Geol 108 Lab #6 Landslides and Mass Wasting PART I. SLOPE

Total Page:16

File Type:pdf, Size:1020Kb

Geol 108 Lab #6 Landslides and Mass Wasting PART I. SLOPE Geol 108 Lab #6 Landslides and Mass Wasting Week of October 8-12, 2012 PART I. SLOPE & GRAVITY The main force responsible for mass wasting is gravity. Gravity is the force that acts everywhere on the Earth's surface, pulling everything in a direction toward the center of the Earth. On a flat surface the force of gravity acts downward. So long as the material remains on the flat surface it will not move under the force of gravity. Figure 1. Gravity. Figure 2. Components of forces acting on a slope. D = G sin θ N = G cos θ R = resisting force R = µ N (where µ is the frictional coefficient) If D > R, there will be movement. Down-slope movement is favored by steeper slope angles and anything that reduces the shear strength, such as lowering cohesion among particles or lowering the frictional resistance. 1 of 8 PART II. THE ROLE OF WATER The Role of Water Although water is not always directly involved as the transporting medium in mass-wasting processes, it does play an important role. Water increases mass, hence, increasing gravitational attraction. Dry unconsolidated grains will form a pile with a slope angle determined by the angle of repose. The angle of repose is the steepest angle at which a pile of unconsolidated grains remains stable, and is controlled by the frictional contact between the grains. In general, for dry materials the angle of repose increases with increasing grain size, but usually lies between about 30° and 37°. Slightly wet unconsolidated materials exhibit a very high angle of repose because surface tension between the water and the solid grains tends to hold the grains in place. When the material becomes saturated with water, the angle of repose is reduced to very small values and the material tends to flow like a fluid. This is because the water gets between the grains and eliminates grain to grain frictional contact. Another aspect of water that affects slope stability is fluid pressure. Fluid pressure counteracts normal stresses, so in the presence of fluid pressure, some of the weight of the overlying rock mass is supported. This is called “effective stress” which is equal to normal stress minus the fluid pressure. When this occurs, friction is reduced, and shear stresses may be large enough to result in slope failure. Shear stresses are unaffected by fluid pressure. Figure 3a, 3b, 3c. Role of water and the angle of repose. 2 of 8 PART III. EXPERIMENTS Figure 4. A. Angle of repose, expressed as degrees. B. Slope, expressed as percent grade. From: Environmental Geology Laboratory, T. Freeman, 2004. Exp. 1. Dry sand and dry gravel A. The first experiment should be familiar to you since you probably did something similar at the beach at some point in your life. Use the dry sand and build a sand hill. Then use the dry angular gravel to build a hill. Measure the angle of repose for each, and record below. See next page for hints on how to measure. Angle of repose for dry sand = _____________ Angle of repose for dry angular gravel = _____________ B. Which of the descriptions in Figure 4b corresponds with the dry angular gravel? 3 of 8 How to Measure Angle of Repose You can measure the angle one of two ways, with a protractor or by using simple trigonometry. To measure with a protractor, carefully line up the center point of the protractor with the edge of the pile and determine the angle. An easier way to measure the angle is to use trigonometry. As you can see from above, the pile of sand can be thought of as 2 right triangles. For a right triangle, So the TAN(A) = height of the sand pile (h) / radius of the sand pile (r) To find the angle, you need to take the inverse tangent of both sides…. A=TAN-1(h/r) For most calculators you will need to first divide the height by the radius and then press the TAN- 1 button on your calculator. If the number comes out to something that doesn’t make sense, make sure your calculator is in degree mode, not radian mode! 4 of 8 Exp. 2. Rain and sediment The following experiment will be done with the help of your TA. The set-up is simple. One layer (wood board) is inclined at a steep angle and overlain by a second layer of unconsolidated, wet material. The slope is oversteepened by construction and removal of material near the bottom (for example road construction). Now heavy rainfall will add water (=weight) to the slope. Observe what happens and describe briefly. Exp. 3. Flash Flood Once the slope started to fail, we now simulate a flash flood. Watch what happens. Briefly describe your observations. What is the feature at the bottom of the slope called? 