<<

DYNAMIC SYSTEMS ANALYSIS OF DINOFLAGELLATES FROM THE ATLANTIC COASTAL PLAIN, USA.

by Jon Clayton Cawley

Thesis submitted to the Faculty of the Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

GEOLOGICAL SCIENCES

APPROVED: RAOK BAL Richard K. Bambach, Chairman SpunIH. Yuedim —— LBs A fh Dewey M. McLean Bruce C. Parker

July, 1996

Blacksburg, Virginia

Keywords: Dinoflagellate, Eocene, Virginia, Systems dynamics, Community, Modeling. ™ CANS AAG Co oes eC oe a ee § og = DYNAMIC SYSTEMS ANALYSIS OF FOSSIL DINOFLAGELLATES FROM THE ATLANTIC COASTAL PLAIN, USA.

by

Jon Clayton Cawley

R.K. Bambach, Chairman

Geological Sciences

ABSTRACT

Dynamic Systems modeling suggests that complex coastal dinoflagellate bio- systems can be modeled using environmental parameters such as temperature, salinity, and bulk nutrient levels. The former of northern Virginia and is modeled here, using STELLA I and FORTRAN models based on physical oceanography and temperature, salinity, and nutrient conditions of the modern Yellow Sea. In these models, dinoflagellate assemblages are predicted based on environmental conditions associated with depth. Cluster analyses of fossil dinoflagellate frequency data from Tertiary Pamunky Group (Aquia and Nanjemoy Formations) of the Salisbury Embayment produce 17 discrete groupings. Samples within the Salisbury fossil cluster groups are statistically similar (via ANOVA analysis), but not the same. Therefore they represent paleocommunity types rather than paleocommunities. Although individual sinofiagellate species reccur in similar environmental settings, the paleocommunity types do not appear to repeat. In the past, such associations have been used as depth indicators. It is suggested here that they relate to estuarine, nearshore, and offshore coastal regions because of the temperature, salinity, and nutrient conditions of each. In the modern Yellow Sea, nearshore and offshore regions are separated by discrete lateral fronts in some areas, and by gradational regions of mixing in others. Both types of watermass boundaries are modeled in this study. Results suggest that evidences that discrete watermass boundaries might have occurred between some fossil dinoflagellate associations. Circulation patterns of the Salisbury Embayment may have been roughly similar to those of the modern Yellow Sea. ACKNOWLEDGEMENTS

I would like to thank Dr. Dewey M. McLean, Dr. Richard K. Bambach, and Dr. Bruce Parker for their guidance (and their patience) during this study. I thank Dr. Cahit Coruh, Karen Hunt, and Dr J. Fred Read for their input at critical times. I would like to thank my friends Ross Irwin, Jerry Dorsey, Steve Ruzila, Bill Weitzel, and Steve and Carole McNall for their help, insight, and occasional sanity. And I thank my parents and family for their moral support.

iif for chris of course.

iv TABLE OF CONTENTS

INTRODUCTION. ..0. 0... ce cence eee nc ence nc eeeea eee eeceeeeeceneeeeeesenseestesentenseeees 1 General COMMENIS...... ccc cc ececececececeneceneecececeneeecenseseceseaeeeesenens 1 Objectives Of this Study... ecceeeecccceeecceesscccseeeeeeecereneeeeseneceses 1 Method ology...... ccccccccccccenccence nc ee ee ene eens eee eeeseeseeeeeeeeeeeeeseeeseeaneeees 1

PART I. GEOGRAPHICAL AND GEOLOGICAL SETTING...... 0000000000.. 3 The Salisbury Embayment...... ccccccssccceeceeeeceeeeees 3 The Pamunkey Group...... ccccccceeccecceeeeceeeceeceeeeeeeeeeas 6 The Aquia Formation...... cccccceccceeecesecceeeeeneeees 8 The Marlboro Formation...... c.cccccccccesseeeeeeeeees 8 The Nanjemoy — Formation...... ccccceeeeceeseeeeees 9

Wl. THE DINOFLAGELLATES oon. cccccccessseececeseeceseneees 10 Dinoflagellate Lifecycle: Theca Versus Cyst Forme...... 10

I. FACTORS CONTROLLING DINOFLAGELLATE ABUNDANCE, DIVERSITY, AND PRESERVATION ...... 15 General Statement...... cccc cccceececeeceececnececeeoeees 15 Physical Factors Controlling Abundance and Diversity...... 15 TE MPerature...... ccc cece cee eccencenceeceeereetencencteeeees 15 SALIMILY 0... ccc ce cece cee ee ence eceenseeseeneestenaeessenees 15 Eddies, Fronts, and Upwelling...... 0.. eee 16 NUtrientS...... cece ccc ce eee ecceceeceeceeeeteceeneeaeteeeees 17 LIQht... 0... cece cece ecc eee e nc eeceeceeaseeseseeeaeecseseeeueens 18 Biological Responses to Physical Factors...... cccccseeee 18 SUCCESSION...... ccc ccc ccccecceceeceececeeceeseeeseeseneenees 18 TNOCULATION...... 0. cece cence cee ncecencenceneenceeeeeeeees 19 Dinoflagellate BIOOMS...... ccccsecceseccneeneeeeeees 19 Factors Controlling Preservation...... cccccsseececeeseeeeees 20

IV. THE YELLOW SEA AS A MODERN PHYSICAL ANALOG FOR THE SALISBURY EMBAYMENT...... 0.00...... cccccccccccccseseeseeeeees 22

V. METHOODG...... 0... ccc cccccceccccceenececeuseeccecncececeaceesceeaeccecaueesecseneees 26 Sources Of Data Sets... ccsceeeececccceenecessssseeeeees 26 Corellation of Samples (Cluster Analysis)...... c:ccccesee 26 Q-mode Cluster AmalySis...... c.cccccccesesecceeeeeeees 28 Fossil Community Definitions...... ccccccssssseceeeeeeees 29 ANOVA = AnalSIS...... ccccccccceceneneeceeeceeececsceceeaeeeas 30 Dynamic Systems Modeling...... ccccessesecessseeceeeees 30 Phase Plane Interactions...... ccece ceceeceneceeeeseneesenes 32

VI. RESULTS AND DISCUSSION... cccccececcsseccneeseeeeeees 34 STELLA II Dynamic Systems Model... eeeeeeeeees 34 FORTRAN Dynamic Systems Models...... ccccccceeeees 36 Discussion of the FORTRAN Models...... 0...... ccc ceeeees 39

V Results of Q-mode Cluster AnnalySis...0...... ccs eeeeeeeeecees 40 Total Data Seto. ecccccsscesceeeeeceeeceeeseeees 40 Common Species Cluster Associations (>10%)...... 42 IntermediateSpecies Cluster Associations (10-1%)...... 42 Rare Species Cluster Associations (<1%)...... 00 42 Discussion of Paleocommunity Makeup...... c:cccce08 46 Results of Chosen Phase Plane Plots... eeeeeeeees 52

VI. CONCLUSIONS ...... 0... c eee eee ene eee e eee eee seen neeenes 54

REFERENCE... ccc ccc cece ccc cnc cence nee e nee e eee e ee eea eee eeeeeeneeeeseeseseaeegseeseeeeees 55

APPENDICES

Appendix A: Transformed Dinoflagellate Data Sets... 64

Appendix B: Modern Analog FORTRAN Model X, Z...... 130

Appendix C: Plants 77 FORTRAN Cluster Analysis Program...... 146

VITA Lecce cece ence ene ee ne enna eee ee ee eeseea cece nese nesses eeneeeenseteeteeeteensennseeeas 159

vi LIST OF FIGURES

Page

1. Map of East Coast of US. showing Embayments and Arches...... 4

2. Basin Maps of Areal Extent Salisbury Embayment...... 0....ccecesseee 5

3. General Geologic Column of the Pamunkey Group...... 0....ccccseeeee 7

4. Modern Dinoflagellate Lifecycle... cesesccesseceesencessseecesteceeeseneeees 11

5. Dinoflagellate Morphology...... ccccceeecccceeccseccceeecceeececeseeeeeeoeees 13

6. Basin Map of the Yellow Sea, Showing Fronts and Currents...... 23

7. Sample Site Locatioms...... cece ceccceecccnecenecceccuseceeeseeceenseaeesans 27

8. Flow Chart for FORTRAN Models....0....0.0cece eecccessseseseteeeeseeeees 31

9. Phase Plane Archtypes...... c ec ceccceeecccsesccececeescnsseccenceseeesenseees 33

10. STELLA JI Model Time Series... eeereeeetersenereseeteneeees 35

11. Fortran Model Output, X,Y... cceeeessseesssessseteeeerenseees 37

12. Fortran Model Output, Zo... ce ccccccccecccceeesssseeeceeecenaeess 38

13. Total Data Set Cluster Dendrogram...... ec ccccseeeeseeeeseees 41

15. Chosen Phase Plane = PlOts...... ee ee eeeeneeeeeceeseneeeceeeseneeeensoees 53

LIST OF TABLES

Table 1: Comparison of Cluster GroupingS...... i. eee eeceesecceeeeeeteeeeees 43

Table 2: Dinoflagellate Master List 0... cecsscessessrecceesseeeeeeeeeees 47

Vil INTRODUCTION

General Comments Fossil marine dinoflagellates (microscopic phytoplankton belonging to the Division Pyrrhophyta) are used extensively for age dating, correlation, and paleoenvironmental analysis. However, they have never been studied via system dynamics analyses of their community structure. System dynamics are used routinely in many fields of science to study complex multivariate systems (Roberts, 1983: Rose, 1987). Analyses of living systems and their environment involve complex interactions (May, 1981; May, 1993). This study is the first to use system dynamics to study fossil marine dinoflagellate assemblages.

The Virginia Tech Palynology Program produced numerous dissertations and theses on the taxonomy, morphology, and biostratigraphy of and Tertiary dinoflagellates from the Atlantic Coastal Plain. This current study uses data from previous studies of the Aquia () and Nanjemoy (Eocene) Formations of the Virginia Coastal Plain (McLean, 1969; McLean, 1972; Witmer, 1975; Goodman, 1975; and Witmer, 1987). The Aquia and Nanjemoy Formations were deposited in an ancient embayment known as the Salisbury Embayment located geographically in the region of the present and Atlantic Coastal Plain in the states of Virginia, Maryland, and Delaware (Figure 1). The localities studied herein are from Virginia, in the central and southern parts of the Salisbury Embayment.

Objectives of this Study The primary objective of this study is to examine fossil dinoflagellate frequency data from the Salisbury Embayment for paleocommunity structure and environmental association using system dynamics and paleocommunity analysis. A second objective of this study is to test the potential of using system dynamics FORTRAN modeling in describing coastal plankton systems.

Methodology Data from the Tertiary Pamunky group was used in this project for three main reasons. This stratigraphic interval provides a relatively continuous record of changing local environmental conditions (a regression followed by a transgression). The depositional record for this interval is assumed to be relatively constant (as opposed to K/T boundary sediment below, or upper Eocene possibly meteor impact-disturbed sediment above (Ward, 1993)). In addition, significant fossil dinoflagellate frequency data exist for this interval. 1 The frequency data used are derived from previous taxonomic studies of this interval.2 Environmental association is explored by modeling paleoenvironmental conditions of the Salisbury Embayment during the Tertiary based on modern analogs of the Yellow Sea and the Gulf and Atlantic Seaboard. The Yellow Sea was chosen as the primary physical analog because of its similarity in size, extent, geographical orientation, and possibly similar circulation patterns to the Salisbury Embayment. The modern analogs are used to construct both dynamic systems STELLA II and FORTRAN computer models, based on biological and environmental information, by which possible dinoflagellate environments and interactions may be modeled. STELLA II is a model construction program which uses an iterative approach to exploring dynamic processes. STELLA II is used to design and test structural diagrams (see Richmond, et al., 1987). FORTRAN modelling, however is more mathematicallly rigorous. Data sets for both modeling approaches were manipulated using EXEL spreadsheets (See Cobb, 1985).

Potential paleocommunity structure is tested for using Q-mode cluster analysis and analysis of varience techniques. Cluster analysis and comparative sorting and graphing techniques are used to delineate separate species groups based on similarity coefficients.

Groups produced by cluster analysis appear preferentially associated with particular coastal regions and their physical conditions. I. GEOGRAPHICAL AND GEOLOGICAL SETTING

The Salisbury Embayment The Atlantic Coastal Plain is made up of several ancient embayments separated from one another by tectonic arches (Figure 1). The Salisbury Embayment (Figure 2) was one of these ancient embayments. It existed mostly during Tertiary time, covering areas of what are now Virginia, Maryland, and Delaware (Glaser, 1968; Gallagher, 1984; Gibson, 1989). The modern Chesapeake Bay, centered over the old Salisbury Embayment is several times smaller than its ancient counterpart.

The Salisbury Embayment was continuously connected to the open Atlantic Ocean. Water level in the Salisbury was a function of tectonic and eustatic sea level changes. At its maximum, it covered up to 20 thousand km2 at depths up to 150 meters in its eastern deepest part. Sediments deposited in the Salisbury Embayment indicate sediment-starved (glauconite-rich) nearshore marine to brackish-water conditions (Ward and Krafft, 1985).

The Norfolk Arch provided a primary structural control for the Salisbury Embayment during this time by affecting the shape and orientation of the embayment (Figure 2). Aquia and Nanjemoy sediments contain mica flakes in sands and coarse material which match with Roanoake River group sediments, derived primarily from the Virginia Piedmont (Ward and Krafft, 1985). The Piedmont region lies immediately southwest of the embayment. The Norfolk Arch structure to the south diverted freshwater Piedmont drainage northward and into the embayment. Also Norfolk Arch controlled both access from the open sea and circulation within the embayment. Throughout the Paleocene and early Eocene, normal marine flow entered the embayment primarily as bottom waters but was controlled by arch and bottom topography. The wide mouth of the embayment may have been protected to varying degree by banks or bars, and/or the topographically high remains of a aged reef complex just to the northeast of the embayment mouth (Poag, 1993). Topographic submarine highs may have acted as partial sediment dams, keeping sand and fine clay within the embayment.

The presence of glauconite in the sediments and marine macro-, particularly bivalves (Ward and Krafft, 1985; Edwards, 1989) indicate marine conditions. Glauconite, along with phosphate pellets and local carbonate, may reflect sediment starvation, and the 3

Embaymest

0 km wu

9d Guk of Mexko

Figure 1. East Coast of US. showing Arches and Embayments. (S861 ‘IJer pue prem Joye) uontsodeq

Aowafuey (gq‘uontsodag einby (vysuunp juewAequig Aingsies oy} Jo JUa}xe [eae ayewIxolddy "7 aind1y

BUIJOIEDYON BUIJOIEDYON

Os

7 puouyory “SJ puowyory

eIOIsIA PIUISILA

. ‘+, os,

Od voBuryse me

Aasior Ava MOLINE wf aOUTYeg f “ON S mle O) at puvyAreyy

puryAreyy AasiogMON , ; J

a> erueayAsuuog eIUvA[ASUUdg

presence of fine terrestrial clays in contact with warm marine water (Mallinson and Lee,1986). Glauconite has been associated with local marine flooding events (Tenison, 1989). Percentages of glauconite have been used to estimate depth and/or amount of marine influence within the Salisbury Embayment (Porrenga, 1967).

Salisbury Embayment sediments represent a series of unconformity bounded cyclic pulses of sediment during the times of transgression (Baum, 1986; Harris, 1993). Ward and Krafft (1985) note that, “the Atlantic basins...were characterized by relatively thin deposits, principally marine, with only remnants of nearshore facies. It is clear that large volumes of sediment were not being transported to the Atlantic Coastal Plain during the Tertiary.”

Samples for this study are from the marine Pamunkey Group (Paleocene and Eocene) from the central and southwestern portions of the Salisbury Embayment.

The Pamunkey Group The Pamunkey Group (Figure 3) is the basal Tertiary unit of the Virginia-Maryland Coastal Plain. It is subdivided into the Aquia (Paleocene) and Nanjemoy (Eocene) Formations (Figure 3).

The Pamunky Group was described and named as a formation by Darton (1891). Clark (1895) subdivided the Pamunky Group into and Woodstock “Stages.” Clark and Martin (1901) divided the group into the Aquia and Nanjemoy Formations which were each subdivided into two members (Figure 3), and into several finer scale “zones” which were based on lithology and fossils.

The “zones” of Clark and Martin do not correspond with the modern definition of a “zone” as set by the Code of Stratigraphic Nomenclature (1970). The term “unit” will be used in this work (after McLean, 1969).

The Marlboro clay, a meter thick clay unit elevated to formational status by Glase1 (1971), separates the Aquia and Nanjemoy Formations.

S 2 Woodstock Olive-blackto

S Member Greenish-gray 1975 E Sand with 1987) © Units16-17 Abundant Bivalves >

© Witmer, Goodman,

E Potapaco Dark to Greenish} Eocene

Member grayGreensand (After So - some Bivalves Units 10-15

GROUP column.

1987 Marlboro Clay

Paspotansa Greenish-gray geologic & Member Greensand

3 with Gastropods Witmer, Group E Units 8-9 O Jy 1975

Ss = Piscataway Dark Greensan Pamunkey PAMUNKEY PAMUNKEY 3. < Member and abundant Bivalves Paleocene Paleocene Witmer, Figure Units 1-7

The Aquia Formation The Aquia Formation is the basal unit of the Pamunkey Group. It rests unconformably upon Late Cretaceous marine sediments over most of its geographical extent.

The type locality of the Aquia Formation is at the mouth of the Aquia Creek in Stafford County, Virginia. Its thickness ranges from about 30 meters at its type locality to a maximum of 76 meters at its eastern-most extent in Delaware and . It consists primarily of glauconitic quartz sands. The Aquia contains fossil remains of tropical , , and including pelican and albatross (Olsen, 1985; Weems, 1985). It is subdivided into the Piscataway (basal) and Paspotansa (overlying) members (Figure 3).

The Piscataway Member is a glauconitic (20 to 70 percent) clay rich and silty quartz sand trangressive marine unit (Ward and Krafft, 1985) deposited at a water depth of about 100 meters (Nogan, 1964). Common macrofossils include large bivalves and occasional gastropods (see Ward and Krafft, 1985, for details). The Piscataway Member contains units 1-7 of Clark and Martin.

The Paspotansa Member consists of glauconitic micaceous silty quartz sands somewhat better sorted than those of the Piscataway Member, and may represent a higher energy depositional environment (Ward and Krafft, 1985). A few beds contain bivalve macrofossils (see Ward and Krafft, 1985, for details).

The Paspotansa also is a transgressive unit deposited under progressively shoaling conditions. It includes units 8 and 9 of Clark and Martin.

The Marlboro Formation The Marlboro Formation is a roughly meter-thick silty clay unit that separates the Aquia and Nanjemoy Formations. It varies in thickness, and is missing at some localities. It rests unconformably upon the Aquia Formation and is in turn overlain unconformably by the .

Interpretation of the depositional environment has been controversial. Ward and Krafft interpret the Marlboro as tidal flat deposition (Ward and Krafft, 1985), based partially on ripple marks within siltier portions of the unit. Others have evoked deposition in quiet waters of a protected embayment (Roger Cuffey, personal communication, 1996.) 8 The Marlboro is not included in the present study because of poor preservation, paucity of dinoflagellates, and reworking (Dewey McLean, personal communication, 1996).

The Nanjemoy Formation The Nanjemoy sediment is composed of fine glauconitic quartz sands which are often argillaceous and sometimes calcareous with some beds containing abundant gypsum crystals. At the type locality along Nanjemoy Creek, Charles County, Maryland it is about 38 meters thick. The beds thicken to the east and northeast. The Nanjemoy Formation is divided into the Potapaco and overlying Woodstock members.

The Potapaco Member includes units 10-15 of Clark and Martin. Lower portions of the Potapaco consist of black to pink clay-rich sands containing (often detrital) glauconite. Some layers contain gypsum crystals and concretions. Worn and broken small bivalve fossils, scaphopods, Calianassa burrows and other bioturbation indicate more energetic conditions, possibly because of shoaling. Upper portions of the member contain higher amounts of glauconite, along with phosphate pebbles and wood fragments. This suggests a transgressive pulse during which sedimentation rates were low (Ward and Krafft, 1985).

The Woodstock Member lies unconformably upon the Potapaco Member. It includes units 16 and 17 of Clark and Martin. The basal Woodstock is marked by a pebble concentration, burrows and wood fragments. The Woodstock consists of very fine, well- sorted, silty glauconitic sands. Glauconite increases upward through the member whereas wood fragments decrease. The Woodstock contains diverse molluscan fossils (Ward and Krafft, 1985). It was deposited during transgression which returned the embayment from relatively nearshore to offshore marine shelf conditions. Woodstock sediments at Popes Creek, Maryland contain fossil fruits of Wetherellia marylandica. (Tiffney, 1985). These, and similar tropical mangrove-like fossil fruits from time-equivalent beds in Mississippi (Call, 1993), suggest that tropical climate existed throughout the region of the Salisbury Embayment. Hl. THE DINOFLAGELLATES R. H. Whittaker divided life into 5 kingdoms: Animalia, Plantae, Monera, Fungi, and Protoctista. The dinoflagellates belong to the latter, and more specifically, to the Division Pyrrhophyta (Pascher, 1913) and the Class Dinophyceae (Fritch, 1935). Lee (1992) recognizes six orders of modern Dinophyceae: Prorocentrales, Dinophysiales, Peridiniales, Dinocapsales, Dinococcales, and Dinotrichales. Of these, only the Peridiniales (Heackel, 1894) are important to this study.

Dinoflagellates are eukaryotes, but because of their nuclear organization, they are best described as mesokaryotic (between prokaryotic and eukaryotic). Most are single celled, but some form colonies. Thousands of species, both marine and freshwater, exist. Most are marine and are most abundant in warm waters. Most are heterotrophic, but some are phagotropic and predatory (Burkholder, 1992; 1995; Steidinger, 1996). This study deals with single celled marine dinoflagellates.

Dinoflagellate Life Cycles: Theca Versus Cyst Forms Dinoflagellates are microscopic single celled organisms with complex life cycles many of which include both asexual and sexual reproduction, and both motile and resting stages (see figure 4 for generalized life cycle and description). What is known of fossil dinoflagellate life cycles is based on studies of modern dinoflagellates. It is assumed that many fossil forms utilized similar strategies.

Living motile dinoflagellates range in size from 20 to over 200 micrometers. Many species encase the protoplasm within a cellulosic shell or theca. Unfortunately, since cellulose is not well-preserved in the fossil record, our knowlege of fossil dinoflagellates is based on the study of resting cysts.

