BBS7 Is Required for Bbsome Formation and Its Absence in Mice
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Bbsome Assembly Is Spatially Controlled by BBS1 and BBS4 in Human Cells
bioRxiv preprint doi: https://doi.org/10.1101/2020.03.20.000091; this version posted March 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The BBSome assembly is spatially controlled by BBS1 and BBS4 in human cells Avishek Prasai1, Marketa Schmidt Cernohorska1, Klara Ruppova1, Veronika Niederlova1, Monika Andelova1, Peter Draber1, Ondrej Stepanek1#, Martina Huranova1# 1 Laboratory of Adaptive Immunity, Institute of Molecular Genetics of the Czech Academy of Sciences, 14220 Prague, Czech Republic # Correspondence to Martina Huranova [email protected] or Ondrej Stepanek [email protected] Laboratory of Adaptive Immunity Institute of Molecular Genetics Czech Academy of Sciences Videnska 1083 14220 Prague Czech Republic 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.03.20.000091; this version posted March 20, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Key words: Bardet-Biedl Syndrome, BBSome, assembly, cilium, ciliopathy, protein sorting Abstract Bardet-Biedl Syndrome (BBS) is a pleiotropic ciliopathy caused by dysfunction of primary cilia. Most BBS patients carry mutations in one of eight genes encoding for subunits of a protein complex, BBSome, which mediates the trafficking of ciliary cargoes. Although, the structure of the BBSome has been resolved recently, the mechanism of assembly of this complicated complex in living cells is poorly understood. -
Invited Review: Genetic and Genomic Mouse Models for Livestock Research
Archives Animal Breeding – serving the animal science community for 60 years Arch. Anim. Breed., 61, 87–98, 2018 https://doi.org/10.5194/aab-61-87-2018 Open Access © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Archives Animal Breeding Invited review: Genetic and genomic mouse models for livestock research Danny Arends, Deike Hesse, and Gudrun A. Brockmann Albrecht Daniel Thaer-Institut für Agrar- und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, 10115 Berlin, Germany Correspondence: Danny Arends ([email protected]) and Gudrun A. Brockmann ([email protected]) Received: 7 December 2017 – Revised: 3 January 2018 – Accepted: 8 January 2018 – Published: 13 February 2018 Abstract. Knowledge about the function and functioning of single or multiple interacting genes is of the utmost significance for understanding the organism as a whole and for accurate livestock improvement through genomic selection. This includes, but is not limited to, understanding the ontogenetic and environmentally driven regula- tion of gene action contributing to simple and complex traits. Genetically modified mice, in which the functions of single genes are annotated; mice with reduced genetic complexity; and simplified structured populations are tools to gain fundamental knowledge of inheritance patterns and whole system genetics and genomics. In this re- view, we briefly describe existing mouse resources and discuss their value for fundamental and applied research in livestock. 1 Introduction the generation of targeted mutations found their way from model animals to livestock species. Through this progress, During the last 10 years, tools for genome analyses model organisms attain a new position in fundamental sci- have developed tremendously. -
Near-Atomic Structures of the Bbsome Reveal a Novel Mechanism For
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.29.925610; this version posted January 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 TITLE 2 Near-atomic structures of the BBSome reveal a novel mechanism for 3 transition zone crossing 4 RUNNING TITLE 5 Mechanism of BBSome-mediated transition zone crossing 6 AUTHORS: Kriti Bahl1,†,, Shuang Yang2,†, Hui-Ting Chou2,#, Jonathan Woodsmith3, Ulrich 7 Stelzl3, Thomas Walz2,* and Maxence V. Nachury1,* 8 AFFILIATIONS: 9 1- Department of Ophthalmology, University of California San Francisco, CA 94143, USA 10 2- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY 11 10065, USA 12 3- Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, University 13 of Graz and BioTechMed-Graz, Graz, Austria. 