5 of 8 PART IV. CALIFORNIA HAZARDS 1 DEBRIS FLOW HAZARDS AND THE FIRES OF OCTOBER 2003, SAN BERNARDINO MTS. 1. Maps 1A, 2A, and 3A indicate the probability of fire-related debris flows. What conclusion (one sentence) can you draw after comparing these three maps? 2. Maps 1B, 2B, and 3B indicate the estimated peak discharge of fire-related debris flows. What conclusion (one sentence) can you draw after comparing these three maps? 3. Find Borea Canyon (north of the city of San Bernardino). Look at this canyon on all three maps, 1A, 2A, and 3A. You will notice it is the only area on all three maps to show a high probability of a debris flow occurrence (note red color) under the various amounts of rainfall. Why is this – give your hypothesis. 4. On Dec. 25, 2003, Waterman Canyon was inundated by a mud flow. Compare the rainfall amounts from November 2002 (note circled areas on poster) to the rainfall amounts from Dec. 2003. If the Nov. 2002 amounts were higher, why where there no associated major mud flows? i.e., what made the Dec. 2003 conditions prime for the disaster that occurred at Waterman Canyon? 6 of 8 CALIFORNIA HAZARDS 2 LANDSLIDES - PT. FERMIN, PALOS VERDES, CA Figure 1 is an oblique air photo of a landslide at Point Fermin. The involved area is about 10 acres. Movement was first detected in January 1929, and has been intermittently active ever since. 1. What type of landslide is this? Let's examine the "underlying" causes of this type of land movement. Figure 2 illustrates the basic geologic setting for Point Fermin, and shows sedimentary layers affected by the landslide. View is towards the northwest. Figure 2 is located off to the left margin of Figure 1. 2. What geologic factors might have contributed to the formation of this landslide? (hint - study Figure 2) 3. Are the current residents of this neighborhood in danger of losing their homes at sometime in the future. Explain your reasoning. References: The Lab Book: Problem Solving in Geology, second edition, by Judson, et al., 2000. http://seis.natsci.csulb.edu/VIRTUAL_FIELD/Palos_Verdes/pvmain.htm 7 of 8 PART V. CATASTROPHIC BLOCK GLIDE DOWNTOWN, HOT SPRINGS, ARKANSAS According to local geologists, four conditions promoted the collapse of a wall of rock in downtown Hot Springs, Arkansas, in November of 1995. Three of the conditions are natural, while a fourth was the undercutting of the slope by shop owners to create more space behind their stores. Undercutting did not produce the failure immediately, but when the three natural conditions coincided, the undercutting tipped the proverbial scale. Sketch looking southward behind shops on the west side of Central Avenue in Hot Springs, Arkansas. Layers of Arkansas Novaculite are inclined parallel to slope. Reference: Environmental Geology Laboratory, by Tom Freeman, 2004. Identify the three natural conditions and list here: 8 of 8.
Recommended publications
  • Beyond the Angle of Repose: a Review and Synthesis of Landslide Processes in Response to Rapid Uplift, Eel River, Northern Eel River, Northern California
    Portland State University PDXScholar Geology Faculty Publications and Presentations Geology 2-23-2015 Beyond the Angle of Repose: A Review and Synthesis of Landslide Processes in Response to Rapid Uplift, Eel River, Northern Eel River, Northern California Joshua J. Roering University of Oregon Benjamin H. Mackey University of Canterbury Alexander L. Handwerger University of Oregon Adam M. Booth Portland State University, [email protected] Follow this and additional works at: https://pdxscholar.library.pdx.edu/geology_fac David A. Schmidt Univ Persityart of of the W Geologyashington Commons , Geomorphology Commons, and the Geophysics and Seismology Commons Let us know how access to this document benefits ou.y See next page for additional authors Citation Details Roering, Joshua J., Mackey, Benjamin H., Handwerger, Alexander L., Booth, Adam M., Schmidt, David A., Bennett, Georgina L., Cerovski-Darriau, Corina, Beyond the angle of repose: A review and synthesis of landslide pro-cesses in response to rapid uplift, Eel River, Northern California, Geomorphology (2015), doi: 10.1016/j.geomorph.2015.02.013 This Post-Print is brought to you for free and open access. It has been accepted for inclusion in Geology Faculty Publications and Presentations by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. Authors Joshua J. Roering, Benjamin H. Mackey, Alexander L. Handwerger, Adam M. Booth, David A. Schmidt, Georgina L. Bennett, and Corina Cerovski-Darriau This post-print is available at PDXScholar: https://pdxscholar.library.pdx.edu/geology_fac/75 ACCEPTED MANUSCRIPT Beyond the angle of repose: A review and synthesis of landslide processes in response to rapid uplift, Eel River, Northern California Joshua J.