Cysts are composed of a complex chemically resistant carotenoid-like organic polymer known as sporopollenin, which is preserved in the fossil record. Dinoflagellate cysts often exist in sediments in which calcareous and silicious microfossils have been destroyed. Many cyst forms reflect faithfully the tabulation pattern of its corresponding thecate form. Dinoflagellate thecae are made up of numerous tiny plates, each of which has a unique shape and position in the theca (figure 5). These plates are arranged into series (See figure 5). The overall arrangement of plates is referred to as tabulation. Tabulation is an important criterion in dinoflagellate classification. The resulting pattern provides diagnostic cyst morphotypes by which we can identify modern or fossil cysts. In 10 ‘SQ61 ‘NIA Jayy ‘apoAoosryayeyjesejouiq “p ansi4

ys ’ 7 Af Ly4 (JUOWUIpes OQ} ysAO Ayduio) Lf O08 SP

(2 11 4 -- -Jo2 - ton

P1o}dip \

accordance with Evitt (1976; 1985), such cyst features are referred to with the prefix para- attached. Thus, cyst features become paraplates, paratabulation, parasulcus, and paracingulum (See figure 4).

There are two primary architectural styles of tabulation/ paratabulation in the peridinialean dinoflagellates. Those whose thecal plate arrangement resembles that of living Gonyaulax are placed in the “group” Gonyaulacaceae. Those whose plate pattern approximates that of modern Peridinium are referred to “group” Peridiniaceae.

In some cysts the cyst wall is deposited within, and next to the thecal wall. These are known as proximate cysts. Chorate cysts are similar, but have well-developed ornamentation or processes caused by shrinkage of the inner cyst from the inside of the thecal wall. Gonyaulacoid cysts tend to be chorate. In cavate cysts, space exists between layers of the cyst wall, and layers are separated by often intricate perpendicular walls or columns. Peridinioid cysts are often cavate.

Other criteria used for cyst classification include shape, ornamentation such as processes or spines, etc., cyst wall structure, and archeopyle type (opening in the cyst wall(s) through which the protoplasm escapes the cyst). See figure 5.

12 FIGURE 5. Dinoflagellate Morphology The sulcus is a longitudinal furrow located on the ventral portion of the theca. A smooth (acronematic) longitudinal flagellum is attached to the sulcus. It is responsible for both steering and forward movement of the dinoflagellate. The cingulum (or girdle) is an equatorial furrow which divides the theca into upper and lower hemispheres. The ends of the cingulum meet the sulcus, and may _ vertically offset one another. A transverse flagellum lies coiled helically within the cingulum. This transverse flagellum is usually covered with mastigonemes (small fibrillar hairs). A rhythmic beating of this flagellum causes both forward movement of the dinoflagellate and also a rotational movement of the cell through the water (Thomas, 1995). The archeopyle is the aperture formed by the loss of either a single paraplate or group of paraplates (plate field) which allows the protoplasm to escape from the cyst during excystment (Evitt, 1976). The archeopyle of a given species is uniform in shape, precisely located and oriented, and can be used in determinations of cyst morphospecies. The paraplate or paraplate field which is opened or detached in the formation of an archeopyle is called the operculum. Thecate dinoflagellates reproduce both sexually and asexually, depending on season or as environmental conditions begin to change (Lee, 1992). When sexual reproduction occurs, a planozygote or zygospore is formed. This is usually (though not always) in the form of an organic walled (sporopollenin) resting cyst. The tabulation pattern of the cyst is directly related to the thecal tabulation pattern, although the cyst may or may not reflect the original theca. After an inert period, spent either within the water column or within bottom sediments, the zygocyst germinates and reestablishes a motile phase. Some dinoflagellate cyst morphologies, such as spines and appendages, retard sinking (Parsons 1977). Because excystment is controlled by both water temperature and cyst age, cysts falling below about 200 meters rarely germinate (Lentin 1980).

13 (S861 ‘WIA Je1pV)

ainjeoy

(uoyejnqeyeied (uoyejnqeyeied winjnsuloesed winjnsuloesed

yWOUNSADKS

sno[nseied sno[nseied ainjnsesed ainjnsesed

ysAoodAy ysAoodAy

aye|desed aye|desed

Jeyjasey Jeyjasey

Jeos Jeos JSD JSD ysAoida ysAoida

une

= 90 = =

ajAdosyoe

uolje]nqe}) uolje]nqe})

eoaujodAy eoaujodAy

wnjnsulo wnjnsulo xpyneAuoy xpyneAuoy

Boou) Boou)

eoeyyida eoeyyida Jeyjose Jeyjose

in UIMIUIPLIeg UIMIUIPLIeg

aiod aiod

snojns snojns

oinyjns oinyjns

es es ayeid ayeid

‘op

yj yj Cat Cat

Wd 2 2

‘oe

‘bp

xodejue

‘sd

14 DINOFLAGELLATES: FACTORS CONTROLLING ABUNDANCE, DIVERSITY AND PRESERVATION

General Statement Many factors control dinoflagellate abundance in living populations and in the fossil record. As microscopic phytoplankton, living dinoflagellates respond to environmental conditions of the photic zone. Some modern species encyst during unfavorable conditions. Others encyst as part of a seasonal life cycle, while others, especially open marine forms, do not produce cysts (Dodge, 1995). When produced, cysts must often sink through great water depths to become preserved in the fossil record. Many factors, such as feeding, breakage or chemical dissolution may destroy dinoflagellate cysts before they reach the sea floor.

Even after cysts reach the sea bottom, other factors such as bioturbation or diagenesis can still selectively destroy them. Because of both encystment patterns and taphonomic factors, fossil cyst assemblages may not reflect the composition of living assemblages.

Physical Factors Controlling Abundance and Diversity

Temperature Ambient temperatures and temperature fluctuation influence dinoflagellate abundance via affects on metabolism and photosynthesis (Loeblich, 1967; Parsons, 1977). In addition, temperature difference is often a cause of water column stratification which may encourage dinoflagellates. Dinoflagellates exist at wide ranges of temperatures, but generally prefer warm waters. Maximum reproduction rates often occur near upper temperature tolerance levels (Taylor, 1987). Reproductive optimum temperatures for nearshore species are from 15° to 25° C., and for oceanic species occur at 20° C. (Loeblich, 1967).

Dinoflagellate populations are sparse in cold seasons or colder waters. Diatoms tend to replace dinoflagellates in cooler conditions (Guillard and Kilham, 1977).

Salinity Marine surficial salinities vary with mixing, upwelling, and evaporation. In

15 nearshore environments, freshwater flows out over more saline estuarine and coastal waters, maintaining a less saline surficial layer in which phytoplankton congregate (Thurman, 1994).

Nearshore and estuarine dinoflagellates range from obligate freshwater forms (such as Peridinium limbatum) to cosmopolitan euryhaline species. Terrestrial nutrients in estuarine environments correlate inversely with salinity (Mallin et al., 1991). Thompson (1987) notes many “stenohaline” associations may be dependent on, or intolerant of, run- off related constituents other than salt. Generally, peridiniacean dinoflagellates prefer near-shore environments. The presence of proximate and peridinioid cysts suggests marginal marine or reduced salinity conditions (Harker et al., 1990).

Offshore waters are relatively stable salinity-wise, and contain mixed cosmopolitan and stenohaline (or runoff-intolerant) dinoflagellate species, including many gonyaulacoid types. In the fossil record, the presence of mainly spiny chorate and gonyaulacoid or gymnodinioid cysts reflects normal marine salinity (Harker et al., 1990).

Eddies, Fronts and Upwelling Flow of deep marine water into shallow coastal areas promotes mixing or upwelling. Fronts, however, occur at the contact between two water masses having different densities, due to temperature, salinity, or other factors. In these situations, a relatively sharp boundary occurs between the two water masses instead of a well-mixed zone. Fronts are often zones of convergence, capturing foam, floating wood and detritus, and near-surface phytoplankton (Bowden, 1983). Eddies occur when a portion of an intruding watermass is “spun off” into dissimilar coastal waters.

Eddies, fronts and upwelling are often associated with high nutrient conditions, and are often sites of highly productive, though sometimes patchy, phytoplankton growth (Tappan, 1985). Phytoplankton productivity in response to front-induced conditions may continue at times when frontal conditions are no longer present (Barry and Dayton, 1991). Where stratification or convergence occurs, dinoflagellates may have functional advantage over other phytoplankton, and occur in high numbers and/or diversity. Boundary regions too cold for dinoflagellates are occupied primarily by diatoms (Smayda, 1967; Guillard and Kilham, 1977).

Fronts often separate different floras, associated with the different water masses. Phytoplankton populations along fronts and upwelling zones often contain higher diversity,

16 and/or different species associations than do waters on either side of the boundary (Gray, 1981). Bottom sediments beneath the boundary may preserve records of phytoplankton from one or all flora, depending on sedimentation patterns, sediment mixing, and locational stability (or seasonal repeatability) of the boundary. Long-standing boundary conditions may locally affect the gradient of change of fossil phytoplankton. Even sharp boundaries, however, will produce a “blurred” record due to mixing.

Nutrients Dinoflagellates utilize nearshore (terrestrially-derived) nutrient sources moreso than upwelled oceanic nutrients (Thompson, 1987). Nitrogen and phosphorus availability are primary limiting factors in near-shore conditions. Iron, organic nutrients, and vitamins (such as B12) are important limiting factors, particularly in open oceanic conditions (Parsons, 1977; Bonin and Maestrini, 1981; Thompson, 1987).

Nitrogen and phosphorus (usually at a ratio of 15N to IP) tie linearly to productivity (Parsons, 1983). In summer, stratified near surface waters are often deficient in nitrogen and phosphorus, reducing dinoflagellate productivity (Lieberman, 1994). During dinoflagellate blooms, sexual reproduction (and encystment) occurs when nitrogen levels eventually drop, suggesting that it is nitrogen which becomes a limiting factor (Weeks, et al., 1993). Decrease in nitrogen available might instead trigger sexual reproduction by changing the local carbon/nitrogen ratio (Bruce Parker 1994, personal communication). In this case, algal productivity may become self-terminating before nitrogen becomes a true limiting nutritive factor.

Phytoplankton require iron for their respiration and photosynthesis reactions (Glover et al., 1978). In near-shore areas, iron is available from terrestrial runoff, though only some forms are chemically useful to algae (Parsons, 1977). Open ocean waters are generally iron deficient (Menzel, 1961; Tranter, 1963). Studies by Ryther and Kramer (1961) found that oceanic dinoflagellates (especially Gonyaulicoids) have lower iron requirements than do near-shore types (including the Peridineaceans).

Organic nutrients and vitamins are often derived from terrestrial runoff, and are more available in nearshore, less saline waters (Gallegos, 1992; Carlsson and Graneli, 1993; Lopez, 1993).

17 Light Light levels vary with turbidity and season. Seasonal light variation operates in conjunction with temperature to trigger encystment and productivity changes (Lee, 1992). In turbid or eutrophic environments, some dinoflagellates ingest other plankton, including diatoms (Marshall and Alden, 1993; Mullin, 1995). Dinoflagellates are often replaced by diatoms in times or areas of high turbidity (Marshall and Alden, 1993).

Biological Responses to Physical Factors Succession Succession is an ongoing shift in community structure or makeup as it continuously readjusts to changing environmental conditions (Margalef, 1968; Drury, 1973). Phytoplankton often progresses through a seasonal succession beginning with early season pioneer species and progressing to later, stability-associated species such as dinoflagellates. Within each successional range, incumbency plays a significant role. Once a species group is established, it dominates resources until conditions change, and it is displaced by a different group (Rosenzweig, 1991).

Study of seasonal succession suggests that dinoflagellate species occurring together in a fossil assemblage may not have existed together or interacted significantly with each other while alive. For example, a dinoflagellate species dominant when the water is first warmed in the summer may not interact with one dominant only in the fall. The length of dominant periods also changes with conditions: a dinoflagellate may flourish in tropical environments over 8 months of the year, while the same species will be active only through July and August in colder waters.

The fossil record indicates that dinoflagellate species groups or associations also change with environmental conditions over longer periods of time Offshore sediments have different associations or assemblages of dinoflagellate cysts than do sediments deposited in shallow estuarine or shallow coastal settings. Fossil dinoflagellate cysts change stratigraphically in sedimentary layers in a way which correlates with transgression/regression patterns of the paleocoastline (Habib, 1989). The fossil record may suggest persistence of general estuarine dinoflagellate “gene pools,” sensu Buzas and Culver (1994) through time.

A species (or species association) may become dominant when environmental

18 conditions become optimal to its particular needs (Harrison and Quinn, 1989). During other times, it may remain present in the local environment, but remain encysted, suppressed, or as a minor fraction of the community. Oliver (1990) refers to continuous presence of many species, even when not dominant (in regard to forest stand dynamics) as an “initial floristics model.”

Inoculation Survival of a dinoflagellate species in a region depends on at least some cysts remaining in or returning to the local environment (Keafer et al., 1992). When cysts hatch under optimal conditions, they may remain rare, or they may reproduce asexually in great numbers, potentially allowing even a single cyst to produce a large population.

Cyst abundances less than 1% (“rare”) in rock samples are usually not considered to be statistically significant (Ludwig and Reynolds, 1988). Even rare cysts, however, are present in local sediments in large numbers, and represent potentially viable stock during that time. Even cyst types not encountered within sample counts may be present, although below a threshold where they are found in most individual samples. Cairns (1969) discusses the threshold density of finding a single specimen of a rare species within modern ecosystems, concluding that one almost never finds “rare” living species in samples, although their overall population density must be adequate to sustain them.

Dinoflagellate Blooms Optimal environmental conditions may give rise to large populations of dinoflagellates. These dinoflagellate blooms, or “red tides” can occur periodically due to seasonal or localized environmental conditions. | Environmental factors conducive to dinoflagellate blooms include warm stratified surface water, gentle onshore winds, intense sunlight, and high nutrient levels (Lee, 1992). Nearshore environments and upwelling regions are often nutrient-rich, and often become sites of abundant dinoflagellate growth (Harris, 1986, Xiaohong et al., 1991). Dinoflagellate blooms often occur after cessation of upwelling, and/or directly diatom blooms. Diatoms “set up” specific nutrient and pH conditions amenable to dinoflagellate blooms (Smayda, 1967; Hinga, 1993) Dinoflagellate blooms are often toxic, producing extensive fish kills, poisoning shellfish, and destroying much of the local non-dinoflagellate phytoplankton (Prakash, 1967; Mullin, 1995).

During late stages of a bloom, mass encystment of dinoflagellates takes place (Heiskanen, 1993). Cysts remain inert within the water column or sediment, sometimes 19 for several years until bloom conditions return (Keafer, 1992). Those buried deeply may never hatch.

Dinoflagellate biomass is greatest in near-shore and/or estuarine environments. Dinoflagellate species diversity drops off from open shelf environments toward shore, roughly correlative with decreasing water depth (Hulbert, 1963; Wall, 1977). In estuarine environments the reduction may be so drastic that the dinoflagellate community is represented by only afew tolerant species.

Many living dinoflagellate species cannot cope effectively with rapid salinity changes, or with temperature changes greater than about 5° C at a time (Parsons, 1977). Nearshore dinoflagellates often migrate geographically within estuaries in response to drastically changing environmental conditions (Habib, 1989; Firth, 1993; Burkholder, 1995). Vertical diurnal migration strategies allow modern nearshore and estuarine dinoflagellates to exist in variable, or eutrophic settings (Santos and Carreto, 1992; Salonen, 1994). Some nearshore and estuary dinoflagellate species can encyst within minutes when exposed to unfavorable conditions. Such production of resting cysts seems a specific adaptation to unstable environments within estuaries (Burkholder, 1995).

Large numbers of fossil specimens representing a single species may indicate environments where blooms occurred repeatedly. Whereas diverse dinoflagellate fossil assemblages may reflect seaward paleoenvironments low diversity may indicate nearshore or estuarine conditions.

Factors Controlling Preservation Copepods and other zooplankton eat encysted dinoflagellates, breaking, and often destroying, the cysts. However, some cysts preferentially pass through the zooplankter gut intact and become incorporated into fecal pellets. The relatively large fecal pellets settle rapidly to the sea floor. Buck and Newton (1995) note that most dinoflagellate cysts become incorporated into the fossil record in this manner. Additionally, zooplankters prefer some prey species over others, introducing feeding bias into the record.

Within bottom sediment, changes in sedimentation rate can concentrate or dilute the relative numbers of cysts present (Rutherford, 1994). Bioturbation and other time averaging obscures details and decrease resolution of 20 the dinoflagellate record (Walker and Bambach, 1971). Time averaging may limit dinoflagellate data resolution to thousands or tens of thousands of years (Flessa, 1993).

Diagenesis also influences dinoflagellate preservation. Cysts are damaged or destroyed by local pore fluid and sediment chemistry, especially where hot or basic. Most dinoflagellate cysts contain sporopollenin which is resistant to chemical breakdown (Evitt, 1985; Traverse, 1988) except to oxidation, such as in high pH conditions. In calcareous samples, for example, dinoflagellate recovery is often poor. In ferric sandstones and siltstones, as well as in close proximity to Jurassic and Cretaceous dinosaur bones in lakes and brackish seaways, general palinomorph recovery is often poor (Alfred Traverse, personal communication, 1995). Recovery in organic rich sediments, and in relatively acidic or reducing conditions is often high.

21 IV. THE YELLOW SEA AS A MODERN PHYSICAL ANALOG FOR THE SALISBURY EMBAYMENT

In developing a model of the Salisbury Embayment, The Yellow Sea is an appropriate modern analog. It (along with inner portions of the East China Sea) is similar in extent, depth and physical structure, latitude, and eastern contenental location to the Salisbury Embayment (figure 6). It might share similar circulation and current structures with the former Salisbury Embayment.

The Yellow Sea is a shallow embayment bordered by China to the West and North, and by Korea to the East. It opens to the East China Sea to the south. TheYellow Sea bottom structure includes a north-south oriented deep trough (located somewhat nearer to Korea than to China) that provides the Yellow Sea with a core of warm, saline marine water derived from the Kuroshio, or regional boundary current.

Zhou (1989) has described the dynamic deposition systems of the Yellow (and East China) Sea. Even though influenced by human activities (Milliman et al., 1987), the depositional patterns and structures (Wang and Zhu, 1990; Park et al. 1992) may be analogous to those of the Aquia, Marlboro and Nanjemoy Formations of the Salisbury Embayment (See also Je et al. 1988). Glauconite is produced in deeper, offshore waters of the Yellow Sea Embayment and East China Sea (Lu-Xiaozhen, 1989).

Circulation within the Yellow Sea appears driven by wind-induced (i.e., Ekman upwelling) and tidal currents (figure 6). These currents wax and wane with seasonal monsoon winds and freshwater input (Park, 1986). Warm Kuroshio water enters the deepest portions of the embayment via the Yellow Sea Warm Current (Hwang and Choi, 1993). In the northern half of the Yellow Sea Embayment, seasonal winds create an extensive surface zone of upwelling and mixing, forcing warm marine water to migrate northward as far as the Bohai Gulf (Tomczak and Godfrey, 1994) The marine influence varies seasonally as a function of wind strength and direction.

The China Coastal Current transports cool, low salinity water southward from northern portions of the Yellow Sea. A similar coastal current flows southward along the western coastline of Korea. These currents are strengthened seasonally by monsoonal freshwater influx into the margins of the Yellow Sea Embayment.

22 ‘SJUdLINDJOfewl pUB SoINyedJUTPJSBOD SUIMOYS ‘BAS MOTIAX SUL, ‘9 WN 4? x

a 6

Pp

BOS

BUIYD1sey 23

BIS MOTJIX

The northward and southward flows are separated by lateral oceanic fronts (see figure 6). Here, the warm marine Kuroshio-influenced water mass meets with cooler less saline coastal water. Due to density differences, the two masses slide past each other without mixing significantly.

Freshwater drainage into the Yellow Sea Embayment creates local estuarine conditions, bounded by salinity and turbidity fronts, which separate them to varying degrees from nearshore coastal waters. These regions include portions of the Bohai (Yellow River) Gulf (Deng, 1988), the Yangtze River (Tomczak and Godfrey, 1994), the Kyongg Bay, the Kum River Estuary, and other areas (Yoo, 1986).

This physical circulation pattern produces a system of three relatively distinct water masses. They are: offshore, onshore, and estuarine. Offshore (warm, more marine) conditions are separated by an oceanic front from nearshore (cool, less marine) conditions. Salinity and/or turbidity fronts in turn separate nearshore conditions from more extreme and brackish conditions within estuaries (Seung et al. 1990: Shim et al., 1991)

In general, temperature and salinity in nearshore waters increase seaward. Offshore waters continue to show seaward temperature increases, although salinity there remains at about 34.4 o/oo (Kim et al. 1991; Cheong et al. 1992). Yellow Sea temperatures range from less than 2° C in nearshore winter waters, to about 27 °C in offshore summer waters (Kim et al. 1991;Tomeczak and Godfrey, 1994). Temperatures of the warm Kuroshio Current range from 16 °C in winter to 29°C in summer. Its salinity ranges from 33.7 to 34.9 o/oo (Kim et al. 1991, Schweitzer, 1993).

During the summer season, thermoclines and stratification become well-developed in the Yellow Sea, especially in conjunction with front regions (Matsuda et al., 1989; Seung et al., 1990). Deep waters are characterized by high salinity. Surface waters are often nutrient poor (Chang et al., 1990; Yang and Kim, 1991). Primary productivity along the regional fronts is higher than that of either the outer stratified waters or the inner mixed coastal waters. This productivity is associated with increased light (decreased turbidity) and high nutrient levels along the fronts (Choi, 1991)

Because of the relatively cool temperatures and turbid conditions in shallow nearshore portions of the Yellow Sea, diatoms dominate the phytoplankton (Chang, 1986, 24 Choi and Shim, 1986, Lee et al., 1989). Dinoflagellate populations are sparse, making up portions of the phytoplankton primarily in late summer. The dinoflagellates occur primarily in warmer, more stratified waters, and in association with the regional fronts. Within the estuaries, phytoplankton is reduced by levels of turbidity. Dinoflagellates and other phytoplankton are sparse in highly turbid environments (Shim et al., 1991), with diatoms predominant.