14 # Current address: Department of Therapeutic Discovery, Amgen Inc., South San Francisco, 15 CA 94080, USA 16 17 * Correspondence : [email protected], [email protected] 18 † These authors contributed equally to this work and are listed alphabetically. bioRxiv preprint doi: https://doi.org/10.1101/2020.01.29.925610; this version posted January 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 19 ABSTRACT 20 The BBSome is a complex of eight Bardet-Biedl Syndrome (BBS) proteins that removes signaling 21 receptors from cilia. -
Supporting Information
Supporting Information Seo et al. 10.1073/pnas.0910268107 SI Materials and Methods of Iowa Proteomics Facility and analyzed with LTQ XL linear Plasmids and Antibodies. All expression plasmids were constructed ion trap mass spectrometer (Thermo Scientific). with human BBS genes in pCS2 and phCMV2 backbone with fi fi fi indicated tags at the N terminus. Deletion and point mutagenesis Tandem Af nity Puri cation. Constructs for tandem af nity puri- fi was performed using PfuUltra II Fusion HS DNA polymerase cation of BBS5 and BBS7 were generated with N-terminal (Stratagene) and appropriate primers (Integrated DNA Tech- 3xFLAG tag and S tag in CS2 plasmid (FS-BBS5 and FS-BBS7, nology). Primer sequences are available upon request. For RNAi respectively). Stable HEK293T cell lines expressing these genes of BBS6 and BBS12, we generated stable HEK293T cell lines were established and proteins associated with BBS5 and BBS7 fi fi expressing shRNAs against these genes (GIPZ shRNAmir; were tandem af nity puri ed using anti-FLAG and S-protein OpenBiosystems). Expression of BBS10, CCT1, CCT2, and (Novagen) affinity gels. Others are same as above. Protein CCT3 was blocked by transient transfection of siRNAs (ON- identities were determined by Western blotting. TARGETplus SMARTpool; Dharmacon). For RNAi control, we used Nonsilencing GIPZ vector (OpenBiosystems) and ON- Quantitative RT-PCR. Total RNA was extracted from HEK293T TARGETplus Non-Targeting Pool siRNAs (Dharmacon). Anti- cells or mouse testis and eye with TRIzol Reagent (Invitrogen) ’ μ bodies against BBS1, BBS2, BBS4, and BBS7 were described following the manufacturer s instructions. A 1- g quantity of previously (1). -
Knockdown of the BBS10 Gene Product
ndrom Sy es tic & e G n e e n G e f T o Zacchia et al., J Genet Syndr Gene Ther 2014, 5:3 Journal of Genetic Syndromes h l e a r n a DOI: 10.4172/2157-7412.1000222 r p u y o J ISSN: 2157-7412 & Gene Therapy Research Article Open Access Knockdown of the BBS10 Gene Product Affects Apical Targeting of AQP2 in Renal Cells: A Possible Explanation for the Polyuria Associated with Bardet-Biedl Syndrome Miriam Zacchia1, Gabriella Esposito2,3, Monica Carmosino7, Claudia Barbieri7, Enza Zacchia1,5, Alessia Anna Crispo2, Tiziana Fioretti2,3, Francesco Trepiccione1, Valentina Di Iorio6, Francesca Simonelli6, Francesco Salvatore2,4, Giovambattista Capasso1, Maria Svelto7,8 and Giuseppe Procino7,8* 1Chair of Nephrology, Second University of Naples, Italy 2CEINGE-Biotecnologie Avanzate s.c. a r.l., Naples, Italy 3Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Italy 4IRCCS SDN Foundation Naples, Italy 5Institute of Genetics and Biophysics of the National Research Council (CNR), Naples, Italy 6Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences - Second University of Naples, Italy 7Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Italy 8Center of Excellence in Comparative Genomics, Bari, Italy Abstract Objective: Bardet-Biedl syndrome (BBS) is a rare genetic disorder whose clinical features include renal abnormalities, which ranges from renal malformations to renal failure. Polyuria and iso-hyposthenuria are common renal dysfunctions in BBS patients even in the presence of normal GFR. The mechanism underlying this defect is unknown and no genotype-phenotype correlation has yet been reported. -
Transmission Distortion and Genetic Incompatibilities Between Alleles in A