    [Show full text]
  • Geology and Seismicity
    SECTIONNINE GEOLOGY AND SEISMICITY 9. Section 9 NINE Geology and Seismicity This section describes the major geologic regions that could be affected by project construction and operation and the potential environmental consequences of the alternatives. 9.1 AFFECTED ENVIRONMENT The following paragraphs summarize the geologic conditions and hazards that may be encountered during the construction and implementation of the alternatives for the San Luis Drainage Feature Re-evaluation. The geologic environment is discussed in greater detail in Appendix H. The focus of this section is the geologic and seismic characteristics of the Great Valley and the Coast Ranges geomorphic provinces, which may influence the comparison of a the action alternatives due to the geologic conditions and potential geologic hazards associated with these regions. 9.1.1 Regulatory Background Several Federal and State regulations govern geology, seismicity, and soils in California. The Federal actions include the Earthquake Hazard Reduction Act of 1977, Executive Order 12699 on Seismic Safety of Federal Buildings, and the Uniform Building Code (superceded in California by the California Building Code). The State actions include the Alquist-Priolo Act, the Field Act, the California Building Code, and the Seismic Hazards Mapping Act. Some State agencies, including California Department of Transportation (Caltrans) and California Department of Water Resources (DWR), Division of Safety of Dams, have their own actions covering seismic and geologic hazards. In addition, municipalities and counties can have general or specific plans that may include the need for permitting. The regulatory background governing geology, seismicity, and soils is discussed further in Section 4.6. SLDFR Final EIS Section 09_Geology 9-1 SECTIONNINE Geology and Seismicity 9.1.2 Geologic Setting The existing San Luis Drain is situated near the western margin of San Joaquin Valley (Figure 9-1), which comprises the southern region of the Great Valley geomorphic province (Harden 1998).
    [Show full text]
  • Mass Wasting and Hill-Slopes Mass Wasting
    Mass Wasting and Hill-slopes Mass wasting • Is a collective term addressing all down slope movements of weathered rock (soil) that are created by gravitational forces. • Gravity is the primary component! • Vocabulary – Colluvium – Solifluction (soil flow) The Angle of Repose • The maximum slope at which loose, cohesionless material remains stable. It commonly ranges between 33 and 37 on natural slopes. • Dependent upon size, shape, surface roughness, angularity, of the particles • Wallace Stegner book as well. Dry sand cannot support an angle of >35o from horizontal: this is termed the angle of repose. 35o Moderate amounts of water create Saturation of sediment by increased structural integrity of water eliminates any structural sediment due to surface tension competence. This is the between grains. In this way slopes condition that often leads to steeper than the angle of repose can slope instability and be maintained (e.g., sandcastles). mass wasting. Slope movement types • When defining mass wasting it is necessary to include 1) the type of material in motion, including its coherence and dimensions; and 2) the type and rate of movement including creeping, falling, toppling, sliding, spreading, or flowing (debris flow). Handout Creep • Barely perceptible down slope movement. • Particle creep, individual particle movement due to wetting/drying, heating/cooling • Soil creep, dependent on changing SMR and climates. Creepy drawing Creep (or soil creep) works at a pace of mm/yr. It is generally related to (seasonal) wet-dry or freeze thaw changes. Fall • A fall is a mass movement where singular or multiple blocks of rock plunge from a height. Yosemite, CA Looks like an ideal place for a rock fall or a rock slide, thanks to exfoliation of granite batholiths.
