Chinese Annals of Mathematics, Series B on a Spectral Sequence
Chin. Ann. Math. 35B(4), 2014, 633–658 Chinese Annals of DOI: 10.1007/s11401-014-0842-z Mathematics, Series B c TheEditorialOfficeofCAMand Springer-Verlag Berlin Heidelberg 2014 On a Spectral Sequence for Twisted Cohomologies∗ Weiping LI1 Xiugui LIU2 He WANG3 Abstract Let (Ω∗(M),d) be the de Rham cochain complex for a smooth compact closed manifolds M of dimension n. For an odd-degree closed form H, there is a twisted de ∗ Rham cochain complex (Ω (M),d+ H∧) and its associated twisted de Rham cohomology ∗ p,q H (M,H). The authors show that there exists a spectral sequence {Er ,dr} derived from ∗ i ∗ the filtration Fp(Ω (M)) = Ω (M)ofΩ (M), which converges to the twisted de Rham i≥p cohomology H ∗(M,H). It is also shown that the differentials in the spectral sequence can be given in terms of cup products and specific elements of Massey products as well, which generalizes a result of Atiyah and Segal. Some results about the indeterminacy of differentials are also given in this paper. Keywords Spectral sequence, Twisted de Rham cohomology, Massey product, Differential 2000 MR Subject Classification 58J52, 55T99, 81T30 1 Introduction Let M be a smooth compact closed manifold of dimension n,andΩ∗(M)bethespaceof smooth differential forms over R on M. We have the de Rham cochain complex (Ω∗(M),d), where d :Ωp(M) → Ωp+1(M) is the exterior differentiation, and its cohomology H∗(M) (the de Rham cohomology). The de Rham cohomology with coefficients in a flat vector bundle is an extension of the de Rham cohomology.
[Show full text]