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.09.447720; this version posted June 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Transmission distortion and genetic incompatibilities between alleles in a 2 multigenerational mouse advanced intercross line 3 Danny Arends, [email protected], Albrecht Daniel Thaer-Institut für Agrar- und 4 Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, 5 Germany 6 Stefan Kärst, [email protected], Albrecht Daniel Thaer-Institut für Agrar- und 7 Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, 8 Germany 9 Sebastian Heise, [email protected], Albrecht Daniel Thaer-Institut für Agrar- und 10 Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, 11 Germany 12 Paula Korkuc, [email protected], Albrecht Daniel Thaer-Institut für Agrar- und 13 Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, 14 Germany 15 Deike Hesse, [email protected], Albrecht Daniel Thaer-Institut für Agrar- und 16 Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, 17 Germany 18 Gudrun A. Brockmann†, [email protected], Albrecht Daniel Thaer-Institut für Agrar- 19 und Gartenbauwissenschaften, Humboldt-Universität zu Berlin, Invalidenstraße 42, D-10115 Berlin, 20 Germany 21 † To whom correspondence should be addressed. 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.09.447720; this version posted June 10, 2021. -
Ciliary Dyneins and Dynein Related Ciliopathies
cells Review Ciliary Dyneins and Dynein Related Ciliopathies Dinu Antony 1,2,3, Han G. Brunner 2,3 and Miriam Schmidts 1,2,3,* 1 Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Mathildenstrasse 1, 79106 Freiburg, Germany; [email protected] 2 Genome Research Division, Human Genetics Department, Radboud University Medical Center, Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands; [email protected] 3 Radboud Institute for Molecular Life Sciences (RIMLS), Geert Grooteplein Zuid 10, 6525 KL Nijmegen, The Netherlands * Correspondence: [email protected]; Tel.: +49-761-44391; Fax: +49-761-44710 Abstract: Although ubiquitously present, the relevance of cilia for vertebrate development and health has long been underrated. However, the aberration or dysfunction of ciliary structures or components results in a large heterogeneous group of disorders in mammals, termed ciliopathies. The majority of human ciliopathy cases are caused by malfunction of the ciliary dynein motor activity, powering retrograde intraflagellar transport (enabled by the cytoplasmic dynein-2 complex) or axonemal movement (axonemal dynein complexes). Despite a partially shared evolutionary developmental path and shared ciliary localization, the cytoplasmic dynein-2 and axonemal dynein functions are markedly different: while cytoplasmic dynein-2 complex dysfunction results in an ultra-rare syndromal skeleto-renal phenotype with a high lethality, axonemal dynein dysfunction is associated with a motile cilia dysfunction disorder, primary ciliary dyskinesia (PCD) or Kartagener syndrome, causing recurrent airway infection, degenerative lung disease, laterality defects, and infertility. In this review, we provide an overview of ciliary dynein complex compositions, their functions, clinical disease hallmarks of ciliary dynein disorders, presumed underlying pathomechanisms, and novel Citation: Antony, D.; Brunner, H.G.; developments in the field. -
Polycystin-2 Takes Different Routes to the Somatic and Ciliary Plasma Membrane
JCB: Article Polycystin-2 takes different routes to the somatic and ciliary plasma membrane Helen Hoffmeister,1 Karin Babinger,1 Sonja Gürster,1 Anna Cedzich,1,2 Christine Meese,1 Karin Schadendorf,3 Larissa Osten,1 Uwe de Vries,1 Anne Rascle,1 and Ralph Witzgall1 1Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany 2Medical Research Center, Klinikum Mannheim, University of Heidelberg, 68167 Mannheim, Germany 3Center for Electron Microscopy, University of Regensburg, 93053 Regensburg, Germany olycystin-2 (also called TRPP2), an integral mem- a COPII-dependent fashion at the endoplasmic reticulum, brane protein mutated in patients with cystic kidney that polycystin-2 reaches the cis side of the Golgi