    [Show full text]
  • Mass Wasting and Landslides
    Mass Wasting and Landslides Mass Wasting 1 Introduction Landslide and other ground failures posting substantial damage and loss of life In U.S., average 25–50 deaths; damage more than $3.5 billion For convenience, definition of landslide includes all forms of mass-wasting movements Landslide and subsidence: naturally occurred and affected by human activities Mass wasting Downslope movement of rock and soil debris under the influence of gravity Transportation of large masses of rock Very important kind of erosion 2 Mass wasting Gravity is the driving force of all mass wasting Effects of gravity on a rock lying on a hillslope 3 Boulder on a hillside Mass Movement Mass movements occur when the force of gravity exceeds the strength of the slope material Such an occurrence can be precipitated by slope-weakening events Earthquakes Floods Volcanic Activity Storms/Torrential rain Overloading the strength of the rock 4 Mass Movement Can be either slow (creep) or fast (landslides, debris flows, etc.) As terrain becomes more mountainous, the hazard increases In developed nations impacts of mass-wasting or landslides can result in millions of dollars of damage with some deaths In less developed nations damage is more extensive because of population density, lack of stringent zoning laws, scarcity of information and inadequate preparedness **We can’t always predict or prevent the occurrence of mass- wasting events, a knowledge of the processes and their relationship to local geology can lead to intelligent planning that will help
    [Show full text]
  • Mass-Wasting, Classification and Damage in Ohio C
    MASS-WASTING, CLASSIFICATION AND DAMAGE IN OHIO C. N. SAVAGE Department of Geography and Geology, Kent State University, Kent, Ohio The sudden and often spectacular free fall, slide, flow, creep or subsidence of earth materials may be costly in terms of human lives and property damage. Phenomena of this type, variously called "landslide, earthflow or subsidence" are assigned by geologists to gravity controlled movement or referred to collectively as "mass-wasting." This category also includes movement of dry or hard-frozen masses, or snow-laden debris when moved by gravity. Figure 1 illustrates some of these types of movement. This paper is intended to bring to the attention of laymen and professional men the importance and widespread occurrence of these destructive forces. A brief discussion of damage, origin, prevention and classification is presented, followed by examples in Ohio. It is hoped that the suggested classification will prove useful as an aid to the recognition of different types of mass-movement. Annually, many highways are blocked or destroyed, soils are ruined and buried in rubble, forest lands are ripped apart, and bridges, dams, buildings and other structures are wrecked or buried by landslides. Every year, especially in southern and eastern Ohio, many thousands of dollars are lost because of this type of calamity. There is scarcely a spring which does not bring reports of landslides in the local press. It seems obvious that this is a subject of grave concern to construction engineers, soils experts, conservation men and many others including the tax paying citizen. Wherever there are slopes that are steep enough, and wherever there is loose rock material, mass-wasting is a potential threat.
    [Show full text]
  • Weathering: Big Ideas Mass Wasting
    Weathering: Big Ideas • Humans cannot eliminate natural hazards but can engage in activities that reduce their impacts by identifying high-risk locations, improving construction methods, and developing warning systems. • Water’s unique physical and chemical properties are essential to the dynamics of all of Earth’s systems • Understanding geologic processes active in the modern world is crucial to interpreting Earth’s past • Earth’s systems are dynamic; they continually react to changing influences from geological, hydrological, physical, chemical, and biological processes. Mass Wasting Process by which material moves downslope under the force of gravity http://www.youtube.com/watch?v=qEbYpts0Onw Factors Influencing Mass Movement Nature of Steepness of Water Slope Slope Material Slope Content Stability 1 Mass Movement Depends on Nature of Material Angle of Repose: the maximum angle at which a pile of unconsolidated particles can rest The angle of repose increases with increasing grain size Fig. 16.13 Weathered shale forms rubble at base of cliff Angle of Repose Fig. 16.15 Origin of Surface Tension Water molecules in a …whereas surface liquids interior are molecules have a net attracted in all inward attraction that directions… results in surface tension… Fig. 16.13 2 …that acts like a membrane, allowing objects to float. Fig. 16.13 Mass Movement Depends on Water Content Surface tension in damp sand increases Dry sand is bound Saturated sand flows easily cohesion only by friction because of interstitial water Fig. 16.13 Steep slopes in damp sand maintained by moisture between grains Fig. 16.14 3 Loss of vegetation and root systems increases susceptibility of soils to erosion and mass movement Yellowstone National Park Before the 1964 Alaska Earthquake Water saturated, unconsolidated sand Fig.