25 V. METHODS

Sources of Data Sets Samples for most data sets were collected by former graduate students in the Virginia Tech palynology program from surface outcrop localities within the former Salisbury Embayment (figure 7). Witmer collected samples from the Oak Grove core (Witmer, 1987). Samples were numbered stratigraphically upwards at each collecting site. Samples were prepared via standard palynological maceration techniques to recover the organic-walled dinoflagellates. The technique destroys calcareous and _ siliceous microfossils such as diatoms and formaninfera.

Taxonomic identification and speciman counts were made by the original workers. In this study, original data sets were transformed to percentage equivalent values to allow comparison between data sets. Transformed percentage data sets are presented in Appendix A.

The species names used in this study are those of the original workers. This is not a taxonomic project. The reader is referred to the original thesis sources for species descriptions (See also Barss and Williams, 1983).

Correlation of Samples (Cluster analysis) Cluster analysis is a straightforward form of multivariate analysis, whereby data are grouped into a hierarchical classification based on quantitative measure of their individual similarity of occurrence to one another. The output for a cluster analysis is a dendrogram, which groups and ranks the samples by similarity coefficient. Samples whose components are similar group together with high similarity coefficients, producing short dendrogram branches. In this study, cluster analysis is used to divide the combined Aquia-Nanjemoy dinoflagellate data set into dinoflagellate similarity clusters.

Cluster analysis begins with a comparison of (occurrence) similarity of all samples being tested. This produces a data matrix of similarity coefficients. From this matrix, the two samples which are most similar cluster first. The average value of this first cluster element is then compared with all other remaining values, and the next most similar sample is added to the next cluster level. This comparison and clustering continues until all samples are integrated (or forced) into the hierarchical dendrogram. After a sample is clustered, its coefficient value is averaged into the group value, and the sample is no longer 26 SUONBOOT oS *Z,eNs14

od T

a 4k

0 OF OC Of OL oOuN 1m nN ) CLOT “IOUT

27 “IOUT AA L861 —__| FIOHTHOD A ON.. ZAOUDXO w CLOT “UeUIpoor

aa

compared individually with any other sample in the data set. As new samples are clustered, their individual relationships become less distinct. Several results are possible. For one, the precise relationships of samples within cluster groups may not be accurate, although the cluster grouping is accurate. Clustering which occurs at low coefficients of similarity may not be as reliable as those grouping at higher similarities. Clusters at low similarities may be artifacts, associated only because the calculating engine joins together all loose dendrogram branches before terminating the analysis. Cluster analysis, however, is sufficient to quantitatively sort groups with similar characteristics, even though any suggested relationships between such clustered groups may be suspect (Size, 1987).

Q-mode Cluster Analysis Q-mode cluster analysis forms hierarchical clusters of samples by comparing the similarities of occurrence of the species in each. Thus, Q-mode clusters represent physical or geographical units of similarity. They serve to determine potential boundaries of environmental settings among samples. Misunderstanding exists on how Q-mode analysis produces similarity clusters, particularly in gradient situations. Given a constant environmental gradient, Q-mode analysis forces the data into arbitrary subdivisions across the gradient, generating boundary conditions where none exist. However, Q-mode analysis will place group boundaries along non-constant gradients preferentially at points where boundaries do exist, or where the slope of the gradient changes most significantly over a short distance. Because the effects of even relatively sharp environmental boundaries grade into “transition zones” (expressed as a change in gradient slope.), Q- mode analysis is an appropriate tool.

Clustering for this project was done via a FORTRAN program written by Robert Plants (1977) for the IBM370 mainframe, and modified by Tom Rounds and Arnie Miller (1981; see appendix C). This program provided consistency with earlier cluster analysis by Virginia Tech palynology students( See Welch, 1986). The Virginia Tech IBM 3090- 300 E mainframe computer was used for this analysis. In this project, the Czekanowski (or “dice’’) coefficient was used with UPGWA for comparing and choosing similar sample values within the clustering program. See the Results section for the output dendrograms of these analyses.

Q-mode dendrograms were also produced from data subsets containing only Very Common (greater than 25% of the sample makeup), common (greater than 10% of the sample makeup), intermediate (between 10% and 1% of sample makeup) and rare (less than 1% of the sample makeup) species. These dendrograms provide comparison of 28 species within these general frequency groups in the “paleocommunity.” See the Results section for discussion of these separate dendrograms.

Fossil Community Definitions Coastal dinoflagellate associations change geographically according to environmental conditions from offshore to nearshore to estuarine regions (Steele, 1978). These regions may be gradational, or they may be separated by physical environmental boundaries, such as fronts (Springer and Bambach, 1985).

A sample of plankton consists of phytoplankton (including dinoflagellates, diatoms, etc.) and zooplankton (including copepods, etc.). In the living sample, the species and (potential) interactions between them form a local community. Often, only a subset of the overall local community is studied (Bennington, 1995); such as in this study the “dinoflagellate” local community is the unit of interest. An aggregate of statistically significantly similar living local communities in a region constitutes a community. The community boundaries can be defined by the degree of statistical similarity or difference between recurring local communities. In the case where local communities resemble one another, but are not statistically the “same,” then the term community type is used (Bennington and Bambach, 1996).

Fossil assemblages may not closely resemble the original living community. Bennington and Bambach (1996) suggested using fossil record definitions comparable to modern community definitions. An assemblage present in a fossil sample is thus termed a local paleocommunity. An aggregate of statistically identical local paleocommunities is a paleocommunity. Related sets of local paleocommunities that are similar, but not statistically the same, are designated as paleocommunity types. Paleocommunity types group together in statistical cluster analysis of fossil data sets (Bennington and Bambach, 1996). Generally, temporally or geographically similar samples should be similar (particularly when the environment appears similar), whereas samples separated by time, geography, or environmental conditions, are often more dissimilar.

Bennington (Bennington, 1995; Bennington and Bambach, 1996) used ANOVA (analysis of variance of means, as described below) for determining “sameness” between local paleocommunities in benthic marine assemblages (See also Zenetos, 1991). ANOVA analysis is used in this study to compare member samples of cluster groups. 29 ANOVA Analysis Analysis of Variance compares the means of individual sample groups. ANOVA calculates two components of variance (within-group variation, and between group variation) and then compares the ratio of the two components. The resulting number (or F- value) suggests the sameness or difference between members of the group. A probability (or P-value) is then calculated for the liklihood that the F-value will be more extreme than the one reported. Generally, a P-value of less than 0.05 indicates that one or more samples within the group are statistically dissimilar. See Sokal and Rohlf (1969; also Young, 1962; Fredericksen, 1974) for a description of ANOVA procedures.

All ANOVA statistics for this project were run using the Macintosh program STATVIEW, on a Macintosh IIsi computer. See Appendix A for ANOVA results of individual cluster groups.

Dynamic Systems Modeling A major project goal was to construct a dynamic systems model of dinoflagellate species behavior using oceanographic and biologic data. Initial stages of this modeling used the dynamic systems modeling program STELLA II for the Macintosh computer. For a discussion of STELLA modeling, see Richmond (1987).

STELLA II modeling explored the correlation between dinoflagellate cyst distribution and paleobathymetry, as developed by others. In this model, six dinoflagellate Species were created whose populations operated independently of each other and dependent only on depth. Two were “shallow water‘ species, two were “deep water“ species, and two were “intermediate” depth species. Population growth rates differed between the species. No differentiation was made between living thecal populations and fossil cyst populations. Cyst counts for possibly analogous species from a portion of the Oak Grove core data set (Witmer, 1987) were entered into STELLA II format for direct comparison with the model species. Similar estimated depth (“shallow up’) curves were plotted for the data and run for the STELLA II model.

More complex modeling required use of FORTRAN programming. Code structures for the FORTRAN model could be specifically designed for the modern analog of the Yellow Sea. FORTRAN models for this project were designed and run on an IBM 486 personal computer, using KEDIT and a WATFOR87 compiler.

30 BIS juno| MOTI 0197, ISAZ_ A OY} 0}

pos) [RIO A][BOIPOLIag A|yUo|; UO

yidoq LUND

ase poseg

sooeds

0} pojdures ov

pajejey 3shz_

JOSayY YURYOMOL YURYOMOL SUONIPUOD

aje]jasepjourq satoadg av ose

st

AWAnONpoig Sy9o0IS

suonejndog [PPO [PPO = [eoIskyd sisk_ 1sAD

us], NVULUOS NVULUOS

% ‘8 ‘8

WNs14 WNs14

|

JO JO

peAoseq peAoseq

ey2J-UMOID ey2J-UMOID

seioeds seioeds |

Ayuiyes

jo

Auanonpoig Auanonpoig sjjeo sjjeo

syoojg

eyejebeyoulq

sjsAp sjsAp juewipes juewipes

seloeds ‘eunyesedwie

seeds seeds

Bulpueys

JUEWIPES JUEWIPES

JO JO seloeds seloeds

yINE yINE

e6elusoed e6elusoed

ul ul S}iwi S}iwi S}PAd

| | I I |

aye}jebejjoulg aye}jebejjoulg

oO} oO} jeqUeWUOWIAUG jeqUeWUOWIAUG

JO

sIsAD sIsAD

JUBWIPES JUBWIPES

S}SAD S}SAD

Je}OL Je}OL Ul Ul

31 FORTRAN modeling for this project began with the construction of a simple linear- donor-controlled model, in which the results of each model step are controlled only by the previous step. The flow chart diagram of this structure is shown in figure 8. By successively adding complex relationships to the model code, three time varying non-linear Figure 8 models were created. The final FORTRAN model code is shown in Appendix B. Data for the final models were drawn from information discussed in the background sections of this report (Also including Balech, 1967; Atkinson et al., 1985; Begon et al., 1986; Brock and Madigan, 1991). The FORTRAN model is broken down into three separate portions. The first is a module describing environmental parameters and relationships. The second presents hypothetical dinoflagellate species and their environmental requirements, growth parameters, encystment parameters, and environmental limitations. The third contains the assumptions and procedures associated with dinoflagellate cysts added to the sediment, and with time averaging. Results of these FORTRAN models are given in the Results section.

Phase Plane Interactions Phase planes are a method for graphically testing possible species interactions. In this graphical technique, two species’ population values are compared relative to each other, rather than as a time series. If one species is systematically affecting the other (Davidson, 1995), then the population values of both species may show the interaction geometrically when plotted in x-y phase plane space. When oscillations in population numbers of interacting species are stable with respect to each other through time (such as in a traditional Lynx versus Hares predation model), the phase diagram “stability field” produces a circular equilibrium figure, which repeats through time.

When the parameters of the system interact convergently toward an equilibrium condition, the stability field is expressed as an inward spiral, toward a circular equilibrium figure. When the parameters diverge from equilibrium, the spiral is outwards.

There are specific patterns which are stable and others which are not (figure 9). Interaction figures in real data may be overprinted by strong environmental signals, or interactions with more than one species at once. Two species reacting similarly to each other may both be reacting to a third over-riding factor. In such cases, the phase plane figures are erratic, and produce figures unlike those of the accepted archtypes. Interaction, where it exists, may be most apparent during times of overlap and replacement between populations, or may all be below the level of resolution of the data set. 32 y d/* N y sadAjyory ouejg aseyd “6 wns

<< an aa

L y d \ ” yl d/*

peyore, s}winuqiinby e\qeis

ey

(d/3>'y “oy > %) on ron) (Winuqyinbeejqejsun) oy oy

julod Bulpeys au} uo Spuedep ,SuIM,OUAA

z JQUUIM du},SABMe SI *y

y zy

+ Cary sh f (dy <'y ‘os!< %y) (dy >'y ‘os'y<%y)

VI. RESULTS AND DISCUSSION

Stella Dynamic Systems Model The STELLA II model assumes that instability and variability increases with sea level shallowing. It plots species frequencies dependent on the sea level and according to simple growth rate equations in the model code. The resulting time series (figure 10a) is graphed against a “shallow-up” relative sea level curve from a portion of the Oak Grove Core (Witmer, 1987).

The model output can be compared with equivalent data plots of Areoligera, Deflandria, and Wetzeliella from the Oak Grove core (figure 10b). Line 1 (inversea) in both models represents the inverted sea level curve.

In both the model (top), and in the graphed data set (bottom), “deep” versus “shallow” species are present. The most noticeable contrast between the model and the plotted data is the finer scale shape and position of the frequency curves from the real data. In the model, there is a slow (mathematical) response time between sea level change and calculated dinoflagellate response. This is primarily due to the iteration period used within the model. Shapes of the modeled curves are simpler than those from data because they are defined by relatively simple mathematical modeling equations.

In general, the STELLA II model suggests that depth corellations might be quantifiable for some species, if precise dinoflagellate counts and detailed sea level information were available. Still, associations with bathymmetry do not directly suggest causation.

34 966 1/Ee/b Fr-OL 00°81 os'€! ounsty SOLOSOUI L PPO I]WTTALS *‘OT het : 2 1

(,86| ‘IOWNIAA WOIJ Byep) ‘a0

: IAOID) FLO 24} Jo uonsod evwos vyep

oye|jase[jourp yenjoe Jo 10] []WTTALLS

y €

q

BaSIOAUY *] PPT] Z1aM “by puelyap :€ Bijoaue:z 35

9661/E2/y BrZk auld, | aBeg e 1 » t © o mw N “Nast

ge"S2 ‘y s9'0l € Leb 2 ‘QUIT]ISUTeSe payoyd ‘yidaps9}eM we

(9SJ9AUI)pue satoadsaye [[ase]JouIp

sary}Joindyno jopowl [TVITALS « ee

eo'92 <<

mi7S"G | t

[salneds :2 BesAul gSeaineds iy asaioeds i¢ Results of the FORTRAN Dynamic Systems Models The FORTRAN models X, Y, and Z predict dinoflagellate populations according to depth related changes in temperature, salinity, and nutrient based on conditions of the Yellow Sea. Preliminary runs of the FORTRAN models using (cool) Yellow Sea temperatures produced small dinoflagellate populations. Increasing the average model temperatures by 5° C produced more extensive dinoflagellate populations. The warmer model variations are presented here. Results of the modeling suggest that the Salisbury Embayment may have been somewhat warmer than the modern Yellow Sea.

Dinoflagellate Model X reflects mixed conditions between nearshore and offshore waters, such as occur in the northern region of the Yellow Sea. Table B-1 (Appendix B) contains output from this model. For regions of mixing, Model X suggests gradational change in dinoflagellate associations from nearshore to offshore. Individual dinoflagellate species fluctuate seasonally as temperature and salinity conditions change.

Dinoflagellate Model Y describes the effects of a front boundary separating nearshore from offshore waters, such is found in lateral regions of the Yellow Sea. Table B-2 contains output from the second model.

For front-bounded conditions, Model Y suggests disparity between the two watermasses, their environmental conditions and the dinoflagellates present. Nearshore forms remain more separate from offshore forms. The physical and geographical change between the two groups remains sharper even with seasonal changes. Both mixed and front conditions may be found within the modern Yellow Sea. Lateral fronts remain at relatively constant locations, while the large mixed zone migrates seasonally, and has no sharply definable boundaries. Similar conditions may have existed within the Salisbury Embayment.

Table B-3 contains output from the third dynamic system model version, Dinoflagellate Model Z. This version produces model cyst data based on the dinoflagellate populations described above. Model depth increases by 5 meters at each sampling event. After each sampling period, all cyst values (including total cysts present) are reset to zero. The model reports cyst data for each species as a percentage of the total number of cysts present. Cyst species 11 and 12 represent secondary morphotypes of species 3 and 4.

Cyst information produced by the model suggests that dinoflagellate changes across 36 (Ol 0} [ satoadsJapow Jo syuNnodsatoeds jussaidas sueg)

"JUOLJ[21SBOD B YIM poyeloosseSUONIPUOD sJOYsSJJOpu sOYsieoU JO UONeIedes SUIMOYS ‘A [APO] 10} pure‘|je] pue suds ul suonIpuod paxiw Jo jda}JoSUIMOYS ‘KXJaPOU JOJ ndjno jopow saNnussaiday ‘|] wnsI4

(sisyaul)yydaq (siayaul)yydaq] O08 O8 OZ O9 | ‘tar } © 001 — - Oz ao 002 —_—___— + OF SUIXIW Jo 9U0Z) aT JOUO) _ o9 OO€ — - Os 0OV - ge OO L 37

00S

(uody) (si9y0u) Ydaq 08 08 QZ Q9 = —— mee ———— -+ 0 Ce qo —— | $n en F002 ty do -——-—-— | — = =} OOF

tsti(‘i‘isésC*@r009 oP @uxmayosuoz) i mo — —-+ 008 YL oe ce 0001

_ suuds yy! 0021 3uuds ‘SISJOWC/ 1e SIUOLJ Poyopoyy ‘yJdapYIM JUOUIpas UI sadA} SsAdJo sadeyUddJad“yndyno 7 Jepoy ‘TZ aN3I4

sia) wdeq

ou tS

© CS

38 Percentage

(suo}Ipuos atoysjO)

(juo14) a front or boundary between coastal regions might be discernible in fossil assemblages (figure 11). This is also suggested by community analysis of the fossil dinoflagellate sets in this study. This assumes that effects of real front or boundary conditions would be significant enough to be recognized above background gradient effects (see figure 12).

The models, although preliminary, suggest that coastal dinoflagellate systems can effectively be described. Sets of potential conditions can be tested in a dynamic manner, provided that background modeling information is of good resolution, and modern analogs are carefully chosen.

Discussion of the FORTRAN Models Models simulate and simplify reality (See Caswell, 1972; Drew, 1985; Goodman, 1988). The modeler tries to reproduce dynamic patterns using the fewest parameters possible. He then considers additional factors individually, to add refinement and complexity to his model. The modeling is a method for discovering the relative importance of different processes in the dynamic system.

In this modeling, I began by addressing dinoflagellate species temperature thresholds. Modern dinoflagellates survive well across wide temperature ranges. Temperature affects dinoflagellate growth most acutely on the seasonal scale. Temperature fluctuation is a strong limiting factor in shallow water, particularly where low temperatures occur. Temperature alone, however, proved unsatisfactory as a limiting boundary condition in the models.

Salinity seems a more powerful control in coastal and near-shore environments. Low and variable near-shore salinity limits dinofiagellates. In other coastal environments dinoflagellates exist in conditions near their upper salinity limit. These upper (seaward) limits model well as range limits. It is difficult, though, to determine dinoflagellate responses to salinity from responses to terrestrially-derived nutrients and compounds.

Nutrient or potential productivity in the model was problematic. Dinoflagellate auxotrophy is complex, and all simplifications quickly became unsatisfactory. Gross potential productivity calculations for phytoplankton are not specific to dinoflagellates (Richards and McGavan, 1989; Kang, 1992). Photosynthetic rates are affected by temperature, turbidity, and diurnal migration patterns. Light plays significant (but not well explained) roles in cueing dinoflagellate activities and life cycle stages. These effects are difficult to model in a meaningful way. 39 It became obvious during model construction that near-shore dinoflagellates are tied closely to terrestrial nutrient input and terrestrial drainage patterns. Possibly, these terrestrial factors, along with salinity, largely control coastal dinoflagellates. Terrestrial nutrient input is difficult to quantify.

Nutrient control entered the models as a_ growth-limiting factor, as nitrogen or phosphorus depletion limits bloom conditions. While this does provide limitations on logistic growth in the models, it does not reflect the broader role of nutrients on real dinoflagellates.

When these parameters are integrated, a plausible preliminary model is produced. The models do appear to resemble their natural analog. Still, they lack refinement. Use and adjustment of the models is necessary. Additional parameters should be explored.

Results of Q-mode Cluster analysis

Total Data set Cluster analysis of the combined fossil data set results in 17 clusters at a coefficient of similarity of 0.4 (figure 13). These groups reflect changes in dinoflagellate associations, controlled largely by environmental conditions. Clustering follows the biostratigraphic order of the samples, representing a shallowing trend from the lower to upper Aquia (from sample 174 to 197), through a shallow and variable period of the uppermost Aquia and lowermost Nanjemoy (samples 303 to 318), and then a deepening trend into the Woodstock Member of the Nanjemoy (samples from 324 to 339 and 239 to 271).

Low association between geographically different data sets occurs between samples 317 and 324, and between 201 and 303.

An Areoligera-dominated association occurs during two separate time intervals. Samples 247 to 249 of the Nanjemoy cluster with 174 through 178 of the lower Aquia. Although the two assemblages are similar, they are not statistically the same.

Clusters representing (regressive) Aquia samples are more similar to each other than are clusters of the (transgressive) Nanjemoy samples. This suggests a more set pattern of incumbent species in the regressive samples.

40

OBI OBI

6) 6) S61 S61 esl esl 6B! 6B! DOS DOS

Lét Lét

Oro Oro

Src Src 641 641

08) 08) 2a! 2a!

EB! EB!

28! 28! 6G) 6G)

S61 S61

ECE ECE oe oe BOE BOE

SIE SIE Bee Bee

Séi Séi Si. Si.

ALI ALI

do2 do2

Pel Pel Si Si Sst Sst

r6r r6r

Soe Soe ee ee

BIE BIE

CIE CIE

S2E S2E

B2E B2E Ered Ered 426 426 ORE ORE

PEE PEE GEE GEE

CS CS

E50 E50 sr sr

FOE FOE

cle cle

SOE SOE

COE COE

EVE EVE

PIE PIE SIE SIE

PZE PZE

FEE FEE

bez bez

Oro Oro

SEE SEE EES EES

LEE LEE

Cho Cho CAC CAC

650 650

Ll Ll

ere ere Oe Oe

ree ree

181 181

l6t l6t

10c 10c

FEE FEE

sep sep Gre Gre

TLE TLE

EE EE

1S2 1S2

(eZ (eZ

Pho Pho

£ £

StS StS

dhs dhs 3WwhUS 3WwhUS

3 3

Fides Fides yaw yaw Flidws Flidws

F1dues F1dues Paes Paes Dds Dds 3 3 Fides Fides

2 2

3 3 Bike Bike

J J Dies Dies

SWS SWS

Jes Jes

3 3

J J Dkk Dkk

2 2

37S 37S

Sakes Sakes Pubes Pubes

Flaws Flaws

Fes Fes Fes Fes SWS SWS

Fes Fes

Pies Pies Bes Bes Didik's Didik's

FMdeYS FMdeYS

Fes Fes BVT BVT 3 3 Stakes Stakes Dldieet Dldieet

Blakes Blakes

Fides Fides

BdkYS BdkYS

3 3

Slaw Slaw

Fees Fees

Side Side Fw Fw

3 3 Pidwes

FS FS

Bites Bites Flas Flas

B1deesS B1deesS Ties Ties

FAS FAS

FAs FAs

Pits Pits SVE SVE

SIS SIS Dds

a a S{ahes S{ahes Deke Deke

Paes Paes

Fes Fes F3dkNS F3dkNS

Diee Diee

Pads Pads

Blakes Blakes

FS FS Bes Bes

Stee Stee 5 5

Tee Tee

Det? Det?

