NUMBER THEORY and COMBINATORICS SEMINAR UNIVERSITY of LETHBRIDGE Contents

Total Page:16

File Type:pdf, Size:1020Kb

NUMBER THEORY and COMBINATORICS SEMINAR UNIVERSITY of LETHBRIDGE Contents PAST SPEAKERS IN THE NUMBER THEORY AND COMBINATORICS SEMINAR OF THE DEPARTMENT OF MATHEMATICS & COMPUTER SCIENCE AT THE UNIVERSITY OF LETHBRIDGE http://www.cs.uleth.ca/~nathanng/ntcoseminar/ Organizers: Nathan Ng and Dave Witte Morris (starting Fall 2011) Amir Akbary (Fall 2007 – Fall 2010) Contents ........................... Fall 2020 2 Spring 2014 ....................... 48 ........................ Spring 2020 5 Fall 2013 .......................... 52 ........................... Fall 2019 9 Spring 2013 ....................... 55 ....................... Spring 2019 12 Fall 2012 .......................... 59 .......................... Fall 2018 16 Spring 2012 ....................... 63 ....................... Spring 2018 20 Fall 2011 .......................... 67 .......................... Fall 2017 24 Fall 2010 .......................... 70 ....................... Spring 2017 28 Spring 2010 ....................... 71 .......................... Fall 2016 31 Fall 2009 .......................... 73 ....................... Spring 2016 34 Spring 2009 ....................... 75 .......................... Fall 2015 39 Fall 2008 .......................... 77 ....................... Spring 2015 42 Spring 2008 ....................... 80 .......................... Fall 2014 45 Fall 2007 .......................... 83 Fall 2020 Open problem session Sep 28, 2020 Please bring your favourite (math) problems. Anyone with a problem to share will be given about 5 minutes to present it. We will also choose most of the speakers for the rest of the semester. Allysa Lumley (Centre de Recherches Math3́matiques, Montréal) Oct 5, 2020 Primes in short intervals: Heuristics and calculations We formulate, using heuristic reasoning, precise conjectures for the range of the number of primes in intervals of length y around x, where y ≪ (log x)2. In particular, we conjecture that the maximum grows surprisingly slowly as y ranges from log x to (log x)2. We will show that our conjectures are somewhat supported by available data, though not so well that there may not be room for some modification. This is joint work with Andrew Granville. Elchin Hasanalizade (University of Lethbridge) Oct 19, 2020 Distribution of the divisor function at consecutive integers The purpose of this talk is to discuss the famous Erdös-Mirsky conjecture and problems on consecutive values of multiplicative functions that arise in connection with this conjecture. We’ll show how the results of Goldston et al. can be used to sharpen Hildebrand’s earlier result on a conjecture of Erdös on limit points of the sequence d(n)=d(n + 1). If time permits. we’ll also discuss some open problems. Kubra Benli (University of Georgia) Oct 26, 2020 Prime power residues modulo p Let p be a prime number. For each positive integer k ≥ 2, it is widely believed that the smallest prime that is a kth power residue modulo p should be O(pϵ), for any ϵ > 0. Elliott k−1 +ϵ proved that such a prime is at most p 4 , for each ϵ > 0. In this talk we will discuss the distribution of prime kth power residues modulo p in the range [1; p], with a more emphasis k−1 +ϵ on the subrange [1; p 4 ] for ϵ > 0. 2 NUMBER THEORY AND COMBINATORICS SEMINAR — UNIVERSITY OF LETHBRIDGE 3 Iren Darijani (University of Lethbridge) Nov 2, 2020 Colourings of G-designs A G-decomposition of a graph H consists of a set V of vertices of H together with a set B of subgraphs (called blocks) of H, each isomorphic to G, that partition the edge set of H.A G-design of order n is a G-decomposition of the complete graph Kn on n vertices. A complete graph is a simple graph in which every pair of distinct vertices is connected by a unique edge. A G-design is said to be k-colourable if its vertex set can be partitioned into k sets (called colour classes) such that no block is monochromatic. It is k-chromatic if it is k-colourable but is not (k − 1)-colourable. The block intersection graph of a G-design with block set B is the graph with B as its vertex set such that two vertices are adjacent if and only if their associated blocks are not disjoint. The chromatic index of a graph H is the least number of colours that enable each edge of H to be assigned a single colour such that adjacent edges never have the same colour. In this talk we will first see some results on the chromatic index of block intersection graphs of Steiner triple systems. A Steiner triple system of order v is a K3-design of order n with n = v. We will then discuss some other results on k-colourings of e-star systems for all k ≥ 2 and e ≥ 3. An e-star is a complete bipartite graph K1;e. An