    [Show full text]
  • 3) Removal of Anchoring Vegetation Root Systems Bind Soil 7 “Cut and Fill” Construction
    1 Mass Wasting and landform development 2 Mass Wasting and landform development Mass wasting Def.: the downslope movement of rock and soil under the direct influence of gravity 3 Role of mass wasting The step that follows weathering Transfers debris downslope to stream valleys 4 Controls and triggers of mass wasting Gravity is the controlling force Important triggers include 1) Saturation of the material with water (rainfall) –Diminishes particle cohesion –Water adds weight 5 Controls and triggers of mass wasting 2) Oversteepening of slopes –Oversteepening slopes are unstable –Stable slope angle (angle of repose; 25-45o) is different for various materials 6 Important triggers include: 3) Removal of anchoring vegetation Root systems bind soil 7 “cut and fill” construction 8 Important triggers include: 4) Ground vibrations from earthquakes –May trigger land slides and result in property damage –Can cause liquefaction – water saturated surface materials behave as fluid-like masses that flow 9 Other triggers Freezing – thawing Construction 1 Volcanic eruptions Freeway traffic 10 Landslides without triggers Slope materials weaken over time Random events that are unpredictable 11 Classification a) Type of material involved • Debris • Mud • Earth • Rock 12 Classification b) Type of motion Fall (free-falling pieces) Slide (moves along a surface as a coherent mass) Flow (moves as a chaotic mixture) 13 Classification c) velocity Fast (avalanche, ~200km/hour) Slow (creep, mm or cm/year) 14 Rock avalanche in Alaska triggered by the 1964 earthquake 15 16 Types of mass wasting Rockfall 17 Rock fall, Oregon 18 Rock fall and Talus Slope, Banff National Park, Canada 19 Types of mass wasting Slump (rotational slide) Movement of material as a unit along a rotational surface Occurs along oversteepened slopes 20 Slump and earth flow) Fig.
    [Show full text]
  • Geomorphological Characteristics of Mass-Wasting Features in Ius Chasma, Valles Marineris, Mars
    47th Lunar and Planetary Science Conference (2016) 1890.pdf GEOMORPHOLOGICAL CHARACTERISTICS OF MASS-WASTING FEATURES IN IUS CHASMA, VALLES MARINERIS, MARS. K. T. Dębniak1* and O. Kromuszczyńska1**, 1Planetary Geology Lab, Institute of Geological Sciences, Polish Academy of Sciences, Research Centre in Wrocław ul. Podwale 75, 50-449 Wrocław, Poland; *[email protected], **[email protected] Introduction: Ius Chasma is an elongated trough in GCS Mars 2000 Sphere coordinate system and plate constituting one of twelve depressions of Valles Mari- carrée projection (equirectangular projection). The neris. The chasma displays evidences of various pro- process of map generation was divided into three steps, cesses which enlarged, carved, and modified its walls i.e. image gathering (JMARS), image processing and and floors, including features of tectonic, water ero- mosaicking (ISIS), and geomorphological mapping sion, glacial erosion, ponding sedimentation, eolian, (ArcGIS). The spatial resolution of resultant CTX im- and mass-wasting origin. Geomorphological mapping ages was decreased from 6 to 12 m/pixel in order to performed on the basis of CTX image mosaics led to ensure a fluent mapping procedure in ArcGIS software. the development of detailed classifications of wall, Since the ISIS software exacts file size limitations, the floor, glacial, and mass-wasting units [1]. The abstract introduced set of CTX images was divided into three presents cartographic outcomes from investigation of mosaics (western, central, and eastern) covering the landslide deposits and other mass-wasting features. total area of over 375 000 km2. Ius Chasma: The largest western trough of Valles The proposed classification of landslide deposits Marineris displays length of ~850 km, width up to was based on [7], expanded after detailed visual inves- 120 km, and depth locally exceeding 8 km.