appara- P disease, is located in the primary cilium where it is tus in either case, but that the trafficking to the somatic thought to transmit mechanical stimuli into the cell interior. plasma membrane goes through the Golgi apparatus After studying a series of polycystin-2 deletion mutants we whereas transport vesicles to the cilium leave the Golgi identified two amino acids in loop 4 that were essential for apparatus at the cis compartment. Such an interpretation the trafficking of polycystin-2 to the somatic (nonciliary) is supported by the finding that mycophenolic acid treat- plasma membrane. However, polycystin-2 mutant proteins ment resulted in the colocalization of polycystin-2 with in which these two residues were replaced by alanine GM130, a marker of the cis-Golgi apparatus. Remark- were still sorted into the cilium, thus indicating that the ably, we also observed that wild-type Smoothened, an trafficking routes to the somatic and ciliary plasma mem- integral membrane protein involved in hedgehog signaling brane compartments are distinct. -
MKKS Is a Centrosome-Shuttling Protein Degraded by Disease
Molecular Biology of the Cell Vol. 19, 899–911, March 2008 MKKS Is a Centrosome-shuttling Protein Degraded by Disease-causing Mutations via CHIP-mediated Ubiquitination Shoshiro Hirayama,* Yuji Yamazaki,* Akira Kitamura,* Yukako Oda,* Daisuke Morito,* Katsuya Okawa,† Hiroshi Kimura,‡ Douglas M. Cyr,§ Hiroshi Kubota,*ሻ and Kazuhiro Nagata*ሻ *Department of Molecular and Cellular Biology and Core Research for Evolutional Science and Technology/ Japan Science and Technology Agency, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606- 8397, Japan; †Biomolecular Characterization Unit and ‡Nuclear Function and Dynamics Unit, Horizontal Medical Research Organization, School of Medicine, Kyoto University, Kyoto 606-8501, Japan; and §Department of Cell and Developmental Biology and UNC Cystic Fibrosis Center, School of Medicine, University of North Carolina, Chapel Hill, NC 27599 Submitted July 3, 2007; Revised November 21, 2007; Accepted December 10, 2007 Monitoring Editor: Jeffrey Brodsky McKusick–Kaufman syndrome (MKKS) is a recessively inherited human genetic disease characterized by several developmental anomalies. Mutations in the MKKS gene also cause Bardet–Biedl syndrome (BBS), a genetically hetero- geneous disorder with pleiotropic symptoms. However, little is known about how MKKS mutations lead to disease. Here, we show that disease-causing mutants of MKKS are rapidly degraded via the ubiquitin–proteasome pathway in a manner dependent on HSC70 interacting protein (CHIP), a chaperone-dependent ubiquitin ligase. Although wild-type MKKS quickly shuttles between the centrosome and cytosol in living cells, the rapidly degraded mutants often fail to localize to the centrosome. Inhibition of proteasome functions causes MKKS mutants to form insoluble structures at the centrosome. CHIP and partner chaperones, including heat-shock protein (HSP)70/heat-shock cognate 70 and HSP90, strongly recognize MKKS mutants. -
BBS6, BBS10, and BBS12 Form a Complex with CCT/Tric Family Chaperonins and Mediate Bbsome Assembly
BBS6, BBS10, and BBS12 form a complex with CCT/TRiC family chaperonins and mediate BBSome assembly Seongjin Seoa,c, Lisa M. Bayeb, Nathan P. Schulza,c, John S. Becka,c, Qihong Zhanga,c, Diane C. Slusarskib, and Val C. Sheffielda,c,1 aDepartment of Pediatrics, bDepartment of Biology, and cHoward Hughes Medical Institute, University of Iowa, Iowa City, IA 52242 Edited by Kathryn V. Anderson, Sloan-Kettering Institute, New York, NY, and approved November 25, 2009 (received for review September 9, 2009) Bardet-Biedl syndrome (BBS) is a human genetic disorder resulting one component of the BBSome, BBS1, directly interacts with the in obesity, retinal degeneration, polydactyly, and nephropathy. leptin receptor and that leptin signaling is attenuated in BBS Recent studies indicate that trafficking defects to the ciliary mem- gene knockout mice, implicating BBS function in a broad range brane are involved in this syndrome. Here, we show that a