e-star system of order n > 1, is a G-design of order n when G is an e-star. Finally, we will see some other results on k-colourings of path systems for any k ≥ 2. A path system is a G-design when G is a path. Yash Totani (University of Lethbridge) Nov 16, 2020 On the number of representations of an integer as a sum of k triangular numbers The mth r-gonal number is defined by 2 pr(m) = [(r − 2)m − (r − 4)m]=2: The problem of finding the number of representations of an integer as asumof k r-gonal num- bers is well studied, however a lot of interesting related questions are still unresolved. When r = 4, this problem converts to the classical problem of finding the number of representations of an integer as a sum of k squares. In this talk, we discuss the case r = 3 where we study the number of representations of an integer by k triangular (3-gonal) numbers. Let tk(n) be the number of representations of a positive integer n as a sum of k triangular numbers. One of the oldest results in connection with triangular numbers is due to Gauss who proved that t3(n) ≥ 1 for any positive integer n. We discuss some new results in the theory by Atanasov et al. where they provide exact formulas for t4k(n), which are proved mysteriously. Here, we discuss a method, inspired by the work of Dr. Zafer Selcuk Aygin, which can be used to give a more concrete proof for the result mentioned above using the modular forms of even integral weight. We also obtain an extension of the above and provide formulas for t4k+2(n) using the theory of odd integral weight modular forms for Γ0(8). 4 NUMBER THEORY AND COMBINATORICS SEMINAR — UNIVERSITY OF LETHBRIDGE Dave Morris (University of Lethbridge) Nov 23, 2020 Automorphisms of direct products of some circulant graphs The direct product of two graphs X and Y is denoted X ×Y . This is a natural construction, so any isomorphism from X to X0 can be combined with any isomorphism from Y to Y 0 to obtain an isomorphism from X × Y to X0 × Y 0. Therefore, the automorphism group Aut(X × Y ) contains a copy of (Aut X) × (Aut Y ). It is not known when this inclusion is an equality, even for the special case where Y = K2 is a connected graph with only 2 vertices. Recent work of B. Fernandez and A. Hujdurović solves this problem when X is a “circulant” graph with an odd number of vertices (and Y = K2). We will present a short, elementary proof of this theorem. Milad Fakhari (University of Lethbridge) Nov 30, 2020 The Correction Factors in Artin’s Type Problems In 1927, Emil Artin formulated a conjecture for the density δ(g) of primes for which a given h i F× integer g is a primitive root, i.e., g mod p = p . Such prime p does not split completely q in the splitting field of x − g, indicated by Kq, for all primes q j p − 1. For g =6 −1 and non-square, Artin conjectured Y 1 δ(g) = 1 − : [K : Q] p p In 1957, computations, carried by Derrick H. Lehmer and Emma Lehmer, revealed that for some g (for example g = 5) the conjectured density is quite different from the one computed. Artin provided a correction factor to handle this mismatch. In fact,Q the correction factor appears because of the “entanglement” between number fields Kn = pjn Kp for n square-free when the square-free part of g is congruent to 1 modulo 4. In 1967, Hooley proved the modified Artin’s conjecture under the assumption of the generalized Riemann hypothesis. In this talk, we will present the character sums method formulated by Lenstra, Moree and Stevenhagen which gives us an effective way to find the correction factor and the Euler product of the density in Artin’s conjecture and the cyclicity problem for Serre curves. We will observe that this method does not work in some Artin-like problems such as the Kummerian Titchmarsh divisor problem. At the end, we will indicate that how a modification of the character sums method may lead to the correction factor in such problems. Spring 2020 Open problem session Jan 13, 2020 Please bring your favourite (math) problems. Anyone with a problem to share will be given about 5 minutes to present it. We will also choose most of the speakers for the rest of the semester. Joy Morris (University of Lethbridge) Jan 20, 2020 Regular Representations of Groups A natural way to understand groups visually is by examining objects on which the group has a natural permutation action. In fact, this is often the way we first show groups to undergraduate students: introducing the cyclic and dihedral groups as the groups of symmetries of polygons, logos, or designs. For example, the dihedral group D8 of order 8 is the group of symmetries of a square. However, there are some challenges with this particular example of visualisation, as many people struggle to understand how reflections and rotations interact as symmetries of a square.