    [Show full text]
  • Mass Movements General Anatomy
    CE/SC 10110-20110: Planet Earth Mass Movements Earth Portrait of a Planet Fifth Edition Chapter 16 Mass movement (or mass wasting) is the downslope motion of rock, regolith (soil, sediment, and debris), snow, and ice. General Anatomy Discrete slump blocks Head scarp Bulging toe Road for scale Disaster in the Andes: Yungay, Peru, 1970 Fractures rock, loosens soil particles. Seismic energy overstresses the system. Yungay, Peru, in the Santa River Valley beneath the heavily glaciated Nevado Huascarán (21,860 feet). May, 1970, earthquake occurred offshore ~100 km away - triggered many small rock falls. An 800-meter-wide block of ice was dislodged and avalanched downhill, scooping out small lakes and breaking off large masses of rock debris. Disaster in the Andes: Yungay, Peru, 1970 More than 50 million cubic meters of muddy debris traveled 3.7 km (12,000 feet) vertically and 14.5 km (9 miles) horizontally in less than 4 minutes! Main mass of material traveled down a steep valley, blocking the Santa River and burying ~18,000 people in Ranrachirca. A small part shot up the valley wall, was momentarily airborne before burying the village of Yungay. Estimated death toll = 17,000. Disaster in the Andes: Yungay, Peru, 1970 Before After Whats Left of Yungay. Common Mass Movements Rockfalls and Slides Slow Fast Debris Flows Slumping Lahars and Mudflows Solifluction and Creep These different kinds of mass movements are arranged from slowest (left) to fastest (right). Types of Mass Movement Different types of mass movement based on 4 factors: 1) Type of material involved (rock, regolith, snow, ice); 2) Velocity of the movement (slow, intermediate, fast); 3) Character of the movement (chaotic cloud, slurry, coherent mass; 4) Environment (subaerial, submarine).
    [Show full text]
  • Mass Wasting
    Mass Wasting Mass Movement: the downslope transfer of material through the direct action of gravity. Mass Movement can be fast, as in landslides, or slow, as in creep. Angle of Repose The steepest slope on which loose material such as talus, will remain at rest without rolling farther downslope (Average = 30°). Factors influencing Mass Movement *Saturation of material with water Lubricates and adds weight *Vibrations from earthquakes 1970 Peru Quake – 400m³ moved downslope 300km/hr, killing 40,000at the base of Mount Huascaran. 1976 Guatemala – Quake resulted in 10,000 mass movements *Oversteepening of slopes by undercutting. By nature (rivers) or humans (Highways, Malibu) *Alternating Freezing and Thawing Cases: Madagascar, Vaiont Reservoir (1963) in Italy Types of Mass Movement Creep – Extremely slow, almost imperceptible downslope movement of soil and rock debris that results from the constant minor readjustments of the constituent particles. Creep Evidence: 1) Hard to see it move, but evidence can be seen 2) Bulges or low, wave-like swells in the soil 3) Bending of steeply dipping strata 4) Tilted trees and posts 5) Deformed roads, fence lines 6) Tilted retaining walls Includes Block Slides: caused by heaving process that results from the alternating expansion and contraction of loose rock fragments in the regolith. Freeze/Thaw Wetting/Drying Other Factors that lead to Creep: Growing plants (or lack of) Undercutting by streams Increased loads by rainwater or snow Earthquakes Construction by humans Rates of Creep 1-2 mm/yr in humid temperature regions 5-10 mm/yr in semi arid with cold winters Special Type: Solifluction (soil flowage) Common in polar regions (permafrost) Can occur in water drenched soils Debris Flows No definite plane of slippage Medium to fast movement Consist of mixtures of rock fragments, mud and water that flows downslope as viscous fluids.