FT FT

duet duet

dws dws dys dys

lethadS lethadS

ges ges

Uttase Uttase

iis iis

fess fess

Wes Wes

des des

has has

kes kes iclarc iclarc

t 5 29 Hane seueueaa RN tl S2SSABS NAME AAR v RERR INGE OST Zhe owm ra vet

—S

we

LTT

ee

et

rar

en

‘JOA9]

oY

rt o

ree

ered

JUSIOTJJI09

na

‘WUBISOIPUdC]

o }——

ST

TT

APES }

ot

a

Lo

1 T

+

ALiIMGUWIS

JaISN]D

JH

7

.

a

pC

30.

oY}

Apowl-C)

_.

Je

=U

SO T

UaSOYO

iN51

39S

1.

“}

LL.

_t

9152509

BIR

POL

dam

L

[RIOL

sdnod

‘E]

|

Ja\snjD

wNdIYy

|__|

|

pT

4] Common Species Cluster Associations (>10%) The common species subset includes dinoflagellates composing more than 10% of any sample. These represent the largest species biomass, and largely determinethe “structure” of the groups.

The Q-mode dendrogram for the common portion of the data set is similar to the pattern of the total data set dendrogram. Again, 17 groupings occur at or above the 0.4 similarity coefficient. Group makeup is similar, though not identical to that of the total data set. (See table 1)

Here, single,dissimilar samples become more apparent (i.e., samples 327, 313) These may represent transition or boundary conditions between larger, unlike groups. Areoligera-dominated samples within the Aquia) cluster at high levels of similarity, highlighting the role of the most common species in forming the statistical basis of the cluster. Nanjemoy samples appear more evenly clustered between sample sets.

Intermediate Species Cluster Associations (1-10%) The second subset dendrogram includes intermediate species, defined as representing between 1% and 10% of any sample. Intermediate species occur an order of magnitude less than the common species.

The intermediate dendrogram does not correspond weil structurally to either the total or the common data. Individual species within the intermediate subset do not necessarily follow the boundaries defined by the ranges of more common species... When only clusters at or above the 0.4 similarity coefficient are considered, however, the result is more recognizable. Intermediate frequency species do respond in the same general pattern as the complete system.

Rare Species Cluster Associations (<1%) Rare species (less than 1% of any given sample) individually have very little Statistical impact on the structure or grouping of the samples. The dendrogram for rare species follows environmental or stratigraphic order of the samples . The species within this subset occur in low numbers (by definition) and have low impact. In this dendrogram, the geographical boundaries between sample sets (between samples 201 and 303, and between 339 and 239) are evident. This dendrogram also produces 17 groupings at 0.4 similarity or above. When rare groupings are tabulated against those of common or intermediate sets (table 1), the similarity is apparent. 42 Table 1 numerical comparison of dendrogram groups

Q-moce Groupings (Paleocommunity types)

All common Intermediate Aare

174, 174 174 174 175. i775 175 175

176: 175, 176. i76

PT 377: 177 tT7 177

178i 178 312! 178

247! 2491 314:

248! 173)

249) 180: 17 Bi 247

248, 161 181 179

179) 182: 179i 180

PT 190! 180' 182

182: 181. 183 182) 181

183, 184!

1831 183: 316) 184

184! 184. 185

185i 185: 185:

186i 186: 186: 186

187! 188! 187

PT 1891 187" 187° 188

190i 195 +89: 189

191' 189 190. 1990

194, 197 184: 191

195) 190! 196° 194}

43 C-moage Groupings ‘Paleocommunity types)

1 316: 103 mM J

sa] iat

2 2 i ‘ 317" 317

samote 243) 1

samoie 247) -

Figure 22 Q-medae Grouvings iPaleocommunity ‘ypes)

45 Discussion of Paleocommunity Makeup Q-mode clustering of the data sets all show approximately 17 coherent subgroupings, or paleocommunity types, in addition to individual samples which are consistently dissimilar to other samples. Both of these observations suggest real rather than arbitrary cluster boundaries. These boundaries likely represent changes in the physical environment through time. ANOVA analysis shows that, at the 0.4 similarity level, all grouped samples are statistically similar, but are not the same. Therefore, the cluster groups in this study are paleocommunity types. Only in Areoligera-dominated samples of the Aquia, where similarity is much higher between some samples might a paleocommunity occur.

There are 255 dinoflagellate species represented in this study. These species, and their general relative frequencies are shown in table 2. The first column contains a species identification number. The first 176 numbers correspond to species identification numbers assigned by Witmer (1987) to species of the Oak Grove core; succeeding numbers are additional species reported in other data sets.

Table 5 shows that a large number of species only ever occur as rare (R%=100). Such species represent no appreciable impact on community structure at any time. Where only a single cyst is reported across the entire data set, the percentage value does not record its presence (R%=0, S%=0, C%=0).

There are several species which are nearly always common. The most extreme case of this is Spinidinium macmurdoensis, which is present as a common and dominant species, or is not present at all. Within this extreme presence-absence pattern, a‘preferential prey’ or preservation effect may be in operation. There is a trend of common species as preferentially “near-shore” types (although the case of Areoligera appears different), which might reflect bloom behavior.

Other species alternate between rare to intermediate, or from rare to common, in varying proportions.

46 Tabie 2. Dinoflagellate Master List and Count Tabulation.

Caunt values. Percentage vaives tle Re S# Se

Acmeila sifarmoices 5.' 72: 18.35 9 72.45 3 MM

2 Acratosonaericium mutiscinosum 795: 3.47) 42.2) 50: 21.3; t4a. 3g 2!

2 Acna‘esonaencium ‘oousium 73.33 + 33; 34 3: 3: 32.33 3: 31

4 Aliscevsta of. a. narganta 2.67! . 4 37° 2. y 32.31 3 qi

5 Ancalusietia ‘nemboneara 4.33) 11 97' 2.57° 4: 57.51 J i

3. Acectoainum omomorohum compiex ai 7: 2.33! 2:77 3i 2.45} 3:. 3a}

7 Agectedinium so. a gt o> 931 3) a 2: 3}

3 Apectocinium ausualiense $.33i QO: 3.333 3 100! 2. 3

3: Agteeainum scndosum 3.73; 1 37' 3.37 2. 78.33 4 Vi

} :QtActeccinium aovrininum 9.331 9.33) 0 9! ' 1. y{

‘ ‘* Aotecaintum resoium 1.37- 1.87! 3° on 3! 2: i

1 12! Areonqera so. 374: Bari tt3i 75a '2.9! , | di Ascotomocysius hyona 3.331 2.33) 3) oe 72! 9! i ‘ * 4|Sauacasonaera microrercuata QO: a: a! 4. oT 3 4

| * 5; Bauacasonaera so. 4: 3: 1 a: 25) 3; qv

| 4.3) Bicontainium ‘onessimum Q: Q! 01 3: a 3 4 j ‘7 Saticeaimum amecuium 217! 3118.7! 9: 36.2! Q. 31 i 13:Cassiaium oaleocencum 21.7" 2.57! 2.331 16.7! 10.91 2s 31

' *91Chroctendium sartsoinatum g° Q: i a, JI 3: on / 261Chlamveaooneretia cr. C. uma ST! 3.231 29.31 +281 12.2! 3 3}

27 Clacesyxicium saectum 4i a! 3: 9: 3; 3 34

22'Ciaisresonaeraium siversisomosum 107" 4.73) 27 4: 7405) 25.7! 3° 3H

272i Canniximura ‘Imonata 2° 3° 3 9. 3: 3: 3 on]

24: Cardoscnaendium oarmatwum 2.57! 1.37! ‘ q: 37.3: > 3: 31

25, Carcescnaericium ibrossinosum 12.7' 12.7! 3 3° 3° a: 3}! di

25, Corccscnaencium gigamteum 737° ‘ “4 a 193i 79.5: 3° 4

27 Coraesonaericium gracilis 50.: 9.15: 40.31 3: 37 31 J: 3° 31

29! Coracsanaendium inades 31.35 17O7' 523.31 2: 73.33 2: 2: 31

23iCarcesconaendium :nodes roousam 1 ‘ 3 9: 2: 3 Ji vt

30: Caraosonaenaium mnuitisciesum 2.731 2.731 2, 9d 4: 2} J: 3

31 Cordesonaencium solaster 9.33) 3.33) 3. 3: Ji 0! J of

32 Caracsonaericium amoutatosoinosum 2 3! 3 9. 41 a 3 34

23. ?Corcasonaencium catlosum 10 3h 3.47° ° 35: 3. 12.3: 2: 3 3 3.4: Danea sp. tat 3i 1.333 13. os 30.7" 3: 2° 3! 23 Cacsiuwainium sseucecallicerum J. 2. 3. 3 Q- 3: 7 3| 3§ Oegdanena aartmona 54.5, 2.57' 32.3) 2: 38.3! 3. 3 MM 37 Selanena snescnonuica 208: 5.27' 43.31 1601 29.1: 75.91 130° 73.31 3 3'1Cenanerna warcenensis 3.3: 3.3! 3 2° Da 3 3 3 29) Cineoteryvgium cacdices 7 33! 3.33) 4. 2. 34.5) ay 3- 33

419 Sinecstervaium ‘enmarmense 3. { 3° ae 38.3! 3: a df 1: S3ionves couigerum 25.31 10.7' *§.3i 3 $39.3) 3. ?. 2}

12’ Dionves coilicerum 3: 4.37' 1.33) 3: 22.2! 3: 3 J 42° Cionves soiligerum ‘sensu cocxsen 1985} 3° 3 2° om 4 q: a 3 4.1,Cistatoainium saradoxum 2: 3. 3 Q, 9: 3: 3}. 31 i5'iecrecysta censopacuiala 43 7’ 20,3: 7 47 33 oa i}

+5: Ziectrocysia coscurotapouiata tay 3) 328i ai 33.3: 94 2! 29: 2!

17 Sccacopyxis senicuiatem 242' 3.03) 20.7° 2: 3.56; 37 7 2! 19! Exocnossnaericium ificum 4.333 4.33, 2: 2: J: 3: a

193: bracinium annetoroense 181. 1.931 70.7: 3) 5.3) 93.3: 3} 30! orocrsta soclare 3, 3° 2° 3 +t 31 4 3° >ogracysta iacvacea 4.33: 1.33! . 31 3° Q: v 32: =brocvst ccaltoscinosa 2.97: 1.37! : 3 373i 4- 3 32 Flercevsta raciata 4 4, 3: 2: 3. 3° 3° vt

54: brocysta 3c. ' 2° }: z 2 3: 3 35-7 orenuma ‘erox .tiT! 1.37) ots 3: 35.7" 3° 2 3!

3sitorma A i 23° 21.383 3 30.31 3 3 i!

37 Sorma3 25.3: 9.33: 3.23. ':6.7' 32.3! 36.31 7° 33

34: Formac 3? $3.37" 33.3 10.3: 37 2. 3 3!

33:=orma > 2 2° ? 3 3° 2: 3 MN

47

oO [oe [oe ao

Sarma = fue abe abe

po

| | n n

bE

romea ‘racits ue Jur a a

fio

apf. |S a Epa |e

=-omea? ‘aevigata rw

yh yh wo wo fw rm

wd

faa faa paar paar -ypoqu w Cad

qa wa [19

Giacnvrocysia 2xuoerans Tain pe

ad ad

la la

s s

Oo Oo

]ta ]ta Qa Qa w es

{ba on on : [oo

be iacnviccysia iIrainata wn lute |

ic . .

|ur oo . fafa fafa iagnvtecysia 30 4 oo 1O

jo

2

who who wl: olan . iiigu [=r [=r ta] Glial 3. iaonvicevsia so 3 @ purtarpua purtarpua > Ola

ao

fe fe SUP ws ca ° o 7 ‘alMmaspnaera cr hk seovala Qo I dai dai ~ a

o'Fatniascnaera seotata we pus pus | Joo “4 wa m 3' Heterauiacacysta camoanula NM]

Jun pyar pyar w 9 ‘eomomoblium cauicuium a2 FCS

]-

o o ty ty

‘somouyvotium ‘asmanense “fOle pw pw JW

[sy Mm Mm

sts od. Gr

wlio

72! Kemouvoium zalacum Go

lorf- Te

- sy) sy)

7 TiHercedineta apicutiata Qo Or] : 7 ti bvstricnoxoiooma emsenack [+11 fy [69 eo

Of] | 7S8tysuichoxotooma nenotum vy ta 4a [oa JQ

| ?8irdvstmicnoxoicoma nauade a a], Jbo [PO |-- { lw b bh wo ~ale i ~T' Hysricnokoipoma Sumescens a JO) i [C3 s~ 1 ~ 838i Kvsmicnokciooma untsoinum te

| wl]o wl]o 7 9l4vsmricnosonaendium ci. 4. wolerum arm [aa . 0! 4vsmrienescnaenaium soo. Go

(0)

[oO [oO foto | | , -+

Mysinenosonaendium cuotierum a uu

-+ -+

pa pa

yp yp |! |!

capo

[Co ta ta a] we we

'hivsincnosonaerncium. iuoiferum srevisoin la

pho pho

[ota [ota Pad Pad oo + +

THyvsirienesongercesis ovum |r

pcs pcs

foe foe

[Oo [Oo fu fu w& vw iw fs}.

oOo

fe fe LImeagidinium sf. soecrasum Ju Ju

1a

fa fa fu fu sb}-a o|2 early w

:imecaacidinium so. A wv Vii. Or

pon pon

[ue [ue

fos fos fu fu

\imeaarainium 39. > co wo

uw uw

feo feo fe fe

[ao

SGTOT oO

we oO

‘“moacid imum specosum Qa

ud ud ~afd ~afd

Pd Pd fa fa

Qa

~1]o

‘imoretosonaendium

|Uriae

pee pee | |

[@

74 ~g]adpsa a)

‘imcoietoscnaendium rugesum » Mo, w ta

[iu [iu fu fu -

‘imcietosonaencium? sp. A =]

fe fe pl pl nN

aoe aoe -~{O/w0 sole Ww ‘Inversicinum 2aimuram 1

fas pe pe fos fo we

elalolapo [fas [fas ‘lsacetidinum cooxsoniae ta [as

[Ph [OO

po 1 1

~~

]Qo ]Qo

in in nm nm .

[QO as as

} } far far

PO

* *

“afea “afea

“t]o “t]o YVIQlAlapfoltuso YVIQlAlapfoltuso ta ta

wy? wy?

yy yy Kisseiovia cclecttrvpta

abe abe tn tn fo uo

fo we we L2teunecysia? 50. 4

fof

du fu

fea fea yp yp Jus eo pte |e

jaw Lenuma cucinesa fea Oo tlt =g|sd Gi a

“APM

w ‘Lanunia somigera

fmapoa fo

lw —_ ws a

Uneuiedinium nacnaeroschorum o ha Je Je

lm]o fol. fol. fea

fos

f-- f-- 7 7

+

-'lb a

.Metitasonaeriaium 2seucocurvatum ua[-*

[dO [dO [eo fofiplofolojefoloafolofolafafufolsusa fe

[eo Jase Jase > >

has loo le Tu

ui Mle

:Memoranilarnaca ieotoderma oto 7O 7O

pea

fea [o fae fae 4 4 *

~~

waft “4 ws Juror fur uo

a ul + + Mierceimum srnatum Jas

lw]

lus lus fo fo

& [Ca [Ca ‘Milllcucodinium culseoo! maicr a]

PO 1G 1G

forlorn fo fo >

DW] ao ao

lable be c So a ey Lyfule we a wo wo Jus Jus rie) Muratedinium ‘imonatum [aa] aw

Qn

hin hin fea fea QVlujOo

Capon -apoo -apoo

Nematosenaeroosis cf n sertusa [4

fetus

YO]

1fO 1fO nN nN

[fo be =a “4

qa qa salud Or Or

[Oo

iNematosonaeroosis oertusa 8

Oped Oped

Pr Pr fin fin

Ww

~tole yp yp wl G2 }na [Cs

‘Nematosonaercesiss ouisutosa fovpcs

Po

fs fs

la la

la] la]

+ +

~ ~

oO oO te

fae fae co - - ue Ca ‘Nematosonaercosis rapecuiala a fufuso

{eo

tw tw

pa pa

]~dyOr ]~dyOr

b b

be be

Ga Ga

le le

[Os] [Os] a

‘ wm 'Cliaesonaericium somciex

OfOloO OfOloO

lOlMo lOlMo [Oo [Oo

Pe Pa fs fs

AYO)

-~ -~

[uo [uo ae

uae uae

ue ue 1091 Coercuiodinium orevispinesum {to

Pr fo fo

[m1

pelo fay J J a

wo ms ms

u ~b]ma ~b]ma t3 t3 Ay~) Ay~)

a ui] ui]

3:Coercuiodinium centrocaroum Wl

ca ca Jus ta ta por Toa

fae 112 112

Coercutoainium ct. 4. srevisoimosum & a wim Qu o tte

[a

poe poe

[C3 po FO FO

' CO CO 10) oS fla

Coercuteainium ssraeiianum [Co Us [id [id PS fio fe 3

uw uw Wy Wy fe us sb —~1u3 We 02 hw ua hea

‘Coerculocinium murhsanosum tad [G2 [G2

poo Po PO PO Popo pulolops

fb fb :Coercuicainium vanesoinesum su

Pd Pr Pr fea ye he

‘Palaeocystodinium sorzowerse Q

Ue Ue

fod fod Peo Peo Pe pu

fua]e diay

Polo Ce Ce Pe

_P3laeobencinum syvroocnormm -s oH oH [oa for y-+ ata be

410 yad

++ Ua ~a]uat. (J fo . 7 +7 ®araiecaneia indentata f9] Ps

lope tho + Peg oO

"+ +9) Sauesonaercium :nversinucenum lO Pe Pe 14 fe

‘+3: Penrainum atencum cranuiatum qe Pee Pee Pe as

sabia

Wooton Wooton a an ad

63 63 a a bales

Liye

- 20 Sheiecinium naamficum (a ho ho

** Zhinanooenermium cra. ‘riteniurm 3.25 J.23 3 2 ‘a0: 3 3 3 4

22! *hrnanooencinium 2ecmnatum 2: 3 3 2 23.3: 36.7) 3 3 34

- 20 Aovsonaencium cto. ronaren 137 ‘ 37! 2 3 190: 3 3 3 x

+24: cvsonaencium zonam 3 2.32' 4 57° } 58.3: 43 7) 3 3: Jn

25. Renicinum nNemoranierum 3.23) 3.333 ‘ 3 34 2' (3.3) 3! 3. 2}

23, Renamum so. A ' } }: “90: 4 3: 2 " “27 Rotnesia zorussica 3.22 4.33! 2 31.3:°3 3) 3: 3 3s

‘29)Sarmanaa cnlamvooonora 2.2: 2.2! 2. 3 1901 3 3 }- 3;

'291Samiandia rescuifera 3.33) 7.331 3. 3: 2t.t' 73.91 3: 3: 31

+20! Seneganmum? spscuram 10.2: 31 7 33 2: 29) 745 0! 3: y

21 Senegatinium? asymmemem : 23. ‘.23) a 35 7Qa: 3 3 3° af

22; Senedalinium? ciiwynense 49.7" 3.57! t2.3%) 31.7: 11.41 24.31 53.8! 3: 3|

* 231 Soiniainium essor 1 53 1.53) 3° 1: taal 3d 91 3: |

: * 341Somaintum macnurcsense 72.7 i 3: 72,7! 2. 3: :oot T2.7' 100 |

| :25iSomeainum sarataouaum 13.3: 9.57! '2.7° 3! 3: 33: 3! 3: gl ! +36:Somnifemes crassioeilis A 118i 9.31 2.33) 3! 79.91 20.3: a: t a i 1.37! Somfemes crasstoetlis3 2: 9.87! 1.331 as 33.31 36.7! a) o) a} :_* 381Soiniemes crassipetisC 4.47! 3.27! 12! 2: 73.1! 25.3) 3) a) 3 ' +29'Somientes cts. aterotus 2.331 9.33) 9) 95 1901 1g: a 3

: + 40/Semientes oanqguiatus 2.57' 3.57 0! 4 +Q0i Ji 3: 3: 41

“a7 Sointierttes carnutus A :.33) 1.23) Ji J; 100! 3 3. 31 5

'42'Sommiertes cornutus 3 J. i| 2° 3) a: 3! 3; Ji dt

. 42; Somiiertes sornums 7% w t 2. Ji 90! 3: 3: a: ay

' a4:Somifertes mirapeis 3 3° 9: Ji Ji 2: 3: a: 3 * 35: Sainitentes mnontius 2.a! 2.3! 4 { 1aai 3! 2° 3 3} +6:Sointiernes oseucofurcatus 72 Fi “1031 3: .. oo! 2: 9 3! yi ‘47 Somientes -ameosus suoso. sranomemorana 4 33: 1 33! 2: 3: “ad! 3% 2 3 vi ' +81Soaintventes -amesus suoso. granosus 3.97' 3.397! J: 2 1 OG: 3 J J) i

' 491 Someries ramosus subsp. TNemoranaceous 3.37 3.37‘ 3: ! 790! 2: 3 3: q¥

- 30! Somiemes ramesus supso. Tuitbrevis 3.47" 3.47' : oi 34.35; 13.3) Q: 2: zI

° 31: Someries sarnosus suse. -amosus 72.24 1§.5) 45.31 13! 21.51 30.51 731 a! 34

*$2'Sointentes -amuiiferus 2.57" 3.57" - 2! + OG! 3: 7: 2 3f

. t33tSointiernes A : i i: 3: QQ! 3! . 3: 3 ‘+ $4!Soimtiemes3 3 ui 2. 1 2. Qt Bi a: ' 33) Soimiierntes 2 3 2 3 23 3 i 3 7: qt ‘56 Svstematconora siacacantha 317! 137) 2.335, a7 7! 3.23) 4.32! 92.3! 47 7° 32.31

‘37 Tanvesonaercum vanecaamum 2 ‘ ‘ 3: sai 50! 3 9: 33 ‘3a: Tectatoainum eilitum "2.43 3.87'° 3.72) 2: 45.7° S431) 2) 7

| + $9! Thalassiconora cencala 39 3 $i 3.3) 26.3) 2.3) 29.9( 36.4! 26.3) 36.4!