Recommended publications
  • A Note on the Origin of the Twin Prime Conjecture
    A Note on the Origin of the Twin Prime Conjecture by William Dunham Department of Mathematics & Computer Science, Muhlenberg College; Department of Mathematics, Harvard University (visiting 2012-2013) More than any other branch of mathematics, number As the title suggests, de Polignac’s paper was about theory features a collection of famous problems that took prime numbers, and on p. 400 he stated two “theorems.” centuries to be proved or that remain unresolved to the It should be noted that he was not using the word in its present day. modern sense. Rather, de Polignac confirmed the truth of Among the former is Fermat’s Last Theorem. This these results by checking a number of cases and thereby states that it is impossible to find a whole number n ≥ 3 called them “theorems.” Of course, we would call them, at and whole numbers x , y , and z for which xn + yn = zn . best, “conjectures.” The true nature of these statements is suggested by the fact that de Polignac introduced them In 1640, as all mathematicians know, Fermat wrote this in under the heading “Induction and remarks” as seen below, a marginal note and claimed to have “an admirable proof” in a facsimile of his original text. that, alas, did not fit within the space available. The result remained unproved for 350 years until Andrew Wiles, with assistance from Richard Taylor, showed that Fermat was indeed correct. On the other hand, there is the Goldbach conjecture, which asserts that every even number greater than 2 can be expressed as the sum of two primes.
    [Show full text]
  • Bounds of the Mertens Functions
    Advances in Dynamical Systems and Applications. ISSN 0973-5321, Volume 16, Number 1, (2021) pp. 35-44 © Research India Publications https://dx.doi.org/10.37622/ADSA/16.1.2021.35-44 Bounds of the Mertens Functions Darrell Coxa, Sourangshu Ghoshb, Eldar Sultanowc aGrayson County College, Denison, TX 75020, USA bDepartment of Civil Engineering , Indian Institute of Technology Kharagpur, West Bengal, India cPotsdam University, 14482 Potsdam, Germany Abstract In this paper we derive new properties of Mertens function and discuss about a likely upper bound of the absolute value of the Mertens function √log(푥!) > |푀(푥)| when 푥 > 1. Using this likely bound we show that we have a sufficient condition to prove the Riemann Hypothesis. 1. INTRODUCTION We define the Mobius Function 휇(푘). Depending on the factorization of n into prime factors the function can take various values in {−1, 0, 1} 휇(푛) = 1 if n has even number of prime factors and it is also square- free(divisible by no perfect square other than 1) 휇(푛) = −1 if n has odd number of prime factors and it is also square-free 휇(푛) = 0 if n is divisible by a perfect square. 푛 Mertens function is defined as 푀(푛) = ∑푘=1 휇(푘) where 휇(푘) is the Mobius function. It can be restated as the difference in the number of square-free integers up to 푥 that have even number of prime factors and the number of square-free integers up to 푥 that have odd number of prime factors. The Mertens function rather grows very slowly since the Mobius function takes only the value 0, ±1 in both the positive and 36 Darrell Cox, Sourangshu Ghosh, Eldar Sultanow negative directions and keeps oscillating in a chaotic manner.