    [Show full text]
  • Mass Wasting Hazards Many Landslides, Slope Failures Or Sinkholes
    page - 1 Environmental Geology Lab 5 - Mass Wasting Hazards Many landslides, slope failures or sinkholes (collapse structures formed in terrain underlain by limestone rocks) occur during or immediately after periods of heavy rain. It is commonly thought that the infiltration “lubricates” the soil or rock and hence weakens it. This is actually very rare because, with the exception of some swelling clays, the shear strength of most geologic materials does not change appreciably with moisture content. Some of the ways in which groundwater can contribute to these types of hazards are described below: 1. Water pressure. Water pressure reduces the effective stress (and hence the frictional resistance to movement) between particles in the soil, or along fracture or fault surfaces due to the buoyant effect of the water. During or after a heavy rain the water table rises which further increases the buoyant effects, while adding to the total weight of material above the failure surface. If this change exceeds the shear strength of the soil or rock movement along the failure surface will occur (Figures 1a and 1b). Groundwater pressure has a similar effect along major faults and is a contributing factor in the occurrence of earthquakes. Another example of its influence on slope stability is illustrated in Figure 1c, where infiltration fills up a tension crack at the top of the slope. The water pressure in the slope tends to push the block of soil or rock outwards. This type of movement can be repeated over and over with the block moving a little further during each rainstorm until, finally, it topples over.
    [Show full text]
  • Weathering, Erosion, and Mass-Wasting Processes
    Weathering, Erosion, and Mass-Wasting Processes Designed to meet South Carolina Department of Education 2005 Science Academic Standards 1 Table of Contents (1 of 2) Definitions: Weathering, Erosion, and Mass-Wasting (slide 4) (Standards: 3-3.8 ; 5-3.1) Types of Weathering (slide 5) (Standards: 3-3.8 ; 5-3.1) Mechanical Weathering (slide 6) (Standards: 3-3.8 ; 5-3.1) Exfoliation (slide 7) (Standards: 3-3.8 ; 5-3.1) Frost Wedging (slide 8) (Standards: 3-3.8 ; 5-3.1) Temperature Change (slide 9) (Standards: 3-3.8 ; 5-3.1) Salt Wedging (slide 10) (Standards: 3-3.8 ; 5-3.1) Abrasion (slide 11) (Standards: 3-3.8 ; 5-3.1) Chemical Weathering (slide 12) (Standards: 3-3.8 ; 5-3.1) Carbonation (slide 13) (Standards: 3-3.8 ; 5-3.1) Hydrolysis (slide 14) (Standards: 3-3.8 ; 5-3.1) Hydration (slide 15) (Standards: 3-3.8 ; 5-3.1) Oxidation (slide 16) (Standards: 3-3.8 ; 5-3.1) Solution (slide 17) (Standards: 3-3.8 ; 5-3.1) Biological Weathering (slide 18) (Standards: 3-3.8 ; 5-3.1) Lichen, Algae, and Decaying Plants (slide 19) (Standards: 3-3.8 ; 5-3.1) Plant Roots (slide 20) (Standards: 3-3.8 ; 5-3.1) Organism Activity: Burrowing, Tunneling, and Acid Secreting Organisms (slide 21) (Standards: 3-3.8 ; 5-3.1) Differential Weathering (slide 22) (Standards: 3-3.8 ; 5-3.1) 2 Table of Contents, cont. (2 of 2) Types of Erosion (slide 23) (Standards: 3-3.8 ; 5-3.1) Fluvial (slide 24) (Standards: 3-3.8 ; 5-3.1) Aeolian (slide 25) (Standards: 3-3.8 ; 5-3.1) Ice: Glacial and Periglacial (slide 26) (Standards: 3-3.8 ; 5-3.1) Gravity (slide
    [Show full text]