*30 Vhalassicnora setacica 295) 433) 350; ° 31! 2.01 24 44 °73.55 "O6i Fi 3} ' 434) “neneamum crrsuwm ‘23 ‘33 3 Ji “agi 2. 2}. 3 3)

' + 82! Trgonoovziaia gineila 3. 2: 2: 3: "OO! 3) 3: 3 Ji

‘33: Tuserculocinum vancamoore 3: 9: 3 9: 3 3: d 3! ‘34. Tuserculocinium so. 3: Q' 2: 2! 2 3 3 3. 3 , *35:7ucisermeaintum suicatum ~ 43h Toi 3 3: OG: 3}: 9: 3 34 ‘36. Turorosonaera ‘ilosa 31.3 9.57' 21.5. 39 31 98: 351 33.3: 219.3. 32 31

' 37 “urpiesonaera 2arataoulata 3.33! 0.57 7.57" 2! 3. 323 3 3. Ji ‘38: Turmosonaera -otunca 3.23: 3.331 3 31 ‘Oh 901 ‘j 3 at ‘39('Weceneda cl. . styscnensis * 3° +o" 3 3: co: 3: 2: 3 i | ("2 Werrenela lamogcenensis ‘31. 3.731 34.3) 723.9) 2.36; 31.3! 35.2! 28' 29.°4 *7* Wetesiela ‘unans 166i 3.351 34.3: +25) 2.72 7 78192.7° 406i 37°) , <7 2'Werereia samancica 296: 1331°6.3. 277° 3.58: .31 33.43 277" 93.31 ' + 73, Wermeteila so. A 2.331 3. 2.335 yi 3. ° 90! 33 2. 3! ‘7 4.Wetrenetla vanetoncituca *z! 3) 7.37') 905 ) ‘3.39! 36.: 3 J ‘7 $i Wilsonicium ‘abulatum $6.2: 2' 2 24.3; 4,32: 1 38.7) Sa 3: 36,7! ‘731 Xentkoon austraus Ta Si 2.:3) 38.1 34.33 2.3561 34.0! 46i 3 zt ‘77 Cyecesieia silioaca J: 3: 3 3° 3 3: 3 2 3 ‘T3 Cvcoeesiela vreta 17 3t 3.353! 57 2: 38.7° 333) 2. 2: AP

+731 Micrnysyicium ct nm. tTacve +) a: 3 9° “30° 3 2 3 !

*40'(Miernvsincium of n. vanaciie ~ 3.57° 22.2: ). ‘3.3: 36.4: 2. 3 }!

° 31 Miernvsinciurm soo. 22.2! “7 3! = = 77 4. 22.35 3 > tt

aS \O

, 742 'Svmatoscnaera sco. 3.5:’ 33:’ 3 3 130i 3 q! os 3

132 Paamoaces se. 4 2.57' ‘33, 1.33 3 30: 5901 3 } 2

134 Salamoaces 3a. 3 433. 3.72: : 75.3!) 22; q: 4 3 ‘35: Palampaces so. 2 21.3) 233. 3 141 10.91 42.21 16.3: 3: 3

* 36, Steroscermoosis sop. 13 2: 14.2! ‘ 3: 33.4: 5.53) i 3 3 ‘+ 37" Agteodinium ‘nesmoecsitum t : q: 3 “90! 3 3: 3 i

| * 38: Aula annacea 3. 1.3) 3 a 130i 3 3 i. 3

| + 89iDienyesocsis oucc:nata 33! 3.3! 1.2! 9: 75) 25) 3 3: 3

| 1 90!Dionvesoos!s capitata 9.31 3.8) 3: a: ‘901 9 2! 3: 3

| + $1 Gonvaulacysia quisepor suoso. major ii 2.51 10.4! JI 291 3901 yt 4:

' + 232'Hyorngasonaera marviancense ‘ 1: a: a: G0} 9 ,) on

Hl ‘93: y4vszicnoxciooma suibosa 1 1 af 0: 100i 41 41 }: ' + Gai Rysuiencsonaercesis borussica » 2.2) 2.2! 33 at 1001 Qi 9: a: +395’ Lanternosonaericium aipolare 5.2! 3.2! a! om 100) 9! Qi 3: | *96:Lanternesonaendium lanosum tO: 0.2! 358} 43.1 9.2: 37 31 42.5) }

| 197 ‘Lanternosonaendium lappaceum 2! 1.2! 3! 9! 1001 a 31 3! ! 198: Lanternesonaeridium ailatum O.4t 9.45 QI ai 1001 0! 9: 3. ! 4 99/Lanterncsonaenaium raciarum t' te 95 Oi 19a! 9° 2! ol i 290iCoeretodinium amicuim 5.4! 3.3; 2.2! 9} . $2.1: 37.91 4: 3. | 201:Coeresiodimum sctomacense tt 44 1.31 9.8) 9| © 18.31 34.2! 3: 3 | 292'Sennoainium (S.} austratiense 24.2! 1.2!) 231 41 436) 95) 91 2. . 203: Soniferies sulloideus a.2! Q.2! ao 100: 9 9 2 { 2941Somtfentes ct, 3. crassipeiis 1,34 1.31 at 4! 1oat 4 Q! 2 | 2°8iSointerttes Ivpercanthus 1.51 +31 9! d! 1001 q ar 3)

; 296! Soimifertes membranaceous 1 Bi ‘31 31 a: +00! 9 3 3. ' 297'Sontentes cf. S. ramosus suoso. ‘amosus 4.31 _ + Bt a: 3! 190) 2! 2 J.

_ 298! Saintentes scaoratus o.4) O.4i a 21 1001 o' 3 3 299iSoinifentes suoparus din t 2Q! oO! 2.44) 97 5) 3 3:

2:10! Tectatodinium osdacm 4.2! 1.2! 3: 3! 28.5) 74.4! 3 2: ) 21% Tuoulesonaendium oseudocurvatum 1.4 Loti 3 3 100! a: 9: a: : 212'Oetlancna asymmetnca 9.2! 2.31 3.41 QI 20.4! 39.5: 3 }: ' 273!Oetlanana cilwnensis 38.7" 3.44 4.51 33.7! — 3.44) 1.52! 34.31 93.7" i 27 4'Delancna macmurccensis iat ' 3.2! iti 9.331 3.12! 3a 31 » 215. PAthanoveriainium resistente 25.3: 3.4) $0.5) 54.53 13.3) 41.45 45.33 3

"2+ 8: Soinaimum ailineanm 239! 2! 3! 237° 3.31 9) 99.51 277° 33.

. 217 Semeinium rotundum 9.4: OQ.) ): 2} 1901 3: 0: 3. 1 2431 Wevenetia .Rhomooainmum) aiaora 2.2! 9.2! 2: 31 ere o 2: 3 ' 273: Wetretieia -\W. arncuata tit: i. 4i 3 1! 1oal a. q 3 : 229''Wetzetieda /W.) coatita 7 2! 25) 3.4) 3} 3.33] 391.7° 3 J: 22° Weceliela ‘W.) coleothrvpa 38.2: 3.3! °2.3' 21 3: 2.27" 36.4) 5t.4 3 222'Acnatosonaeriaium vittatwm 4.53 3.53 : Q1 7B.3b 20.7 2: 3!

223i Canmineia miner 9.2! 9.2! 3: 7! *aQ! Q! 3 3 i 2241 Cannescnaerousis ousutosa * at 1.41 9: 3 1aadl 3: 3: 3. | 225; Chlamveooneretla rauca g.2! 9.2! 2: 9 100) a! 3: 3 ' 2°85; Cvycloneoneium incuitum ‘ t 41 3: “O01 3 3 1°

" 227 ' Cycloneoneium jemniscamm 2.51 12! ot 4 di 46.2! 32.3: 2° 3 : 229i Dinonterveium cadowes 4. si 2° 3 7001 Q. 3 3

' 224) 7€isenacnia scroorculata 7.31 0.41 3: 3! ‘aa! 3 4: a

. 230i Fusicinium ‘apulatum aon 2? 3.3! ++9) 1.99) 4.45; 34 5: 32.3:

i 234! femicystedinium aculeatum 4 5) ti 435i 2! 20.7! 78.2: a 2: 232'Hemicvstocinum tonanvi 23.31 3.33 3: 2 7O0l ai a: 3: 222) Seleraulacacysta ‘enmamensis 5.53 5.4: 4.2! 3 33.31 ¢8.2) O° 3 274! Homotrvoitum aiisum 1.2! 1.2! 2° q! 100! a: ol 43 : 225 timotetesonaenaum transtoaum 3; 5: 2: Qo! 100! 24 a! 3) | 2361 ?Litesanaenaium inversigucanum t st 1.3) 3 3 1901 3 2, 3

. 227! Svstemateonora ancyrea 5.31 1.4) 4.3! J: 251 75 3 3

228! Avteccinium Sacuiatum tite “i 3: di 1QG: 2) 3- 3

23S) Aquiasonaenaum 2° 3} 2' ). © 100i 2 3

240: Coracsonaenaium marviancense i. 2 3: Pi 1901 Q! 2: 3:

244 Cardespnaertaium soeces A 1 Bi 123i 2: 2 1001 J 3: 3

"242 'Denanona 2: 3. maaniica 33) 2.30 °°) 3 33 4! 305 3 }

50 24i° Dellancna zescura 3° $7 O23 3 7" 3. 29,33 } 41 34 244.Cetlancria :nompenedra 73: 33) zi 3 “a0: 3. 30 7 3 245, 9esanara rucinesa 3 31 3: qi ‘QQ: 3d: 2. 3 3 245 Detlanana somecera 20 4: 2.3) ° 7 3i 3° 13.7' 36.2) 9 3: 31 7}: 34 247 Laptocinium vrainianum 32.3: 2... 20.4) 39.3! 3.3! 32.2! 32.31 249.Memcrancsondera ‘anuiala 25) a.° 4 2h 236i ‘323 451939; 2935, 3¢ 3i 2439) Nematoscnaercosis ‘ranecuiata ‘O31 B.4t 4 ti 3 29.3: 30.7' 3 3 3) 223 3 “45; 45.7 5. aa 7 2501 Paaeostomacysus- iraqils Si 2! 3: af 251 Sainfentes ancuiatus suoso.reucuialus ' 3: 1.8: 2} : 7ac' 91 a4 71 a: 3: a} 252'Soainfentes sectatus 0.9) 9.31 <3! 3 36.3 «a 4 41 253'Sointfertes sf. S. seotatus ‘0.3! 3.31 4.351 7: 35.5i 14 7' 4) 264! Vervnacnium sop. 3.31 3.31 3! 9: 100! Qi 2° 4. 31

255}Wervenella (W. homomarona suoso. suinau 3431 9) 4.0) 545) 9t 3.331 99.4! 345, 99.41 i total ; a12st TUF 18G2! S544) ‘

51 Results of Chosen Phase Plane Plots Phase plane plots were produced for a number of species pairs from the data. Four phase plane plots, of common species, have been selected as representitive (figure 14). Results of the phase plane plots are difficult to interpret. Although loops about a possible equilibrium occur, it is usually when one species is replacing another. The periods of overlap, on this scale, are short, and seldom repeat.

When replacement occurs more than once in the data set, similar loop figures occur, but are not centered around the same equilibrium point. A feature of these phase plane diagrams is a strong trend roughly perpendicular to the equilibrium axis, rather than parallel to it. This trend is expected when both species are affected by some outside factor more than by interaction with each other. On the scale of this data, the outside influence appears to parallel local environmental shifts. Although phase plane analysis does show potential for finding interaction patterns in fossil data, both environmental overprint, and data resolution on this scale limit its effectiveness.

52 sojdwexg ouejdese “pl on31y

sixAdopejooq oo winipuiaeydsopioc peide 22ee , 62°21 go'e 00°0 ro0'0 000

ze22 BIOIfaZIOAA

ez2'zgBlipuel joc

L . bpovest PooA 2 veettees 53

bbb'SOL

BIDZIOOY BasI[OAy vss £522 00'0 . “2 000 00'0 vl ss ' esd 00" \ 1 i i

rT L

bette ce bce vee be EL Se ete tet BIPIFIZIOM, winipuaeydsopi07)

ianteseenseedeceeserssesosssensesessesseecessesesestessseeseerseebenees m9 "trS L Be ttc

Vil. CONCLUSIONS

The following conclusions are based on the dynamic systems modeling, and statistical analysis of fossil dinoflagellates studied during this project.

1. Dynamic systems modeling is directly applicable to both modern and fossil coastal dinoflagellate analysis. Success of modeling however depends on refinement, and on resolution of the input data. The models used in this study are preliminary.

2. Coastal dinoflagellate dynamics can be approximated using parameters of temperature, salinity, and limiting nutrient. Other parameters are necessary for model refinement.

3. The models suggest that differences in boundaries between watermasses might be discernible in dinoflagellate associations in rock or sediment. The fossil data appear consistent with this, at least within the resolution of the samples.

4. Cluster analysis of the Salisbury fossil data indicates that cluster boundaries produced are not gradient artifacts, but represent real changes in dinoflagellate associations. These parallel changes in sediment (watermass) characteristics.

5. Cluster analysis indicates 17 separate dinoflagellate associations which can be interpreted individually as occurring in estuarine, nearshore, or offshore conditions. Individual dissimilar samples between groups may represent boundary or transitional environments.

6. Samples in cluster groups are statistically similar, but not the same, and represent paleocommunity types rather than paleocommunities. Individual species reccur in similar environmental settings through time, but paleocommunity types do not repeat within the Pamunky Group data.

7. Circulation patterns of the Salisbury Embayment during the Tertiary may have resembled those of the modern Yellow Sea, with both lateral fronts, and regions of mixing. Fossil dinoflagellate data and modeling suggest that water conditions of the Salisbury Embayment may have been warmer than the modern Yellow Sea.

54 BIBLIOGRAPHY

Atkinson, L. P., Menzel, D.W., and Bush, K.A. (1985). Oceanography of the Southeastern U.S. Contenental Shelf . Washington: American Geophysical Union. pp. 156.

Barry, J. P., and Dayton, Paul K. (1991). Physical Heterogeneity and the Organization of Marine Communities. In J. Kolsa and Pickett. (Ed.), Ecological Heterogeneity (pp. 332). New York: Springer Verlag.

Barss, M. S., and Williams, G.L. (1983). Alphabetical Listing of Fossil Dinocyst Species (23). Atlantic Geoscience Centre, Geologic Survey of Canada.

Begon, M., et al. (1986). Ecology . Sunderland: Sinauer Associates, Inc. pp. 876.

Bennington, J. B. (1995). Community Persistence and the Pattern of Community Variability over Time: A Test using Fossil Assemblages from Four Marine Transgressions in the Breathitt Formation (Middle Pennsylvanian) Eastern Kentucky. Doctoral, Virginia Polytechnic Institute.

Bennington, J. B., and Bambach, R.K. (1996). Statistical Testing for Paleocommunity Recurrence: Are Similar Fossil Assemblages Ever the Same? Palaeogeography, Palaeoclimatology, Palaeoecology, in press.

Bonin, D. J. and Maestrini S.Y. (1981). Importance of organic nutrients for phytoplankton growth in natural environments: implications for algal species succession. Canadian bulletin of Fisheries, 210, 279-291.

Bowden, K. F. (1983). Physical Oceanography of Coastal Waters . Chichester: Ellis Horwood Limited. pp. 302.

Brenner, R. L., and McHargue, Timothy. (1988). Integrative . Englewood Cliffs: Prentice Hall. pp. 419 pp.

Brock, T., and Madigan, Michael. (1991). Biology of Microorganisms . Engkewood Cliffs: Prentice Hall. pp. 909.

Buck, K. R., and Newton, J. (1995). Fecal Pellet Flux during Algal Bloom Periods. Limnology and Oceanography, 40(2), 306-315.

Burkholder, J. M., et al. (1992). New "phantom" dinoflagellate is the causative agent of major estuarine fish kills. Nature (London), 358, 407-410.

Burkholder, J. M., Glasgow, H.B. (1995). (Estuarine Interactions). Archive fur Protistenkinde, 145(3-4), 177-188.

55 Buzas, M. A., Culver, Stephen J. (1994). Species Pool and Dynamics of Marine Paleocommunities. Science, 264(3 june 1994), 1439-1441.

Cairns, J., Jr. (1969). The Structure and Function of Fresh-water Microbial Communities. Blacksburg: 695.

Call, V., B., et al. (1993). Wetherellia Fruits, and Associated Fossil Plant Remains from the Paleocene/Eocene Tuscahoma-Hatchetigbee Interval, Meridian, Méississippi. Mississippi Geology, 14(1), 10-18.

Carlsson, P., and Graneli, E. (1993). Availability of humic bound nitrogen for coastal phytoplankton. Estuarine Coastal and Shelf Science, 36(5), 433-447.

Caswell, H., et al. (1972). An Introduction to Systems Science for Ecologists. In B. C. Patten (Ed.), Systems Analysis and Simulation in Ecology New York: Academic Press.

Chang, M., and Shim, J.H. (1986). A study of the phytoplankton of the Yellow Sea (Korea) in spring, 1984. Ocean Research (Seoul), 8(1), 1-12.

Chang, M., Shim, J.H., Lee, J.-H. (1990). A study on the phytoplankton of the Yellow Sea in summer, 1983. Ocean Research (Seoul), 12(1), 1-14.

Cheong, H. K., Paik, K.H., and Park, B.K. (1992). Faunal analysis and oceanic environment of the Recent benthonic foraminifera from the West and South Sea of Korea. Journal of the Oceanological Society of Korea, 27(2), 123-136.

Choi, J. K., Shim, J.-H. (1986). The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea: I. Environmental characteristics. Journal of the Oceanological Society of Korea, 21(1), 56-71.

Choi, J. K., and Shim, J.H. (1988). The ecological study of phytoplankton in Kyeonggi Bay, Yellow Sea: IV. The successional mechanism and structure of the phytoplankton community. Journal of the Oceanological Society of Korea, 23(1), 1-12.

Choi, J. K. (1991). The influence of the tidal front on primary productivity and distribution of phytoplankton in the mid-eastern coast of the Yellow Sea. Journal of the Oceanological Society of Korea, 26(3), 223-241.

Chui, H. M. C., Hodgkiss..J.. Chan, B.S.S. (1994). Ecological studies of phytoplankton in Tai Tam Bay, Hong Kong. Hydrobiologia, 273(2), 81-94.

Cobb, D. (1985). Excel--In Business . Redmond: Microsoft Press. pp. 695.

Davidson, K. (1995). (Predator-Prey Interactions). Journal of Plankton Research, 17(3), 465-4972.

Davis, R. A. (1978). Coastal Sedimentary Environments . New York: Springer Verlag. pp. 420. 56 Deng, J. (1988). Ecological bases of marine ranching and management in the bohai Sea (China). Marine Fisheries Research (Shandong), 0(9), 1-10.

Dodge, J. D. (1995). (Modern Ceratium). Journal of Phycology, 30(6), 905-922. Drew, D. R. (1985). System Dynamics--Modeling and Applications. Blacksburg: Virginia Polytechnic Institute, Civil Engineering Department.

Drury, and Nesbit. (1973). Succession. Journal of the Arnold Arboretum, 54, 331-368.

Edwards, L. (1989). Dinoflagellate Cysts from the Lower Tertiary Formations, Haynesville Cores, Richmond County, Virginia. In R. B. Mixon (Ed.), The Geology and Palynology of the Haynesville Cores (pp. C1-C12). USGS Professional Paper.

Evitt, W. R., et al. (1976). Dinoflagellate cyst terminology (76-24). Commission Geologique du Canada. Evitt, W. R. (1985). Sporopollenin Dinoflagellate Cysts--Their Morphology and Interpretation . Dallas: American association of Stratigraphic Palynologists. pp. 333.

Firth, J. (1993). Dinoflagellate Assemblages and Sea-Level Fluctuations in the Maastrichtian of southwest Georgia. Review of Paleobotany and Palynology, 79, 179-204.

Flessa, K. W., et al. (1993). Time and Taphonomy: quantitative estimates of time- averaging and stratigraphic disorder in a shallow marine habitat. 19, 266-286.

Frederiksen, N. O. (1974). Statistics in Stratigraphic Palynology: an Annotated and Indexed Bibliography (3). American Association of Stratigraphic Palynologists.

Gallagher, W. B. (1984). Paleoecology of the Delaware Valley Region, Part II, Cretaceous to Quaternary. The Mosasaur (Delaware Valley Paleontological Society, 2, 9-43.

Gallegos, C. L. (1992). Phytoplankton, photosynthesis, productivity, and species composition in a eutrophic estuary: Comparison of bloom and non-bloom assemblages. Marine Ecology Progress Series, 81(3), 257-267.

Gibson, T. (1989). Paleocene/Eocene Depositional Sequences of the Atlantic Coastal Plain. USGS Abstracts, 21(2), 18.

Glaser, J. D. (1968). Coastal Plain Geology of Southern Maryland (1). Maryland Geological Survey.

Glover, H. E. (1978). Iron in Maine coastal waters: seasonal variation and its apparent correlation with a dinoflagellate bloom. Limnology and Oceanography, 23, 534-537.

Goodman, D. K. (1975). Lower Eocene Dinoflagellate Assemblages from the Maryland Coastal Plain South of Washington DC. Masters, Virginia Polytechnic Institute.

Goodman, M. R. (1988). Study Notes in System Dynamics . Cambridge: MIT Press. pp. 57 388.

Gray, J. S. (1981). The Ecology of Marine Sediments . Cambridge: Cambridge University Press. pp. 185.

Guillard, R. R. L., and Kilham, P. (1977). The Ecology of Marine Plankton Diatoms. In D. Werner (Ed.), The Biology of Diatoms Oxford: Blackwell Scientific Press.

Habib, D. (1989). Dinoflagellate Species and Organic Facies Evidence of Marine Transgression and Regression of the Atlantic Coastal Plain. In D. L. Eicher (Ed.), Biological Oceanography, Plankton, Productivity, and Carbon.

Harker, S. D., Sargent, W.A.S., and Caldwell, W.G.E. (1990). Late Cretaceous (Campanian) organic-walled microplankton from the interior plains of Canada, Wyoming (USA) and Texas (USA): Biostratigraphy, paleontology, and Paleoenvironmental interpretation. Palaeontographica Abteilung B Palaeophytologie, 219(1-6), 1-269.

