M. López Pulido leg; 1 ( nymph (partially on slide no. 297), Río Colomera, prov. Granada (Spain), 4– III–83, U.T.M.: 30SVG3525, J.C. -
Taxonomic Revision of the Palearctic Species of the Genus Limnebius LEACH, 1815 (Coleoptera: Hydraenidae)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Koleopterologische Rundschau Jahr/Year: 1993 Band/Volume: 63_1993 Autor(en)/Author(s): Jäch Manfred A. Artikel/Article: Revision of the Palearctic species of the genus Limnebius (Hydraenidae). 99-187 ©Wiener Coleopterologenverein (WCV), download unter www.biologiezentrum.at Koleopterologische Rundschau 63 99 - 187 Wien, Juli 1993 Taxonomic revision of the Palearctic species of the genus Limnebius LEACH, 1815 (Coleoptera: Hydraenidae) M.A.JÄCH Abstract Eighty Palearctic species (including all known species from China and Taiwan) of the genus Limnebius LEACH are treated. The subgenus Bilimneus REY is here regarded as a synonym of Limnebius s.str. Seventeen new species are described: Limnebius attalensis sp.n. (Turkey), L. boukali sp.n. (Russia), L. calabricus sp.n. (Italy), L. claviger sp.n. (Turkey), L. externus sp.n. (Spain), L.ferroi sp.n. (Turkey), L. graecus sp.n. (Greece), L. irmelae sp.n. (Tunisia), L. levanti nus sp.n. (Turkey, Israel), L. loeblorum sp.n. (Pakistan), L. nanus sp.n. (Spain), L. reuvenortali sp.n. (Turkey, Israel), L. sanctimontis sp.n. (Egypt), L. schoenmanni sp.n. (Greece), L. shatrovskiyi sp.n. (Russia), L. spinosus sp.n. (Turkey) and L. taiwanensis sp.n. (Taiwan). Lectotypes are designated for Hydrophilus lu tos us MARSHAM, H. minutissimus GERMAR, H. mollis MARSHAM, H. parvulus HERBST, H. truncatellus THUNBERG, H. truncatulus THOMSON, Limnebius adjunct us KuwERT, L. qffinis STEPHENS, L. alula BEDEL, L. angusliconus KUWERT, L. appendiculatus SAHLBERG, L. asperatus KNISCH, L. ater STEPHENS, L. baudi i KUWERT, L. bonnairei GUILLEBEAU, L. crinifer REY, L. -
Adhesion Performance in the Eggs of the Philippine Leaf Insect Phyllium Philippinicum (Phasmatodea: Phylliidae)
insects Article Adhesion Performance in the Eggs of the Philippine Leaf Insect Phyllium philippinicum (Phasmatodea: Phylliidae) Thies H. Büscher * , Elise Quigley and Stanislav N. Gorb Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany; [email protected] (E.Q.); [email protected] (S.N.G.) * Correspondence: [email protected] Received: 12 June 2020; Accepted: 25 June 2020; Published: 28 June 2020 Abstract: Leaf insects (Phasmatodea: Phylliidae) exhibit perfect crypsis imitating leaves. Although the special appearance of the eggs of the species Phyllium philippinicum, which imitate plant seeds, has received attention in different taxonomic studies, the attachment capability of the eggs remains rather anecdotical. Weherein elucidate the specialized attachment mechanism of the eggs of this species and provide the first experimental approach to systematically characterize the functional properties of their adhesion by using different microscopy techniques and attachment force measurements on substrates with differing degrees of roughness and surface chemistry, as well as repetitive attachment/detachment cycles while under the influence of water contact. We found that a combination of folded exochorionic structures (pinnae) and a film of adhesive secretion contribute to attachment, which both respond to water. Adhesion is initiated by the glue, which becomes fluid through hydration, enabling adaption to the surface profile. Hierarchically structured pinnae support the spreading of the glue and reinforcement of the film. This combination aids the egg’s surface in adapting to the surface roughness, yet the attachment strength is additionally influenced by the egg’s surface chemistry, favoring hydrophilic substrates. -
Coleoptera: Hydrophilidae), with Notes on ‘Berosus-Like’ Larvae in Hydrophiloidea
2018 ACTA ENTOMOLOGICA 58(1): 195–206 MUSEI NATIONALIS PRAGAE doi: 10.2478/aemnp-2018-0017 ISSN 1804-6487 (online) – 0374-1036 (print) www.aemnp.eu RESEARCH PAPER Larval morphology of Yateberosus, a New Caledonian endemic subgenus of Laccobius (Coleoptera: Hydrophilidae), with notes on ‘Berosus-like’ larvae in Hydrophiloidea Martin FIKÁČEK1,2), Yûsuke N. MINOSHIMA3) & Manfred A. JÄCH4) 1) Department of Entomology, National Museum, Cirkusová 1740, CZ-191 00 Praha 9, Czech Republic; e-mail: mfi [email protected] 2) Department of Zoology, Faculty of Science, Charles University, Viničná 7, CZ-128 43 Praha 2, Czech Republic 3) Natural History Division, Kitakyushu Museum of Natural History and Human History, Higashida 2-4-1, Yahatahigashi-ku, Kitakyushu-shi, Fukuoka, 805-0071 Japan; e-mail: [email protected] 4) Naturhistorisches Museum Wien, Burgring 7, 1010 Wien, Austria; e-mail: [email protected] Accepted: Abstract. The morphology and head chaetotaxy of the second and third instar larvae of 9th June 2018 Laccobius (Yateberosus) sp. are described based on specimens collected in New Caledonia. Published online: The larvae agree with those of other subgenera of Laccobius Erichson, 1837 in most morpho- 25th June 2018 logical characters including the morphology of head and mouthparts and the head chaetotaxy, which undoubtedly supports its assignment to Laccobius (Yateberosus). It differs from other Laccobius in the closed spiracular system, reduced spiracular atrium and long abdominal tra- cheal gills, in which they resemble the larvae of Berosus Leach, 1817. We demonstrate that the ‘Berosus-likeʼ larval morphology evolved at least four times independently in Hydrophiloidea, and briefl y discuss the possible reasons for it.