    [Show full text]
  • Dr. Yitang Zhang Professor Department of Mathematics University of California, Santa Barbara
    Distinguished Lifetime Achievement Award Dr. Yitang Zhang Professor Department of Mathematics University of California, Santa Barbara Citation of Accomplishments Establishing the first finite bound on the gaps of prime numbers and thus solving a centuries- old problem in number theory, and his unsubdued passion for mathematics and science. Dr. Yitang Zhang was born on February 5, 1955 in Shanghai, China, and lived there until he was 13 years old. During the Cultural Revolution, he and his parents were sent to the countryside to work in the fields. He worked as a laborer for ten years and was unable to attend high school. After the Cultural Revolution ended, he entered Peking University in 1978 as an undergraduate student and graduated in 1982. Then he became a graduate student of Professor Pan Chengbiao, a number theorist at Peking University, and obtained his master’s degree in mathematics in 1984. With recommendations from Professor Ding Shisun, the president of Peking University, Yitang was granted a full scholarship at Purdue University. He arrived at Purdue in June 1985, studied there for seven years, and obtained his Ph.D. in mathematics in December 1991. After graduation, he had a hard time finding an academic position. After several years, he managed to find a position as a lecturer at the University of New Hampshire (UNH), where he was hired by Professor Kenneth Appel in 1999. He served as a lecturer at UNH until January 2014, when UNH appointed him to a full professorship as a result of his breakthrough on the distribution of prime numbers. In Fall 2015, he accepted an offer of full professorship at the University of California, Santa Barbara.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Integral Free-Form Sudoku Graphs
    Integral Free-Form Sudoku graphs Omar Alomari 1 Basic Sciences German Jordanian University Amman, Jordan Mohammad Abudayah 2 Basic Sciences German Jordanian University Amman, Jordan Torsten Sander 3 Fakulta¨t fu¨r Informatik Ostfalia Hochschule fu¨r angewandte Wissenschaften Wolfenbu¨ttel, Germany Abstract A free-form Sudoku puzzle is a square arrangement of m × m cells such that the cells are partitioned into m subsets (called blocks) of equal cardinality. The goal of the puzzle is to place integers 1; : : : m in the cells such that the numbers in every row, column and block are distinct. Represent each cell by a vertex and add edges between two vertices exactly when the corresponding cells, according to the rules, must contain different numbers. This yields the associated free-form Sudoku graph. It was shown that all Sudoku graphs are integral graphs, in this paper we present many free-form Sudoku graphs that are still integral graphs. Keywords: Sudoku, spectrum, eigenvectors. 1 Preliminaries The r−regular slice n−sudoku puzzle is the free-form sudoku puzzle obtained from the n−sudoku puzzle by shifting the block cells in the (in + d)th row (d − 1)rn cells to the right, where 1 ≤ d ≤ n. In Figure 1 (B), the cells are partitioned into 9 blocks denoted by Bi . To study the eigenvalues of r−regular slice n−sudoku, let us start from the n2 ×n rectangular template slice where its cells partitioned into n2 blocks and for i = 0; 1; : : : ; n − 1, rows in + 1; in + 2;::: (i + 1)n contains only the n block numbers in + 1; in + 2;::: (i + 1)n, with the additional restriction that the block numbers used in different i−collection of rows are distinct, see fig1 (A).
    [Show full text]
  • Ten Mathematical Landmarks, 1967–2017
    Ten Mathematical Landmarks, 1967{2017 MD-DC-VA Spring Section Meeting Frostburg State University April 29, 2017 Ten Mathematical Landmarks, 1967{2017 Nine, Eight, Seven, and Six Nine: Chaos, Fractals, and the Resurgence of Dynamical Systems Eight: The Explosion of Discrete Mathematics Seven: The Technology Revolution Six: The Classification of Finite Simple Groups Ten Mathematical Landmarks, 1967{2017 Five: The Four-Color Theorem 1852-1976 1852: Francis Guthrie's conjecture: Four colors are sufficient to color any map on the plane in such a way that countries sharing a boundary edge (not merely a corner) must be colored differently. 1878: Arthur Cayley addresses the London Math Society, asks if the Four-Color Theorem has been proved. 1879: A. B. Kempe publishes a proof. 1890: P. J. Heawood notes that Kempe's proof has a serious gap in it, uses same method to prove the Five-Color Theorem for planar maps. The Four-Color Conjecture remains open. 1891: Heawood makes a conjecture about coloring maps on the surfaces of many-holed tori. 1900-1950's: Many attempts to prove the 4CC (Franklin, George Birkhoff, many others) give a jump-start to a certain branch of topology called Graph Theory. The latter becomes very popular. Ten Mathematical Landmarks, 1967{2017 Five: The Four-Color Theorem (4CT) The first proof By the early 1960s, the 4CC was proved for all maps with at most 38 regions. In 1969, H. Heesch developed the two main ingredients needed for the ultimate proof, namely reducibility and discharging. He also introduced the idea of an unavoidable configuration.