Harris, G. P. (1986). Phytoplankton Ecology . New York: Chapman and Hall. pp. 384.

Harris, W. B. (1993). Sequence Stratigraphy of the Onshore Paleogene, Southeastern Atlantic Coastal Plain. In Posamentor (Ed.), Sequence Stratigraphy and Facies Associations (pp. 644). Oxford: Blackwell Press.

Harrison, S., and Quinn, James. (1989). Correlated environments and the persistence of metapopulations. 56, 293-298.

Heiskanen, A. S. (1993). Mass encystment and sinking of dinoflagellates during a spring bloom. Marine biology (Berlin), 116(1), 161-167.

Hinga, K. R. (1992). Co-occurrence of dinoflagellate blooms and high pH in marine enclosures. Marine Ecology Progress Series, 86(2), 181-187.

Hulbert, E. M. (1963). The Diversity of Phytoplankton Populations in Oceanic, Coastal, and Estuarine Regions. Journal of Marine Research, 21(#2), 81-93.

Hwang, H. J., and Choi, J.K. (1993). Seasonal characteristics of zooplankton community in the mid-eastern part of the Yellow Sea. Journal of the Oceanographical Society of Korea, 28(1), 24-34.

Je, J. G., Yi, S.K., Choi, J.W. (1988). Distribution pattern of benthic molluscs on the soft bottoms of the southeastern Yellow Sea. Ocean Research (Seoul), 10(2), 17-28.

Kang, Y. S., et al. (1992). Primary productivity and assimilation number in the Kyonggi Bay and the mid-eastern coast of the Yellow Sea. Journal of the Oceanological Society of Korea, 27(3), 237-246.

Keafer, B. A., et al. (1992). Burial of living dinoflagellate cysts in estuarine and nearshore sediments. Marine Micropalaeontology, 20(1992), 147-161.

58 Kim, K., et al. (1991). Identification of Water Masses in the Yellow Sea and East China Sea by Cluster Analysis. In K. Takano (Ed.), Oceanography of Asian Marginal Seas (pp. 431). New York: Elsevier.

Kolasa, J., and Pickett, S. (1991). Ecological Heterogeneity . New York: Springer-Verlag. pp. 332.

Lee, W. H., et al. (1989). Phytoplankton and bacterioplankton in the intertidal and subtidal waters in the vicinity of Kunsan (Korea). Journal of the Oceanological Society of Korea, 24(3), 157-164.

Lee, R. E. (1992). Phycology (2 ed.). Cambridge: Cambridge University Press. pp. 478.

Lentin, J. K., and Williams, G.L. (1980). Dinoflagellate Provincialism. American Association of Stratigraphic Palynologists Contributions Series, (#7).

Lieberman, O. S., et al. (1994). Nutrient Retrievial by Dinoflagellates.

Loeblich, A. R., III. (1967). Aspects of the physiology and Biochemistry of the Pyrrhophyta. Phykos/Phycological Society of India, 5(1-2), 216-255.

Lopez, R. V. (1993). Biological control mechanisms of marine dinoflagellates (sic) proliferation--growth factors and mitogens. Scienta Marina, 56(4), 293-299.

Ludwig, J. A., and Reynolds, J.F. (1988). Statistical Ecology . New York: John Wiley & Sons. pp. 337.

Mallin, M. A., Paerl, H.W., and Rudek, J. (1991). Seasonal phytoplankton composition, productivity, and biomass in the Neuse River Estuary, North Carolina (USA). Estuarine Coastal and Shelf Science, 32(6), 609-624.

Mallinson, D., and Otte, Lee. (1986). A model for the occurrence of glauconite on the modern and Miocene North Carolina contenental shelf/slope. 3, p. 70.

Margalef, R. (1968). Perspectives in Ecological Theory . Chicago: University of Chicago Press. pp. 111.

Marshall, H. G., and Alden, R.W. (1993). A comparison of phytoplankton assemblages in theChesapeake and Delaware Estuaries (USA), with emphasis on diatoms. Hydrobiologia, 269-270(0), 251-261.

Matsuda, O., et al. (1989). Observation of thermohaline structure and phytoplankton biomass in the shelf front of East China Sea during early summer. Journal of Applied Biological Science (Hiroshima University), 28(1-2), 27-36.

May, R. (1981). Theoretical Ecology . Sunderland: Sinauer Associates. pp. 489.

May, R. M. (1993). The Effects of Spatial Scale on Ecological Questions and Answers. In P. J. Edwards May, R.M., and Webb, N.R. (Ed.), Large Scale Ecology and Conservation 59 Biology Oxford: Blackwell Scientific Publications.

McLean, D. M. (1969). Organic Walled Phytoplankton from the Lower Tertiary Pamunkey Group of Virginia and Maryland. Doctoral, Stanford.

McLean, D. M. (1972). Potential Lower Tertiary Phytoplankton Environmental Indicators from the Virginia-Maryland Coastal Plain. GSA Southeastern Section Abstracts, 21st annual Meeting.

Mehta, A., J (ed.). (1993). Nearshore and Estuarine Cohesive Sediment Transport. Washington: American Geophysical Union, 581.

Menzel, D. W., and Ryther, J.H. (1961). Nutrients limiting the production of phytoplankton in the Sargasso Sea, with special reference to iron. Deep Sea Research, 7, 276-281.

Milliman, J. D., et al. (1987). Man's influence on the erosion and transport of sediment by Asian rivers: the Yellow River (Huang ho) example. Journal of Geology, 95(6), 751-762. Mullin, M. A. (1995). Phytoplankton Ecology of North Carolina Estuaries. Estuaries, 17(3), 561-574.

Mullin, M. A. (1995). Planktonic Trophic Transfer. Ecology (tempe), 75(8), 2168-2184.

Nogan, D. S. (1964). Foraminifera, Stratigraphy, and Paleoecology of the Aquia Formation of Maryland and Virginia . Ithaca: Cushman Foundation. pp. 50.

Oliver, C. D., and Larson, Bruce. (1990). Forest Stand Dynamics . New York: McGraw Hill. pp. 300.

Olson, S. L. (1985). A Brief Synopsis of the Fossils from the Pamunky River and other Tertiary Marine Deposits in Virginia. In L. Ward (Ed.), Stratigraphy and Paleontology of the Outcropping Tertiary Beds in the Pamunky River Region, Central Virginia Coastal Plain Atlantic Coastal Plain Geological Association.

Park, Y. H. (1986). A simple theoretical model for the upwind flow in the southern Yellow Sea. Journal of the Oceanological Society of Korea, 21(4), 203-210.

Parsons, T. R., et al. (1977). Biological Oceanographic Processes . Oxford: Pergamon Press. pp. 332.

Poag, W. C., and Ward, W. (1993). Allostratigraphy of the US Middle Atlantic Contenental Margin . Washington DC: United States Government Printing Office. pp. 81.

Porrenga, D. H. (1967). Glauconite and Chamosite as Depth Indicators in the Marine Environment. Marine Geology, 5, 495-501.

Prakash, A. (1967). Growth and Toxicity of a Marine Dinoflagellate, Gonyaulax tamerensis. Journal Fisheries Research Board of Canada, 24(7), 1589-1606. 60 Richards, W. J., and McGavan, M.F. (1989). Biological Productivity G.M. In K. Sherman and Alexander, L.M. (Ed.), Biomass Yields and Geography of Large Marine Ecosystems (pp. 287-325).

Richmond, B., et al. (1990). Stella II] User's Guide . Hanover: High Performance Systems, Inc. pp. 218.

Roberts, N., et al. (1983). Introduction to Computer Simulation--A Systems Dynamics Modeling Approach . Reading: Addison Wesley Publishing Company. pp. 562.

Rose, M. (1987). Quantitative Ecological Theory; Basic Models . pp. 203.

Rosensweig, M., L., and McCord, Robert. (1991). Incumbent Replacement: evidence for long-term evolutionary progress. 17(3), 202-213.

Rutherford, S. D. (1994). Phytoplankton Productivity and Milankovitch Cycles in the Cenomanian-Turonian Bridge Creek Member of the Greenhorn Formation in Southeastern Colorado. Masters, Virginia Polytechnic Institute.

Ryther, J. H., and Kramer, D.D. (1961). Relative iron requirement of some coastal and offshore plankton algae. Ecology, 42, 444-446.

Salonen, K., et al. (1984). Hypolimnetic phosphorous retrieval by diel vertical migrations of lake phytoplankton. Freshwater Biology, 14, 431-438.

Santos, B. A., and Carreto, J.I. (1992). (Diurnal Vertical Migration of Marine Dinoflagellate Alexandrium excivatum (Braarud)). Bullitin do Instituto Oceanografico, 40(1-2), 15-25.

Schweitzer, P. (1993). Modern Average Global Sea Surface Temperatures . USGS Digital Data Series.

Seung, Y. H., Chung, J.H., Park, Y.C. (1990). Oceanographic studies related to the tidal front in the mid-Yellow Sea off (South) Korea: Physical aspects. Journal of the Oceanological Society of Korea, 25(2), 402-751.

Shim, J. H., Shin, Y.K., and Yeo, H.G. (1991). Abiotic environment and primary producer of estuarine pelagic ecosystem in the lower water of the Mankung River and the Dongjin River (South Korea): I. Journal of the Oceanological Society of Korea, 26(2), 155-166.

Size, W. B. (1987). Use and Abuse of Statistical Methods in the Earth Sciences . New York: Oxford University Press. pp. 169.

Smayda, T. J. (1967). A Quantitative Analysis of the Phytoplankton of the Gulf of Panama (Vol. 2 No. 5). Inter-American Tropical Tuna Commission.

Sokal, R. R., and Rohlf, F. James. (1969). Biometry - The principles and practices of 61 Statistics in Biological Research . San Francisco: W.H. Freeman. pp. 776.

Springer, D. A., and Bambach, R.K. (1985). Gradient versus Cluster Analysis of Fossil Assemblages: A comparison from the of southwestern Virginia. Lethaia, 18, 181-198.

Steele, J. H. (1978). Spatial Patterns in Plankton Communities . New York: Plenum Press. pp. np.

Steidinger, K. A., et al. (1996). Pfiesteria piscicida gen.et sp. nov. (Pfiesteriacea fam. nov.), A new toxic dinoflagellate with a complex life cycle and behavior. Journal of Phycology, 32(1996), 157-164.

Taylor, F. J. R. (1987). The Biology of Dinoflagellates. Oxford: Blackwell Scientific Publications, 785.

Thomas, W. H. (1995). Effects of Small Scale Turbulance on Gonyaulax polydex. Journal of Phycology, 31(1), 50-59.

Thurman, H. V. (1994). Introductory Oceanography (7 ed.). New York: McMillan. pp. 550.

Tiffney, B. H. (1985). Fossil Fruits from the Woodstock Member of the Nanjemoy Formation, Maryland and Virginia. In L. Ward (Ed.), Stratigraphy and Paleontology of the Outcropping Tertiary Beds in the Pamunky River Region, Central Virginia Coastal Plain Atlantic Coastal Plain Geological Association. Tomezak, M., and Godfrey, J. Stuart. (1994). Regional Oceanography: an Introduction . London: Pergamon. pp. 422.

Tranter, D. J., and Newell, B.S. (1963). Enrichment experiments in the Indian Ocean. Deep Sea Research, 10, 1-9.

Traverse, A. (1988). Paleopalynology (1st ed.). Boston: Unwin Hyman Press. pp. 600.

Walker, K. R., and Bambach, R.K. (1971). The significance of fossil assemblages from fine-grained sediments: time-veraged communities. 3, 783-784.

Walker, R. G. (1994). Facies Models ((3) ed.). Stittsville: L'Association geologique du Canada. pp. 409.

Wall, D., and Dale. (1977). Environmental and Climatic Distribution of Dinoflagellate Cysts in Modern Marine Sediments. Marine Micropaleontology, 2, 121-200.

Wang, Y., and Zhu, Dakui. (1990). Sedimentary characteristics of intertidal flats along the west coast of Yellow Sea. INternational Sedimentological Congress, 13, , 587.

Ward, L., and Krafft, Kathleen. (1985). Stratigraphy and Paleontology of the Outcropping Tertiary Beds in the Pamunky River Region, Central Virginia Coastal Plain. Atlantic 62 Coastal Plain Geological Association.

Ward, L. W. (1993). Evolution of the Salisbury Embayment during the Late Tertiary. 1993 GSA Abstracts, 25(6), 334.

Weeks, A., et al. (1993). The physical and chemical environment and changes in community structure associated with bloom evolution: The Joint Global Flux Study North Atlantic Bloom Experiment .

Weems, R. E. (1985). Biozones of the Pamunky Group. In L. Ward (Ed.), Stratigraphy and Paleontology of the Outcropping Tertiary Beds in the Pamunky River Region, Central Virginia Coastal Plain Atlantic Coastal Plain Geological Association.

Welch, D. (1986). Cluster Guide. Virginia Tech.

Witmer, R. J. (1975). Taxonomy and Biostratigraphy of Lower Tertiary Dinoflagellate Assemblages from the Atlantic Coastal Plain near Richmond Virginia. Masters, Virginia Polytechnic Institute.

Witmer, R. J. (1987). Tertiary Dinoflagellate, Acritarch, and Chlorophyte Assemblages from the Oak Grove Core, Virginia Coastal Plain. Doctoral, Virginia Polytechnic Institute.

Xiaohong, L., Zeng, J., Zheng, Z., Wu, Y. (1991). Effect of domestic sewage on growth of phytoplankton: Mathematical Model. Journal of Environmental Sciences (China), 3(1), 59-70.

Yang, H. S., and Kim, S.S. (1991). A study on sea water and ocean current in the sea adjacent to Korea Peninsula: IIGeographical distribution and chemical characteristics of different mid-bottom waters in the neighboring Sea of Cheju Island in summer. Bulletin of the Korean Fisheries Society, 24(3), 177-184.

Yoo, H. R. (1986). Remotely sensed water turbidity pattern on the Korean side of the Yellow Sea. Ocean Research (Seoul), 8(1), 49-56.

Young, H. D. (1962). Statistical Treatment of Experimental Data . New York: McGraw Hill. pp. 172.

Zenetos, A. (1991). Re-evaluation of Numerical Classification Methods for Delineating Biofacies and Biotopes in an Esturaine Environment. Lethaia, 24, 14-23+.

Zhou, F. (1989). Model of dynamic deposition in the East China Sea. Chinese Journal of Oceanology and Limnology, 7(3), 274-282.

63 APPENDIX A:

TRANSFORMED DINOFLAGELLATE DATA SETS

ANOVA ANALYSIS OF DINOFLAGELLATE DATA SETS PTI “Areoligera’ Association

73 “4 atmer acuia 7! ‘75h ‘75 witmer aqua "* +78 ‘76 wimer aqua 7! 393 5¢ ‘2 Aracngera So. 37.30: > 2! Amoligara so. 9.301 1 2!Areougera sp. : 27.°3! ‘66 ~uroiasonaera filosa *.301 '66/Turtosonaara Hosa 7.40! 186i Turpiospnaera tilosa . 7 20: 7 7 Parmecaniela noamata ‘20! 117! Paratecametia inaentata 1.301 17 61Xemkoon ausirans :

“Q' +76 Xan«oon BNS 1.201 ' 76: Kenkoon austrais * 201 1591Th ora celicata ! 3.50! 49 =cracinum annestornense 3.90! <9 Fibraaimum annexorsense 1.301 +17 Paraecariaila incentata —

3.50! 248 Memorancsonaera taouiata 3.701 248)M a !aouiaia 3.50) 248] Memoranospnaera ‘abuiata ' 2.30) +91 Micrnysinatum spp. 3.70{ + 81tMicrnysinaum soo. 2.40! 18tiMiemysindium spo. 3

3.40' 3° Microarmum omatum 3.60) 15917Th tora Gaucata 3.401 * 86) Pterosoarmoosis 300. ; 3,40! °S9,7halassoonora ceticata 3.401 39 !moletosonaendium ‘ugesum 3.40! 151! Soteutertes ramosus suoso. ‘amosus | 3st 39. iaistossnaendium uggs 230) 247! sptocmum vwrosmanrum 3.30! 20: Chtarmyagonoraila ct. So. urra '

3.29: 26, Chiamveconoraida ct. C. uma 2.301 1821 Cymanesonaera soo. 2.301 247! Leqtodimum virginianum 2.20 *82'C smauosonaera so0. 2.301 2461Dellanana soimgera 0.36: 101i Mcroginum omatum ‘ 3.20: 246 Cetlanona somigera 2.30 1014/Microainum ornatunt 3.20: 1 78IC¥e la weta

2.20: '39-Cisnyescosis Succmata 3.301 186! P*erosoermoosis soo. 3.201 242!Detianana ct. 3. magmifica 320: °19 Coercutcaimum centrocaroum 9.20) 20!Chiamydoonoreua &. 5. wma 3.20! 246) Detlancna soingera 2.20: °51 Sointemes ramosus subs. ramosus 9.20} 242!Dellanana ¢. 5. Tagnitica 3.201 "939i Dionyesoosis buccinata

2.10: 242'Setlanana ct. 3. magndica 9.29) 243!Cetlanana cascura 2.20! :901Dionvesoos:s capnala Tol 243'Oetlanena opscura 0.29! '90/Dionyesooss caoaata 3.201 39iimoretaspnaendium ugosum 3.°0! (90: Cionyesoosis capiata 3.201 1° 0109 wn cantrocaroum 3.20! 115i Paiaeocystoaurum goizowensa

3° 27 Uystrenosonaancum ‘uoerum 220! °1SiPalasocystommum colzowense 3.20! ‘46[Somtentes sseucolurcatus 3.°9' 249 - Nematosonaercosis tradecuiata 3.201 1511 Soinvtermes ramosus supso. ‘amosus 2.20) 254)Verynacrium sop. 2.°o: * | Si Sataeocysicainum golzowensa 3.101 + 89}Otonyesopsss oucc:nata 0.10} 2431 Detlandna opscura 3.101 3tiHysinchosonaenmum ‘uoterum 2.101 ati Hystncnosonaendium :voitarum 3.101 249!Nematosonaeroosis ‘Tapecuiata 2.10! 249(Nematosonasropsis ‘racecuiata 1.101 11 0:Coercurcainium centrocarsum '

65

i i wurer agua im! “7a ‘78 atmaer aqua ~* a6 3¢. ‘2 Araongera 30. 32.°9' | 2! Areougera so. 73! ' 56 7 urtiossnaera tilosa 2.901 239iAa sm :

- $0: 'S9 Thaasswenora deucala ' 30! 166: Tumiesonaera tilasa i IQ: '' 7'Barmecameiva incentata ‘60 °59:7h yora Caucaia !

29 243 Memoranosonaera iabuiala ‘10; 246) Cettanana somigera : 20 175 Xanixoon austrans ‘201 ‘'17'Paraiecaneila inoenaa ' 2:30; '37-.Micrrystnaium spo. 10! 242(Dehanana 4. 3. nagniica ' 3.501 °36/Pterosoermeoosis soo. 130) *8'|Micrysinaum soo. { 3.50. *°61 Microginium omatum 3.40! | 76iXenkoon austrais 1

2.a0 23'Coamveoonoreia cl. > uma 3.56: ‘365 Perossermoosss soc. ,

3.40; 242'OQenanana ct. J. magnmca 3.501 'S1'Sommtentes ramosus sucso. “amocus 3.40! 246 Detianana soingera 7.40 + 90tDionyesoosis capmaia : 3.301 '90)Cronvescosis caonata 3.40: 39/inowtosonaendium ‘ugasum i 1.390! 31 Hysincnosonaenaum tubifanm 3401 331K dium anewioardatum

3.30! 39 1imoeiassnaendium ‘ugosum 2.40; 2481 Memoranosonaera :aouiata ' 330: 37 Kaiosoraenatum Srevigardatun J.40f '01'Micrommum omaium

3.50' ° 57 'Soimtertes ramosus su0so. ‘amosus 2 4Qi_ | 151 Paaeocystoginum jorowense s 2.20: 243 Cetlancna ooscura 3.320! 20! Crtamyaoonoreda =. 2. urna :

3.201 249!Nematosonaeropsis tracecuiata 2.30! 1 78iCy weta : 7.20, ‘'*O!Coercuiacinium centrocaroum 2 201 243i Oettanona ooscura : 3.201 1 5: P alaeacvsioginum goizowensa 3.30: 249i Nemalosonaerosis Tadecuiala | 2.'0! * 89iCionyesaosis ouccinata 2.30) 2501P ss ‘Tagitts I

2.70! + 46'Soinarites os@udoturcatus 2.20! :89iDionyesooss ducc:nata ‘ 2.201 Jtikystncncsonaengum :uoderum : 0.201 ‘19!Goercusainium centrocaroum ) 3.101 '461Somfemes oseucofurcatus

248) 2488 goodman, Nan K zone ‘6 243; 249 googman. Nan) woodaiocx zone 6

:4 30: ‘| 2’Areongera so. 58.20! * 2 Areorgera 30. + 60! ‘60!Thalassionora pelagica 23.40) 17° Wetmeneia (W.) wnars 2.401 ° 7 *'Werzeneiia (W.) tunans 3.201 | §0iThalassionora omagica 3.501 7 Aiysincnoxolpoma aguage 3.29: 3 7'Defangna 2nosonomea ‘201 37'Detlanana onosonamica ‘30! 7 Sthvemicnoxncisgma nguade 20! 237'Svstematoonora ancyrea 130i *2ihomotryotum oaiagur 2.3C! 1 03!Muratoainum ‘imaonatum 3 30) 2t2!Detlanana asymmetnca

2:30: 228iO0inootengum clacomes 3. 80! 2*3!Detlanana diiwynensis 3.901 23!Cordosonaendium inodes 3.40; 2 8/Consosonaenaum inoces 2 $C 214.Detlanona macmurcoensis 3.401 791 Weereneia (W ) namocenersis

7.80: 22' Wetzetieila WW.) soeothryota 3.40] 22! Ciastosonaendium aversisoinosum

3.50! 232'Hemicysioainum zonaryt 3.401 449i heterauiacacysia camoanuia 7.40! ‘ Acmieita oformomes 1. gan.. 1. came. 2.40! 2230 Heteraviacacveta ‘enmamensis 3.2C! ‘'§B8lAutna annacea n. gen. 4. como. 3.20) ‘Achreda sdormnomes 7. yer. 7. como.

