Integral characterizations of asymptotic stability ? Elena Panteleyy, Antonio Lor´ıa• and Andrew R. Teel yINRIA Rhoneˆ Alpes ZIRST - 655 Av. de l’Europe 38330 Montbonnot Saint-Martin, France
[email protected] •C.N.R.S. UMR 5528 LAG-ENSIEG, B.P. 46, 38402, St. Martin d’Heres, France
[email protected] ?Center for Control Engineering and Computation (CCEC) Department of Electrical and Computer Engineering University of California Santa Barbara, CA 93106-9560, USA
[email protected] Keywords: UGAS, stability of sets, Lyapunov stability ever this is too restrictive. For time-varying systems, Naren- analysis. dra and Anaswamy [4] proposed to use an observability type condition which is formulated as an integral condition on the derivative of the Lyapunov function. This approach was fur- ther developed in the papers of Aeyels and Peuteman [1], Abstract where a “difference” stability criterion was formulated as a condition on the decrease of the difference between the val- We present an integral characterization of uniform global ues of the “Lyapunov” function at two time instances; more asymptotic stability (UGAS) of sets and use this character- precisely it is required that that there exists T > 0 such that ization to provide a result on UGAS of sets for systems with for all t t the following inequality is satisfied: output injection. ≥ ◦ V (t + T; x(t + T )) V (t; x) γ( x(t) ); − ≤ j j 1 Introduction where γ . The advantage2 K1 of this formulation is firstly, that the func- Starting with the original paper by Lyapunov [3], the concept tion V (t; x) is not required to be continuously differentiable of stability of solutions of a differential equation x˙ = f(t; x) nor locally Lipschitz and secondly, this formulation allows a was formulated as a stability problem with respect to some certain increase of the derivative of the Lyapunov function at function F (x) of the state.