    [Show full text]
  • Awards of ICCM 2013 by the Editors
    Awards of ICCM 2013 by the Editors academies of France, Sweden and the United States. He is a recipient of the Fields Medal (1986), the Crafoord Prize Morningside Medal of Mathematics in Mathematics (1994), the King Faisal International Prize Selection Committee for Science (2006), and the Shaw Prize in Mathematical The Morningside Medal of Mathematics Selection Sciences (2009). Committee comprises a panel of world renowned mathematicians and is chaired by Professor Shing-Tung Björn Engquist Yau. A nomination committee of around 50 mathemati- Professor Engquist is the Computational and Applied cians from around the world nominates candidates based Mathematics Chair Professor at the University of Texas at on their research, qualifications, and curriculum vitae. Austin. His recent work includes homogenization theory, The Selection Committee reviews these nominations and multi-scale methods, and fast algorithms for wave recommends up to two recipients for the Morningside propagation. He is a member of the Royal Swedish Gold Medal of Mathematics, up to two recipients for the Morningside Gold Medal of Applied Mathematics, and up to four recipients for the Morningside Silver Medal of Mathematics. The Selection Committee members, with the exception of the committee chair, are all non-Chinese to ensure the independence, impartiality and integrity of the awards decision. Members of the 2013 Morningside Medal of Mathe- matics Selection Committee are: Richard E. Borcherds Professor Borcherds is Professor of Mathematics at the University of California at Berkeley. His research in- terests include Lie algebras, vertex algebras, and auto- morphic forms. He is best known for his work connecting the theory of finite groups with other areas in mathe- matics.
    [Show full text]
  • Spectral Graph Theory – from Practice to Theory
    Spectral Graph Theory – From Practice to Theory Alexander Farrugia [email protected] Abstract Graph theory is the area of mathematics that studies networks, or graphs. It arose from the need to analyse many diverse network-like structures like road networks, molecules, the Internet, social networks and electrical networks. In spectral graph theory, which is a branch of graph theory, matrices are constructed from such graphs and analysed from the point of view of their so-called eigenvalues and eigenvectors. The first practical need for studying graph eigenvalues was in quantum chemistry in the thirties, forties and fifties, specifically to describe the Hückel molecular orbital theory for unsaturated conjugated hydrocarbons. This study led to the field which nowadays is called chemical graph theory. A few years later, during the late fifties and sixties, graph eigenvalues also proved to be important in physics, particularly in the solution of the membrane vibration problem via the discrete approximation of the membrane as a graph. This paper delves into the journey of how the practical needs of quantum chemistry and vibrating membranes compelled the creation of the more abstract spectral graph theory. Important, yet basic, mathematical results stemming from spectral graph theory shall be mentioned in this paper. Later, areas of study that make full use of these mathematical results, thus benefitting greatly from spectral graph theory, shall be described. These fields of study include the P versus NP problem in the field of computational complexity, Internet search, network centrality measures and control theory. Keywords: spectral graph theory, eigenvalue, eigenvector, graph. Introduction: Spectral Graph Theory Graph theory is the area of mathematics that deals with networks.
    [Show full text]
  • The Riemann Hypothesis Is Not True Jonathan Sondow, Cristian Dumitrescu, Marek Wolf
    The Riemann Hypothesis is not true Jonathan Sondow, Cristian Dumitrescu, Marek Wolf To cite this version: Jonathan Sondow, Cristian Dumitrescu, Marek Wolf. The Riemann Hypothesis is not true. 2021. hal-03135456v2 HAL Id: hal-03135456 https://hal.archives-ouvertes.fr/hal-03135456v2 Preprint submitted on 3 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The Riemann Hypothesis is most likely not true J:Sondow1 , C. Dumitrescu2, M. Wolf 3 1https://jonathansondow.github.io 2e-mail: [email protected] 3e-mail: [email protected] Abstract We show that there is a possible contradiction between the Riemann's Hypothesis and the theorem on the strong universality of the zeta func- tion. 1 Introduction In his only paper devoted to the number theory published in 1859 [32] (it was also included as an appendix in [12]) Bernhard Riemann continued analytically the series 1 X 1 ; s = σ + it; σ > 1 (1) ns n=1 to the complex plane with exception of s = 1, where the above series is a harmonic divergent series. He has done it using the integral Γ(1 − s) Z (−z)s dz ζ(s) = z ; (2) 2πi C e − 1 z where the contour C is 6 C ' - - & The definition of (−z)s is (−z)s = es log(−z), where the definition of log(−z) conforms to the usual definition of log(z) for z not on the negative real axis as the branch which is real for positive real z, thus (−z)s is not defined on the positive real axis, 1 see [12, p.10].