3.201 27’ Carcospnaendium gracults 2.201 41!Dionves cotligerum

3.20! 41 Dionyes coigerum 2.20) J3!Kavosonaenaium orewbaroatum 2.201 79 'Hvsinchosonaancium :uoitarum 3.201 °'35:Larmteamosonaendum dicolare

3.201 I8iLinguioainium nacnaeroonorum 3.201 138(Soinrfentas crassipentis

3.201 2001Ocer uocinum ameuum Nn. so. 7.20! °46!Somtemes sseucoturcatus 2 20' 202'Senncamum ‘S.) austraveanss 3.251 'S$0!Somfemes camosus su0so. TuMtorevis 2.20! 212'Oetianana asymmetnca 3.20! 2'OTectatoainium ssiatum 3.201 21310etlanana diwynensis 3.20! 18)Detlancna warcenenses 220: %38'Cerlanona wardenensis 3.20: 2:81? hinancoerainium ‘esistems 2.201 | 1 5iFaiaeocysiadinium gotzowense 3.20: 219!Wetzeneia iW.) armcuata 7.29' 2:9'Wereraila .W.) anicuata 3.20' 237'Systamatosnora ancyrea 3.20' + 70\Werzaneia (W) hamogecensis

229' =° 72'Wetzeiella |W.) samiancica 2.20: 2‘Adnatosonaangium muittsoinosum 320) = 22:Ciatstosonaendium arversispicosum 2.20: _17'Eoclanopwus cenicuiarum

2.20: 223i Nelterauiacacysta ‘anmamersis 2.20! 39!{mpletasonaendium cugosum

iceaous

. 7. camo.

67 Coreilation matrix for PT]

i Correlation Matrix for Variables: Xe XS | | | 174 175 176 177 178

174 ' |

i 1 175 99996 |i

75 .39987 }.99987 |i | 77 .39979 |.99983 |.99991_ | 1 | ! 178 a9e32 |.99936 |.99943 |.99952 |1 | | i | | !t |It

Anova table for P71

One Factor ANOVA-Repeated Measures for Xy .. X§

| Source: af: Sum of Squares: Mean Square: F-test: ! Between supjects 1254 |37545.0858 147.8153 | 3494, Within suojects 1020 | 43.144 0423 *reatments 4 00282 .00071 residual 1016 |43.14178 04246

Totat 1274 |37588.2298

Relianiiity Estimates for- All creatrnents: 9997) Single Treatment:

68 PT? ae Areoligera/Eacladopyxis- , ° peniculatum. “ Association. .

74 *8Ci 18) 39 30 2 Areasiugara 33. 47.30 * 2lAmongera 3p. 31.901 1 2'Areongera sa. “se 38 a7 Zocwcogvus pemcualLm 2°.501 47'Eociacoayus senculatum 2490! iT Eoctacoovsis ceniculatum 3 50 36.Sellancra canmona 7 501 ‘96:Lamemosonaencum anosum °§.50| ‘9é6tLantamosonaendium ‘anasum 2 3c 3 Acratossnaendium dousium 7 30! 3! Adnalosonaengium ‘ooustum '§ 20° Jl Aanalosoraencium -cousium 450: 29-Corncsonaanaium inodes 4101 29'Cortosonaencium :nqoes § 601 23(Cordosanaanaium nocas + 40 36.Lanterrcsonaenaium ‘anosum 2.501 247'Laotoainum virgimanum 2.390) 73iKaliaspnazendium grewigarsatum 2 79! 77! Sanancna anosonormica : $01 36:Catlanana canmona 2,701 247 Leoteaimum virgimanum 3.30! 933lKaliosonagnawm srevioaroaium ‘.30:! 33iKailosonaencium srevidarsatum 2.00: 37! Oetlanona snosononnca 2:30: 247 Laotocimum vigimanum ‘70! 37!Oeflandna snosonomica ‘.30! J6iDelangna sanmona 2 3c 248 'Memorangsonagra ‘aguiata 39Ct 753Sanitemes ct 3. seatatus 0.50) *86'Prarospermaosis soo. 7,40 21 Micrmysinaum sop. 3.90! 252'!Sondertes seotaius 3.40: 2431 Getlanana coscura 3301 243}Oatllanana ooscura 3.30) 248) Memoranosonaera ‘aouiata 3.40: 249iNematosonaeronsis trapeculata 3.20! :90'Gicnyesoosis cagaata 3.30! *B1)Meernysinaum spo. 3.40! 25 31Soindentes ct. 5. seotatus 3.56: 250:Paiasostamacysius ‘ragiths 32.30) 249)Nematosonasroogis ‘raoecuiata J.40t 252!Soinferes sactatus 3.30: *~* 9a rarecanieta indentata 3.203 29! Chlamydoonoreda cl. o. uma 9.30: 241'Corasspnaancium soeces A 320 298! Aoteogimum saculatum 9.20! 241: Cardasonaenaum soecies A 3.20) 240! Corcespnaendium marviancanse 3.20: 39imoetosonaendum sugasum 3.201 242!Detlanana o. 3. magnifica 3.201 1901 Dionyesoosis caprata 2.20' :15.Palaeocysiodinium gorzowense 2.201 243;Defanana ooscura 8.201 FB8liLingwoamium nacnaeroororum 3.20) 2539,Soimientes ct. 5. seotatus 3.20) :901Dionyesoose capnata 7.20) 2481 Memoranosonaera :aduiata 201 | 4? Soimfertas somuitus A 3.20! 250! Saaeostomacystus iraaiilis 6.29! ‘| 5iPalasocystodinium sorzowarse 3.20) 1: 26!Somteantas a 3.20) 261: Spindemes cinguiatus suoso.reticuiatus 3.201 '41'Somsames comutus 4

3.20; 252!:Soinstentes seotalus 3.10} 238lAoteadinum saculatum 2.19) 20:Chlamvaconerelia cr. Cuma : 2°! 20! Chlarvcopnoresa ct. So. uma 9.101 ! 7a Cycwooseta vika 2.10! 242!Gerlanana ct. O. Nagmica _ 3.70) 2473 Corcosonaenawm speces A 3.101 39 aendium Ugesum 3c 39 laendiuM cugesumM

32:3 (TU Cvcocsieva veta 2.10f — 38tLingueanium nachaercaonorm 3.20) 1:10! Coercuioamum centracaroum 3D 242'Satianana ct. 3. magnitica 310! + 10'Ooercuwodcinium cemrocaroum 9.10! 281'Somientes cinguiatus suoso.ancuars 1.'9) 38iLerguioainum macnaersonorum 3.10} 115) Paaeccystoginum solzowensea 32.10! = *36!Souxtertes crassioems A 3 °$! T49-Nematasonaeroosis ‘racecuiata 3.10! *+41'Sointentes comuus 4 205. (°2 Ocarcuaamum centracaroum 3.30! +36) So:ntentes crassicaus A J 3 2848 vawracmum sao. 3 °C! 2S4:Vernnacrum soo.

69

‘82: 32.50: = 47'Eactacopyxis oenicuiatum '° 7,291 * 96iLamternosonaengum tanosum ; '6.230) ‘2’ Ar@otigera so.

4.10; JiAanatosonaengium rooustum

{ 3.30) 28iCoraosonaendium modes

1 6.101 247ilLeotoainum virginianum 14.101 255/Wetzanella (W.) homomorpna svoso. quina

. +.301 941Kallosonaancium brevibarpatum

! 1.701 371Oetlandna onosonontca \ ‘Oo’ 36!Detlanona carmmona

2.80: 253iSointentes cf. S. seotatus

; 9.801 252!Soindemtes seoiatus + 9.50] 249iNematosonaercosis ‘radecuiala

' 9.40} 1 86iPterospermoosis spp. | 49.30 20!Chlamyaophorella ct. C. uma | 3.361 _243!0etlanona ooscura | 9.20! 15 1/Seindentes ramosus suoso. ramosus

i 0.201 182!Cymatosonaera sop. 9,201 2421Dellandna ct. 0. magndica

) 0.20! 190!0ionvesonsis capnata {9.201 3 1iHystnchosonaendium tuoiarum ! 9.201 39 'Impletosonaendium rugosum i9.20! 98lLinguiodinium macnaeroonorum 3.201 248!Memoranosphaera tadulata | 2.201 ‘81IMicrnysindium sop.

© 3.20) 110iOoercuiodinium centrocaroum 9.20! :36iSoindentes crassioeilis A 3.101 241: Coraosonaendium soeces A

| O.10+ * 78ICycioosieila wera 3.'0!_ 245i0etlandna ruginosa . 9.10: 246/1Deflancna soinigera

| 3.10) *1SiPaiaeocystodinum golzowense | 0.101 2511Sainfernas anguiatus suoso. rescuiaius i 9.1Cl_ 1411Sointtentes comutus A "9.101 ‘69/Werzelielia ct. w. myscnensis

i

' i

t

I

;

70 Corellation Matrix for PT2

Correlation Matrix for Variables: X4... X4

173 1 186 99113 }1 181 88925 4.92817 {1 182 70533 {.75445 | .90491

ANOVA Table for PT2

One Factor ANOVA-Repeatec Measures far Xt... X4

Source: df: Sum of Squares: Mean Square: F-test: P value: Between subjects 254 | 8488.78035 33.4204 | 24.50405 [.0co1 Within subysects 765 1043.3625 1.36387 |

creatments 3 .04097 01366 .00997 |.9986

resiquai 762 1043.32153 1.36319 |

Total 10719 = |9532.14285 1 {

Reliability Estimates for- All treatments: .85319 Singie Treatment: .85457 —

71

PT3 “Wetzelieila (W.) homomorpha/ Membranosphaera tabutata/

Eocladopyxis peniculatum“ Association

193! 1B4) . 37 20! 255: Werzeneia \W.) homemorona sudsp. quinal 49.80! 255iWelzeliella .W.) Jomomorona sudso. cuincy 22.40. 4 7'Eociadanyxis oemcutatum 14 601 47 Eociadopyxue penmicuatum ‘7.26' 247'Laotodintum virgimanum 10.501 247!Leoteaimum wrgimanum | ‘9.501. 2: Arsoligera 6p. 10.30: * 2! Areongara so. : §.:0! *96iLamemosonaendium anosum 2.50) 196iLantamosonaendaium fanosum ' 3.701 23iCarcesonaendium inogas ‘701 93tKalosonaendium wewbarbalum : t 2.301 93iKallospnaencdhum orenbarbatum '.50| 28! Coraosonaendiumn modes : 1.501 3) /Aonalosonaendium moustm 201 JlfAgnalosohaenaium roousium + 9.30! 37 Oseltianona anosononica 1.101 249!Nematospnaarcosss tradecuiata \ i70i T5h2!Sameanes ct. 5. saotatus 3.90! 1901 0ionyesoosis cantata ' 3.731 252'Soinventwes septatus 3.761 3 tiHystncnosongendium tuoderum : 3.50! 249; Nematosohat.rooms trabecuiata 9.50) ‘81! Micrnysinaium soo. i 3.40: 1 SO! Dichvesoons cacnata 9.401 371 Detlanana oneepnomtica : 9.30) 241! Comoonagndiun soscies A 9.401 101i Microcinrum ormatimn : 7.30) 9 Mystacnusonaerndum ivorterum 0.401 115! Paasocystoginum goizowensa : 3.901 (51 Somdentas ramosus suuso. ‘amosus 3.301 242!Cetlanaria &. 3. nagreica ! 0.201 290! Chtamydoonorelit ct. C. uma 9.30! 243|Detangna obscura : 2.201 243/Detlardi2 ooscu2 0.30) 246)Detianana soingera } 93.201 246i Dellanana somites 2.301 248|Membdrancsonaera iaguiala 3.20) 248! Memoranosonsea Icouinta 0,301 +5 1!Sointantes ramosus sudso. “amosus = 2.20] 1 10iOoercundinum coniccurum 0.20! 3Slimpietosonaencium rugosum i 2.20! 250) Palasosiomacysivs ‘rails 9.20! 38tLinguiodinawn macnaerosnonm i 9.201 + 41'Sormpentes comuns A 2.20f 252 Somitentes ct. S. septatus : 3.10) '78)Cyet la vieta 0.201 2511Spimitentes cingwatus sudso.reucuiatus

90.10! 242!Detlandna ct. 9. nagntice 9.2GL 252)Somtfemes seotatus 9.101 245iCetlanana ruginosa 9.:01 20lChiamyao da ct. C. urna |

3.10: 194i Hysincnosonaeropsis SomuEnc.i 0.101 240!Corcospnaendium marylancensa : 3.190! 391lmotewsonaendium rugesum 9.101 2411Corcospnaencium species A ! 3.19: 328i Linquiocinium macnaeroonorum 3.101 + 7SICy la neta :

7.10) + + $1 Pataeocystodinum qolzowenss 3.10) 225iOetlanana rugosa 3.10t * 36) Premspermooss spo. 3.10! '94irtysinenosonaemoss Sorussica 3.101 251!Sointemes c:nguiatus sudsp.reticutatus 2.101 1 10!Opercuicainum cantrocaroum ! 3.10! *36iSomderntes crassipesis A Q.:01 136!Somertes crassweiieA i 9.°01 2541 Verynactwum sop. 0.10! 148|Sommtemes ramosus supso.5 '

3.°0! +69/Werzeveda ct. w. styscnensis : ‘

72

“35. ‘36) 187!

4 30: 255: Werzeanena .W! Nomomorona suoso. auinagi $8.00! 255iWeceuelia |W.) momomorpna suoso. quinct 3 35.431 255: Weltzeneila (.W.) homomorona sucse. suinc| fy

+ 2.395: 247 Leotecinium virgimanum 2.701 248\Memorancsonaera ‘abuiala 25.80! 248]|Memoranosonaera iabulala 3.°0! + 2'Areongera sp. 7.901 247'Leotoainum weginianum 16.101 20!1Chiamyagonorsila cf. C. urna I 3.30! 21 Hysincnosonaenctum tuditerum 5.301 | 2!Amotigera so. 3.80) 12! Areotigera so. : 2,.30' | 96iLantarnosonaendium tanosum 5.20! 201Chiamryooonoreia cr. S. uma 2.40! | 968!Lamemosonaenaium ianosum : 1.30: 259'Scintentas ct. S. sagtatus 2.001 *96!Lartemosonaeamum ‘anosum 2.201 246i Detlanana sommgera | * 30) 252!Somnrtemes seotatus ‘70! 2461 Deltanana soingera 1.701 247'!Leotoainum veginianum : 1.50! 3 9!Kailosonaendium brevibarvatum 1.201 1 15iPaaeocysioginum goiztowense 1.40! 11 5i(Pataeocystoginum goizowerse | *.40| 248!Memoranosonaera tabuiata ‘,201 2501Palaecstomacystus iragtliis +.401 250! Palaeostomacysius tragitrs : “201 29'Chtamvaoonoreila ct. 7. sma * ‘0! 249iNematosonaercosis ‘ranecuiala O0t 9 3iKarosonasndium sewioarpaum

‘20! 24610ellanana soinigera ‘30! JIiKalosonaendium orewoarbaium 2.80! 3 tittystncnosonaendium tuoterum 26: 249\|Nematosonaeropsis irabecuiata 9.901 4ItlHystnchosonaencium :uoterum 9.801 253!Sommentes c:. S. seotatus ' ‘Ol 2501/Palaeastomacystus tragulis 3.90! 253!Sowmtentes cf. S. seotatus 3.90] 252! Somttemes seotatus

3.90! *90!Dionyescosis caditara 3.90) 252/Somdemes seotatus 0.50) 249|Nematospnaeroosis trabecuiata i 3.90! *15'tPaiaeocystocinium gorzowense 2.401 !10ICpercuiedimum centrocaroum 9.491 25iCorcesanaendum tibroscinosum ' 9.80! 47’ Eociacooyxis oancuiatum 7.401 °51(Soindenes ramosus suosp. ‘amosus 3.401 *9OIDIonvesoos:s cantata :

3.791 28!Carcesonaendium inoces 2.301 231 Carmosonaendium inooes 3.30: 47! Eoctacoovzis pemculatum 1 1.60! 38lLinguoatnium macnaeroconorum 3.201 2411 Corospnaendum soecies A 2.301 '81'Micrnysindium soo. 3.401 2431Detlanona onscura 7.201 243\Detlanoria ooscwa 9.301 1011 Microaimum ormatum { 3.40! 245! Oerlanona_ruginosa 3.201 +90) Dlonyesoosis caorata 120! 281 Carcosonaendium nodes : 3.401 110.Coercuiocimum cantrocarpum 3.20) 47: Eociadooyx16 canmcuiaturn 3.20! '92!Cymatosonaera soo. \

3.301 181!Micrnysincium soo. 2.201 98lLinguiocinium macnaeroonorum 9.20! 242! Oetlandna cf. 3. magniica \ 2.201 242!Detlanona ct. 0. magndica 2.201 ‘O1/Microdinum omatum 3.201 245i Cetanana ruginosa : 2 201 1 94irystncnosonaerocosis Dorussica 3.201 !86!Pterospermopsis soo. 3.20! —3Siimoletospnaencium rugosum ' 3.20! '86!P*erasoermoosis soo, 2.101 240!Coraasonasnaium maryiandensa 9.201 «1 0iCoerculoaimum centrocaroum : 3.201 '36!Soinitentes crassipaitis A 2.10! 242!Detlanana cof. 0. nagniica 9.20! :96!Pterasoermoosis sop. a 2.20: :51!Soindemes ramosus suoso. ramosus 2.10t 37!Oatanana onespnonica 3.201 | 69iWetzereia ct. w. :myscnensis . ! 3.101 240/Corcosonaendium marylancense 3.101 2451 Detlanana roginosa 3.10) 2401 Camossnaesnaium marvianoanse | 3.:0| 37'Serlanana snosonennca 3.70] 39timostosonaencium sugosum 3.103 + 781Cycoosieda vieta : 1.701 244:9atancna momoonecra 2.10) '81'Miernvsmaium soo. 2.°91_243'Cetlanona coscura ' 3.10! 78 tHystncnokelpoma unisomnum 2.101 251|Soindentes cinguiatus suoso_recuatus 3.:6! _37!Detlanana onospnormica :

215i IPDimoietosonaendium rugosum 2.10! +36)Somdertes Irs A 2.101 7 6iHystincnokotooma “quage '

4.:0! 1:01! Microcintum omatum 3.10' 1481Semdertes ramosus suoso. granosus 2.10) 28lUnguicarnum macnasroocnarim A 2.'O1 25 1'Sontertes cingulatus suoso.recuiaius 2.10! ‘69!Werzeleila &. w. myscnenss 3.10! 251'Soumtentes cnguiatus suasosencuans | 3.°3l * 48: Somfeames ramosus suosp. jranosus 3.10! ‘36! Spindernes lis A '

3.101 * 48!Sointemes ramosus sudso. granosus i 3.:0l °511Soudentes ramosus subso. “amosus | |

73

38 “B3t 190: 5829 2535: Wetzeusiia (Wo) nomomorena suoso. quing: 23 40! 255: Watzensila (W.} Pomomorsna su0s0. quinat 30.80' 255: Werzauela (W.} nomomorena suds. zunct ‘2.50. 248'Memoranosonaera ‘aguiaia 26.90l 248|Memoranospnagra ‘aduiata 27.50| 243|Memoranospnaera ‘aduata i 3.5C: ‘96iLamiemosonaengum iancsum ‘7 20! 201Chiarmryoceneraiia ct. C. ana 56.701 201Chtamyaoonoretia ¢. 2. oma ot 7 40; 20: Chiamycoonoreiia ct. C. urna 3.0) 12: Areangera so. 5.90) 1 2!Araciigera so. 7 3.20, * 2'Araoiigera so. 2.401 196\Lamemosonaendium ancsum $.80! ‘96:Lanternasonaendium ianosum 2,20! 246: Datlanana soimgera 1 $0! 246! Detlanana sanigara 13C;_ 246'Cetianona soegera : 2.10 247'Leactoainium virgimanum ‘20! 115/Palaeocystoaimum Ggoizowense '.50! 37 'mystncnesonaenaium ‘ucterum : ' 4,10) "18)Palasocysiodinium gotzowense ‘.201 250) Palapostomacystus ‘ragiis 201 7 7!hysincnoxoicoma tumescans 1. '.3101 250tPaaeostomacystus fragilis t.10} 7 7lHystner tumescens 1.101 115!Palaeocystodinum goizowerse '

: 99: 249!Nematosonaeroosis tradecuiala 2.90! 28!Cordosonaencium inoces 1.101 250! Palaeostomacystus !racillis '

2.901 25: Carcosonaendium horesoinosum 3.90] 31. Hystncnospnaencium ivoterum 2.90! 23! Carcosonaenaium inoges ; 3.30! 253)/Somtermnes cf. 5. seoiatus 2.390) 253!Soinvtemes cf. S. seotatus 3.80} 249i\Nematosonaeropsis trabecutata : 3.30; 252'Spinitentes seplatus 9.901 252!Sointemes seotatus 3.70} 253!Soinitentes ct. 5. seotatus 3.40! 8 t’Mystnchosonaendium fuoilarum 3.801 25)Cardosphasridium fibrosoinosum 9.701 252iSoinitemes seotatus 3.70! 240!Cordesonaendium maryiancense 2.801 190! Dionyesooss cantata 3.601 25:Corcosonaenaium tibregoiwnosum 3.7G! i9CiOlonyvesoosis capdata 3.80! 240!Cartoscnaendum maryancerse 3.40) 240! Cardosonaendium maryiancense ' 3.60! 281Carcosonaendium tnoges 3.40) D3tKailosonaendium crevioarpatum 0.30 243i Derlanona obscura "9.60! 9 31Katospnaendium prewibarbatum 3.301 {9SiLamemesonaendium sioolare 2.30! 245/Celdandna nugnosa L_ 3,601 _* 10!Qoercuioainum cantrocaroum 2.301 _247{Laptedinum virginianum 0.30! Ii Kallosonaendium sravioaroatum ‘ 7.40! *26'Sointames crassioailis A 3.101 2491Nematosohaeroosis travecuiata 0.30! <1 0'Coarcuiodinium ceantrocaroum

3,26: 2431Detlandna ooscura 9.301 148/Sointemes amosus suosp. granosus 9.201 3 78! Cycropeelia weta :

3.301 77ihystncnokoipoma tumescens 3.20! 24310etlanona opscura 9.20) '95tLamemosonaendium siocare ‘ } 9.20) 146!Soinierites pseudolurcatus 0.201 7 AlHyse uns ornUm 9.201 38) Lnguisainium macnaeropnonim !