novel of membrane receptor signaling (33). complex composed of three chaperonin-like BBS proteins (BBS6, Three of the remaining BBS proteins (BBS6, BBS10, and BBS10, and BBS12) and CCT/TRiC family chaperonins mediates BBS12) have sequence homology to the CCT (also known as BBSome assembly, which transports vesicles to the cilia. Chaperonin- TRiC) family of group II chaperonins (17, 24, 25). CCT proteins like BBS proteins interact with a subset of BBSome subunits and form an ≈900 kDa hetero-oligomeric complex that mediates promote their association with CCT chaperonins. CCT activity is protein folding in an ATP-dependent manner (34, 35). The CCT essential for BBSome assembly, and knockdown of CCT chaperonins complex consists of two stacked rings, each of which is composed in zebrafish results in BBS phenotypes. -
UC San Francisco Previously Published Works
UCSF UC San Francisco Previously Published Works Title FitSNPs: highly differentially expressed genes are more likely to have variants associated with disease. Permalink https://escholarship.org/uc/item/91k8p2km Journal Genome biology, 9(12) ISSN 1474-7596 Authors Chen, Rong Morgan, Alex A Dudley, Joel et al. Publication Date 2008 DOI 10.1186/gb-2008-9-12-r170 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Open Access Research2008ChenetVolume al. 9, Issue 12, Article R170 FitSNPs: highly differentially expressed genes are more likely to have variants associated with disease Rong Chen*†‡, Alex A Morgan*†‡, Joel Dudley*†‡, Tarangini Deshpande§, Li Li†, Keiichi Kodama*†‡, Annie P Chiang*†‡ and Atul J Butte*†‡ Addresses: *Stanford Center for Biomedical Informatics Research, 251 Cmpus Drive, Stanford, CA 94305, USA. †Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA. ‡Lucile Packard Children's Hospital, 725 Welch Road, Palo Alto, CA 94304, USA. §NuMedii Inc., Menlo Park, CA 94025, USA. Correspondence: Atul J Butte. Email: [email protected] Published: 5 December 2008 Received: 17 June 2008 Revised: 26 September 2008 Genome Biology 2008, 9:R170 (doi:10.1186/gb-2008-9-12-r170) Accepted: 5 December 2008 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2008/9/12/R170 © 2008 Chen et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. -
Microrna-124-3P Suppresses Mouse Lip Mesenchymal Cell Proliferation
Suzuki et al. BMC Genomics (2019) 20:852 https://doi.org/10.1186/s12864-019-6238-4 RESEARCH ARTICLE Open Access MicroRNA-124-3p suppresses mouse lip mesenchymal cell proliferation through the regulation of genes associated with cleft lip in the mouse Akiko Suzuki1,2, Hiroki Yoshioka1,2, Dima Summakia1, Neha G. Desai1,3, Goo Jun3,4, Peilin Jia5, David S. Loose4,6, Kenichi Ogata1,2, Mona V. Gajera1,3, Zhongming Zhao3,4,5 and Junichi Iwata1,2,4* Abstract Background: Cleft lip (CL), one of the most common congenital birth defects, shows considerable geographic and ethnic variation, with contribution of both genetic and environmental factors. Mouse genetic studies have identified several CL-associated genes. However, it remains elusive how these CL-associated genes are regulated and involved in CL. Environmental factors may regulate these genes at the post-transcriptional level through the regulation of non-coding microRNAs (miRNAs). In this study, we sought to identify miRNAs associated with CL in mice. Results: Through a systematic literature review and a Mouse Genome Informatics (MGI) database search, we identified 55 genes that were associated with CL in mice. Subsequent bioinformatic analysis of these genes predicted that a total of 33 miRNAs target multiple CL-associated genes, with 20 CL-associated genes being potentially regulated by multiple miRNAs. To experimentally validate miRNA function in cell proliferation, we conducted cell proliferation/viability assays for the selected five candidate miRNAs (miR-124-3p, let-7a-5p, let-7b-5p, let-7c-5p, and let-7d-5p). Overexpression of miR-124-3p, but not of the others, inhibited cell proliferation through suppression of CL-associated genes in cultured mouse embryonic lip mesenchymal cells (MELM cells) isolated from the developing mouse lip region.