    [Show full text]
  • A Solution to the Riemann Hypothesis
    A solution to the Riemann Hypothesis Jeet Kumar Gaur PhD in Mechanical Eng. Dept. Indian Institute of Science, Bangalore, India email id: [email protected] July 2, 2021 Abstract This paper discloses a proof for the Riemann Hypothesis. On iterative expansion of the integration term in functional equation of Riemann zeta function we get a series. At the ‘non- trivial’ zeros of zeta function, value of the series is zero. Thus, Riemann hypothesis is false if that happens for an ‘s’ off the critical line(<(s) = 1=2). This series has two components. These components are such that if one component is defined as f(s) the other equals f(1 − s). For the hypothesis to be false one component is additive inverse of the other. From geometric analysis of component series function f(s) we find that f(s) 6= 0 anywhere in the critical strip. Further, using the additive properties of odd functions we prove by contradiction that they cannot be each other’s additive inverse for any s, off the critical line. Thus, proving truth of the hypothesis. 1 Introduction The Riemann Hypothesis has become one of the most centralized problems in mathematics today. It has to do with the position of ‘non-trivial’ zeros of the zeta function that encrypt information about prime numbers. The hypothesis has its roots predominantly in number theory. However, over time the ways to approach the problem have diversified with new evidence suggesting connections with seemingly unrelated fields like random matrices, chaos theory and quantum arXiv:2103.02223v3 [math.GM] 30 Jun 2021 physics [1][2].
    [Show full text]
  • 1 Mathematical Savoir Vivre
    STANDARD,EXCEPTION,PATHOLOGY JERZY POGONOWSKI Department of Applied Logic Adam Mickiewicz University www.logic.amu.edu.pl [email protected] ABSTRACT. We discuss the meanings of the concepts: standard, excep- tion and pathology in mathematics. We take into account some prag- matic components of these meanings. Thus, standard and exceptional objects obtain their status from the point of view of an underlying the- ory and its applications. Pathological objects differ from exceptional ones – the latter may e.g. form a collection beyond some established classification while the former are in a sense unexpected or unwilling, according to some intuitive beliefs shared by mathematicians of the gi- ven epoch. Standard and pathology are – to a certain extent – flexible in the development of mathematical theories. Pathological objects may become „domesticated” and give rise to new mathematical domains. We add a few comments about the dynamics of mathematical intuition and the role of extremal axioms in the search of intended models of mathematical theories. 1 Mathematical savoir vivre Contrary to that what a reader might expect from the title of this section we are not going to discuss the behavior of mathematicians themselves. Rather, we devote our attention to the following phrase which is very common in mathematical texts: An object X is well behaving. Here X may stand for a function, a topological space, an algebraic structure, etc. It should be overtly stressed that well behaving of mathematical objects is al- ways related to some investigated theory or its applications. There is nothing like absolute well behavior – properties of objects are evaluated from a pragmatic point of view.
    [Show full text]
  • The Mertens Conjecture
    The Mertens conjecture Herman J.J. te Riele∗ Title of c Higher Education Press This book April 8, 2015 and International Press ALM ??, pp. ?–? Beijing-Boston Abstract The Mertens conjecture states that |M(x)|x−1/2 < 1 for x > 1, where M(x) = P1≤n≤x µ(n) and where µ(n) is the M¨obius function defined by: µ(1) = 1, µ(n) = (−1)k if n is the product of k distinct primes, and µ(n)=0 if n is divisible by a square > 1. The truth of the Mertens conjecture implies the truth of the Riemann hypothesis and the simplicity of the complex zeros of the Riemann zeta function. This paper gives a concise survey of the history and state-of-affairs concerning the Mertens conjecture. Serious doubts concerning this conjecture were raised by Ingham in 1942 [12]. In 1985, the Mertens conjecture was disproved by Odlyzko and Te Riele [23] by making use of the lattice basis reduction algorithm of Lenstra, Lenstra and Lov´asz [19]. The best known results today are that |M(x)|x−1/2 ≥ 1.6383 and there exists an x< exp(1.004 × 1033) for which |M(x)|x−1/2 > 1.0088. 2000 Mathematics Subject Classification: Primary 11-04, 11A15, 11M26, 11Y11, 11Y35 Keywords and Phrases: Mertens conjecture, Riemann hypothesis, zeros of the Riemann zeta function 1 Introduction Let µ(n) be the M¨obius function with values µ(1) = 1, µ(n) = ( 1)k if n is the product of k distinct primes, and µ(n) = 0 if n is divisible by a square− > 1.
    [Show full text]