9.201 241i\Cordosohaendium species A 0.201 98) Linguiocinum macnaerconorum 3.20) 1 86|Ptarosoermoosis sop. a ‘9.201 244/Derlancna momboneora 9.20] 181) Micmysindum spo. 9.20! 1 361Soindtentes tis A ,

1 3.20' 47! Eoctadooyxis seniculatum 9.201 101'Microciqum omatum 9.20! + 461So:ntentas turcams

0.201 ‘9ditvstnchesonaerooss Dorussica 2.20! 110!Opercusdmum cantrocaroum 9.20! :4381Soindentes ramosus suoso. cranosus ' 3.20! ‘95iLamamesonaendaum oiooclare 3.201 136)Soindentes crassioeliis A 3.101 2441Denancna rhomoaneara '

2.20: 251'Sontertes cimguiatus sudso.raticuiatus 9.201 !46iSoimtertes oseudoturcatus 5.10! *901Dionvescosis capnata : T.20l 89iWetzenesa ctw myscnensis 9 20! ‘+ St!iSomftemes ramosus suoso. “amosus f.101 7 8tkvstncnoxolgoma umsamnum 2.10: 242'Dettanana ct. 3. magnifica 3.101 241iCaomosonasnaium soeces A J.10i 'G4itysinchaspnaerogss Sorussica t 3.101 245/Cetlanana ruginosa 2.101 1 78lCye la viata 0.:01 aSlimoletasonaendium © '

2.10! 78 lHystnenokoisema_unisoinum 9.101 248i Dellanana ruginosa 9.101 247!Lectocinum virginianum : 2:01 39 ohaendum rugesum 7.10! 7 6lHystnchaxoiooma nquace 0.°0) !81'Miernysincium soo. i

3.10 98iLingu:iocinium machaemonorum 3.10) 194i rystnchosonaeroosis oorussica 9.10) +8 1!Sointertes ramosus suoso. samosus ' 1 2.°9) + 48)}Sonitentes ramosus subsp. granosus 2.101 8Siimos naendium rugosum i

' 2.16! 15 1iSomtemes rarnosus suoso. ramosus 3.101 ‘86|Perocsoecmopens sop. } {

74

w w | 28 30 268 Watzquaida |W.) Romomorgra suosp. quingy

(3.70 soy 244 Memoranosonaera taouiata |

3.30 20: Chiamycononoreila ct. C. uma

‘O40: * 96:Lamtarrosonaendaium ianosum |

3.30: * 2'Araongera so. |

20: °15iPalaeocystodinium golzowense 4

0: 4

im) a 2 Sornttamtas ct. S. 3. ua 2 2 $3’

3. io §2!

3 2/9 1 3. 8 3 a. 2461Cerlanana 2. 253 195

20: 77 'Hysincnoxnaipoma tumescens 201 240. Carcessnaendium maryianoense

24 ~L4 pop pop 45: 3

ag

146

* 82 t “75

feo 10! "9s Hvsinenosonagropsis Socussica Pes 10) 247'Leotoainium vrqnianum { ids tt for ast 96) 748 forces ‘514 2541 Cea

34, 95: ‘363 34 20! 255 \Wetzeneia (W.) tomomorona suse. suing! 40.'O! 255: Wetrenela (W ) homomorona suoso. quingt 16.40: 255: Wetzeleda .\W) namomorpna suoso. quincy 32.20° 248 Memoranosonaera ‘aduiala 29.201 248|Memoranosonaera ‘aouiata 30.901 248i Memorancsonaera taduiata : 3.30: 20'Chiamycoonoreda ct. 2. suena ‘8.00: 20/Chtamyooonorela @. C. wma +§.50) 2C0iChlamyooonoratia ct. 2. urna 270 246 Detlanana spunigera 2.20: 2461Q0eliandna soimgera 7.901 +96iLantamosonaendium lanosum 2.06) ‘96 'Lantarnosonaendium .anosum 2.101 ‘'t51Paiaeocysoainmum jolzowenéss 2.90! 9IiKalospnaendum srevibarcatum - 40: 28. Corcosonaendawm nodes 2.10) 25010 a yetus ‘ragilis 1.50) 115! Pasaeocysioginum goizowersa

‘.3Ci 3 3iKatospnaenawm orewioaroaium ‘.30| ‘96iLamemosonaenaum ianosum ‘50, 2501 Palaeostomacysius tragihs ‘20! * 2'Areaugera sa. < ‘29! 2431 Detlancna ooscura 1.20t 1 2!Arequgera so. ‘.7C! 243: Oetlanana onscura ‘.101 1 2/Amatigera so. 1.201 246!Oeilanana somegera 3.40: 2§.Corcosonaendum 'orosoinosum 3.60! “Qt Microomum ornatuat 3.70! 240) Corgosonaengium mariancanse ‘

2.350) ~ 7 eysiner Tumescens 3.401 18 1'Micmysinaum soo. 2.701 Ji hystrrecnosonaendium “uoterum

1,80) 2501P ¥stus ‘ragulis 2.301 * 86! P*erosoermoosis soo. 0.901 2S!Comosanaeraium fbrosoinesum 3.30: °8% Micrnysinonam soo. 2.20) 238tApteceinium sacuwatum 3.50! 243i Oafancna opscura ‘ 3.30. ‘‘ §:Palaeocysiommum gozowense 2.201 25)/Carcesonaencium ibrosoinosum 2.50: 7 7'Kysinenoxclooma tumescens 3.40: 230. Carmosonaenaium maryianoense 9.20: 281Carsospnaesnaium ‘noces 3.50! 38) Linguiodimum macnaeropnonm 3 40! 249;\Nematosonaerooss tracecuiata 2.20! 244\Delanana momoonecra 3.50) 2491Nematospnaercosis tracecviaia 2.401 283:Sointertes ct. S. 3.201 2451 Detlandna roginosa 9.50! ‘| 36iSowndentes crassioeits A

3,461 252'Sointertas seotatus 3.201 39) imowtosonaendiurn rugosum_ 3.50: '51t!Sorvwentes ramosus suoso. -amosus 3.301 _17'Detlanana onosonomica 9.20! J3}Katloscnaendium srewbarbatum 9.40! 281 Csraosshaencium ‘nodes 3.30 245-Cetlanona ruginosa 3.201 247!Lectodmium wrgimanum 9.40! 'GS5iLamemosonaendum scolare 3.201) 329u0 nugosum 9.20) 249) Nematosonasmpsis tradecuiaia 2.30: 245: Detlanona ruginosa 3.30! *95iLantemosonaendum spore 2.201 '16iSointemes crassiomis A 2.30! !90l Cionvesoosis caonala 3.30! 247'Lactodinium vaqumanum 3.201 *51)Saintentse ramosus suoss. ‘amosus 3.301 3 Siimpietosonaendium rugosum 2.35) '26|Somniemes crassiperts A 3.20! :69!Wed@eneda cl. w. ryscnenss G.301 247! Leptoaimnum virgimanum ! 3.20! °90iSionvesonsis capnata 3.101 240{(Conesonasncium marviancenss 9.30) °0?'Mecromnum omatum . 2.20! 31 '+4y¥sincnosonaencium ‘ud:terum 3.10! 190}Olonyesoosms caorata 3.301 253!Soinsentes ct. S. seotaius ‘ 3.29: 38. Linguisaintum macnascopnorum 3.101 7 7\Hystncnonolooma tumescens 3.30; * 48/Soutames ramosus suoso. granosus 7.20! +91 Microdinium ormatum 3.101 7 8lMystncnokoiooma sntsoinum 9.30! 252!Sountemes sactatus 3.20) °° 9 Coercurcainum centrocaroum 2.10) J 1tMysinchogpnaendium ‘uodensmn 0.201 238lAoteacinum sacuatum : 22% * 26)? erespermooss soc. 3°90! =‘ 9SiLanternosonaandium siooare 9.201 '82'Cymanosonaera sco.

3.25 °51 Spintermes ramosus svosp. ‘amosus 2.10) 38ilinqueanum nachaergonerum 3.201 78trystnchonoinoma snisoinum 2.°9. 2238. Anteoainum sacuatum 3.101 1° 01Coercuioamuum cemrocarum 3.20) | Salrtysincnosonaerogsis 3orussica 2.°O! ~Slevsincnoxotooma 7quade 3.10! 253:Somtemes ct. S. 3.201 | 10iOoercutocinium sentracaroum

2.15! 7 Btvestner unispiium 2.10! 1 46}Soindemes pseucoiurcatus 9.20} ‘ 46iSomndemes oseucoiurcaius

3.°0' | 46iSointertes oseucoturcatus 9.101 | 481Somdarntes ramosus suass. yranosus 3.10) + 78ICy ja wela

3.°0' | 48!Somitemes ramosus suosp. jranosus 2.10! 252!Somnentes seotats 9.101 °861P ar $09.

3.°Ci * G9: Wetlzenetla cl. w. myscnensis 9.10: *691Werzerella c. a. ntyscnensis

76

od rey rey

te te 255. Wetzenella iW. nomomorona suosc. auina,

| te ¢4@iMemoranospnaera taduiaté ts

os

g,a]o g,a]o 26.Chiamvcoonoretia co: SC. urna yhoo yhoo Oo

& & !96\Laniemosonaenaum ‘anosum

‘plop ‘plop 40 + 2Areouqera so. ;

es) es) 80 93ikKaliospnaenaium orevidbardatum 50 251\Coransaonaenaium tiorospinosur

aout aout 50 240!Corocspnaendium maryiandense

ediw ediw 50 245 \Dettanona rugingsa i

40 242'Detlanana ooscure (Pal (Pal 3 246 iOetlanana spinigere 1

lod lod OR OR 40. 98lLinguiodinum macnaerocnormur i 40 ‘8 tiMicrnystndium soc ' 40 250!Palaeostomacysius tragillic

RLGSESEE RLGSESEE 4¢ ‘51'Spimlemas ramosus svosc. ramosus

30 28, Corcaspnaendaium inoces COLE COLE

-3¢ *Timysincnokoipoma tumescens 4

30 8 9limowiosonaendium rugosum i

ORISEEOR ORISEEOR -20! C38!Apieocinium daculatum :

20‘ 90'Dionvesoosis cantata (ORL (ORL .20 T SihvsincnoKoipoma uNnisomuMr {

.20' 3 i ihystncnosonaendium tvblienum | LOR(OE LOR(OE

20 ‘GS!iLantemospnaenoum bipolare '

SEIOCN SEIOCN -20. 247!Leptoaimum virgrmanum i

.20' 107'Microaimium omaturr oo IORI IORI

.20 249iNematosonaeropsis_ iradecuiaia i

-26 11 0!Ooersuiocinium cenirocaroum 5

.20 1*5:Palasocysiodinium golzowense { .20 +86 )Pterospermopsis sco ‘

ITRECHICHICH 220 253'Sowmtames ct S$ seotatus t

COR .20 25 ‘'Somiernes cinguwiatus subso.retcuiatus |

.20 °36!Somremes crassipelits A 1 CRISE CRISE -20. 252'Soimtemes seotatus t

.20. *-69!Wetzeteila ct w myscnensis 5 SRLORloR SRLORloR “O .78'Cvctopmeila viela ‘

10 iQ94iMystncnosonaeroosis Dorussica ' (On (On 10 *46:Soinaermes oseucoturcalus

18 ‘(48'Sointemes ramosus subad. granosus t ToRred ToRred

Correlation Matrix for PT3

Correlation Matrix for Variacles: X40...X%43

"33 134 135 186 137 138 189 130

Ww Ww 3 | - |

4 92104 {1 |

wens wens @ @

80824 1.953885 |% t

© © m m

mM mM 76673 |.94216 |.98162 |1 | hee hee

wh wh 58132 1.72575 |.76791 .85738 OO OO

oO oO |.77181f | |.a8932 {.92917 |.9734 |.91282 |1

ae onda onda

Oo Oo .55201 69553 |.73805 |.8328 9757 1.89937 |i ee ee ve)

OQ 52405 {.65604 |.69874 :.79761 39303 |.87937 1.99642 |1

~ ~ wo wo

ww ww

th th

Ni Ni

8 aonb 77427 |.81607 | .89201 .397384 = |.95895 |.97351 26739 | wo wo a

bh bh 49197 |.6332 67804 +.78548 | .98541 .8586 .98724 |.98814 | fa fa

54982 |.772837 75957957 |.35607 |.99233 |.91239 |.988S56 |.9a128|

ona ona in in

A A 49125 |.62143 |.66643 |.77213 |}.97907 |.86298 |.98365 /|.9977 www www

. . (oO

s95c/9355276 . 71422 |.759 BS46 1.98904 |{.91245 |.9856 3798219 | “Pod “Pod w w

Correlation Matrix for Variables: X14... X43 191 194 195 196 197

nt nt 1 1 | tO tO

4 .94293 1 —-4 —-4 WwW WwW

5 96549 |.98977 |! | |

aan aan WO WO

a4 a4 6 95451 4.99224 |.98083 |1 Oo Oo 7 96219 |.99004 |.99654 |.98187 11 a Oo Oo

78 ANOVA Taple ter PT3

One Factor ANOVA-Repeated Measures for X4...X43 | |

Scurce: at: Sum of Squares: Mean Square: F-798St: P value: | Between supjects 254 27994.76687 {}110.21562 69.39686 0001 | , Within subjects 3060 | 4859.37077 | 1.58819 | | creatments 12 00524 | 00044 .00027 | 3 |

| resiaual 3048 | 4859.86553 | 1.59444

| Total 3314 | 32854.63763 | | |

Retianility Estimates for- All treatments: 98553 Single Treatment: .84029 | |

One Factor ANOVA-Repeatad Measures for X71... X13

Grouo: Count: Mean: Std. Dev.: Sid. Error:

1383 | 255 39412 2.72401 17058 184 | 255 39175 3.3715 21113

785 255 .39647 3.56685 .22336

786 2s .39373 |3.73425 .23385

| +37 255 | 39373 2.93882 18404

One Factor ANOVA-Repeated Measures for X1 ... X43 | Group: Count: Mean: Std. Dev.: Std. Error: f 138 255 | .39529 | 3.23527 |.2926 139 255 3949 | 2.37663 | ia014 | a0 255 39451 | 2.82223 | 17674 i

a1 255 | 39829 | 2.93546 |.18385 : ioe 1255 | 3945; [3.12793 | 1955 |

79 PT4 “Wetzeliella (W.) nomomorpha/Deflandria dilwynensis/ Muratodinium

fimbriatum” Assoctation

33 290: 2 40 '% 295 Watzeseia W.) nomemorona suosp. quince: 1C.79' 265) Werzaueila Ww} Tomomorona susp. cuinct 36 255:Wetzeuetia Wo comomercna sucs0. tuind 30 7S) «42° 3: Oettarora ciwynensis 31 20 2°49: Cellanona ailwyrensis 2 213i Catlanana anwynarsis 25 29 *+93'Muraicainium ‘imonatum 25 30; ‘O93. Muratocimum “monatum 9. “O3) Muralodinium omenamm

- - jC: '86.°%*eroscermoosis 500. 2.30' °86iPrerosoermocsis Soo. 3 ' 36. Ptarospermapsis sco. 5C °° Micrnvsincium soo. 2.40: 1981 Mecrrysinaium sco. J "31 Micrnysinaium sos. 23. 29 Chamycooncretia ct, 2 urna 3.40! ‘St 'Soinvertes samosus 3480 2. 243\Beilanana obscura l[esfal 29. 243 Memoranosonaera ‘aduiaia 3.30: 249.Nematosonaeroosis ‘“acacuata ? 249|Nematosonaerocs:s “ratecwala

tu 20! 249. Nematosonaerapsss iragecuiata 3.201 2431Cellanara aoscura 3. ‘82! Cymanosonaera sco. fuo 10; :921C ymanosonaera sop. 3.101 182!Cymatiosonaera spo. i !SuSomitentas ramosus suoso. ‘amosus

foes foes ay 243'Detlanana coscura

nn3 246, Catlanona somagera fCagu is ‘95: Lanternosohaendium sicolare

“3° Sorntfantes ramasus suoso. ‘amosus wd wd G

Correiation Matrix for Variables: X71... X3

199 290 20)

199 I

200 99938 [1

201 .99333 99489 \

4

| One Factor ANOVA-Repeated Measures for X1.. X3 /

source: af: Sum of Squares: Mean Square: F-test: } { Between subjects 254 9716.17783 38.25267 624.75003 | Within supjects $10 | 31.22667 06123 |__ treatments 2 .00003 .00001 00021 | | resiqual S08 | 31.22664 06147 Total 764. (9747.4045

Retianility Estimates fer- All treatments: 9984 Single Treatment: .99527

81 PTS “Glaphyrocysta exuberans complexiFibradinium annetorpense“

Assoctation

303: anmes aqua oercen'ages Wai adtmer aquia Jementases—

28 57 33: Giaonyrocysla exucerans cpix 28 00) S3'Giagryrocysta exupefans com ‘4.390} 391F bracimum anneiomense 29 90 49)F ipracinium annetoroense 7331 461 Electrocysta soscurotanuiata 3.00! *75)Xenxoon austras

3.13. 155: Xeanmoon austras 7303 s6iEectrocysta oOscurotaouiata 4.3¢ 26: Corcesonaeriqum gganeum § 33! +15: Paapooengnum symonoram ‘3 57' +16! Palasoperanum pyroonorum $67: 36!Oetancna canmena

333! 31 Hystrcnasonaencium ‘voderum 230! 1 a0iMemstnaum am vanaoe

720° tac Micmysirum con sanane 3.90! 23:Corgesonaendium incoes 2.57' 2 8iCorcosonasncism ‘noses 232 26)Ceraosonaenaium pgarcieum > 47! 24: Denarona sarmona 23 38 F'oranmma forge

233' 27 Corsosonaenowm graces c.33! 21 4y¥stricnosonaendum cuourerum 67: 34: Oaneaso 2.90! +17 Paraecaniela indentata “331 7 Cangeanum ameuium ‘B77? Cangoomum amicuium ‘ 20) !93!Paiamoagesso. 4 1331 27'Coracsonaengium grace ‘30. 20:Chtamvooonoredact urna 267: alDaneaso “30: ++ 01Coercuuogmrum sentrocaroum 267) 2S: Esectrocysta_ densooacuiala 1350: ‘51 Somdferntes ramosus suoso. ramosus 23?! + *O'Coercwogmum caentrocaroum 30, * 34) Paiamoages so 3 3.67' *'51'Sointentes ramosus suoso "amosus 357) 2'.Clacooyaqum saectum 257! +5975 dencaia

357 23 Sonnmrmura omonata 287) dy Paameages so 4

3.57 15: E:ectrocysia censopacuiata 7331 S.Ancaiuswda mamoonsecra 3457! 54: F orcevsta so 932; 20:Chlamvdoonorsila ct Cuma 237 35 Florentima larox PIR Tt iCiadoovercum sasatum

237 3a Hamasonaema seonata 333 2UCapnnamura omonata 157° +15: Palasocystocinium sozowense 9331 25 Corgosonaendium rbreosoinosum 3.37' ‘17 Paraecameila inoamata 333! JI7Coresonaendum canosim 2 37' | $91 Thalasswonora dencata 233 41. Oonves cotigenum 232 25: Cordosonasnaum torosainesum 2.431 231 Qionyes comgernm sansu coonson +985) 3233 33' Corcosonaendium cailasum 232! 18 Exoenosoraendwm omour 22 Serves codgerum 233! 54 F -brocysta so 322, 43'Cionyes comgenum ‘sensu cookson 985} 7331 36iForma A

[ao [ao 333) [oo 481 Exocnasonaendium oiicum 333) 51! Fromea ‘ragus

fa fa 3331 JO 38.Formaa 233) S8lHatniasonaera seotizta

fe fe

3 1G 31 Fromea tragiks 233) 7 3:Horsogineita

[Co [Co

* Bi Rystr ynsomnum 33,_ 391 Tugosum [oe [oe

JO JO 32) bystrienesonaendium tuoderLm zrevisoin 33) '01M omatum te te

39 imowmlosonaancium cugosum 33) * O5SiNematosonaercosis oem sa Pla Pla

POT POT 21 inverstanum axsqmuram 32) DaiChgosonaencnum commer oa oa

TO TO *91'!Microdmrum omatum 2]! + 1 SiPaasocysiodinum Ggazowensea fa fa

fodalulufa JO JO *75.Nematosonaerooss .erusa 22! 2: 20:8amomum macnticum

sa fa fa

Ju Ju "28, Chgosonaenaium comoiex 33) * 32! Senegaumum? ciwwnerse fea fea

1 1 ‘20: Prewoamun magnincum 33; | 36:Somnemes crassioens A

fea fea [03 [03

lates lates * 25: Renicinum memoranterum 331 + 46iSomremes oseucoturcatus fea fea

[09 [09 '32' Senegamumn? ditwynanse 33! + 47!Somtectes ramosus suoso jranomemorar pos pos Jeo Jeo ‘ 326i Souvtocnes crassweins A 331 _ | $9\Sonderties ramosus sL080 Temoranaceot

foo foo ‘46 Soinitentes seuooturcatus 32! + SdtSonmames ramosus suoso “uitorevws fcs fcs

[O91 [O91 ‘47° Soonsentes ramosus suoso, jranomemoran 33. * S7!Tanvesonaencum varecaamum (09 (09

pea pea ‘48: Sointernes ramosus suoso. granosus 33) 2 79tMicmysindium ctom ‘ragie

03 03 | |

foo foo * $01 Sointemes ramosus suoso Tunioreves 32) ° 81 'Mierysingium soo

09 09 J J

faa faa > $7'Tanvosanaenaum vanecaiamum 231 + 32'Cemanosonaera soo few few

‘60. "nalassionora celagica welolufefapolululolepofuolupololy 33: ° 86!Perosgermooss 300 Lora Lora

FC FC ‘82! Tngonosyxaia gineta

[9 [9 lta lta

lulofofulasefopololo lulofofulasefopololo ‘79! Micrnystnaum ct m ‘rage fea fea

[69 [69 ‘82 Cymanosonasra spo. [9 [9

lah lah 186 >erospermonsis soo

OPO OPO tat tat

82

269! wumer agua oelcentages 3°.) witmer aqua Oercentages att wimer aguia Defcomages

34 30 37 Giaonvrecysa axuoerans coin 33201 491F‘oracmum annetorpense 3000' 33 Glapnyrocysta sxuosrans coix

M23 43+ Dracimium annwmormensa 2°23) ANGlagryrocysta sxuperans com 23.00: 4S: Foradinum annetomenss

3.57 ‘745! Xenmoon austraks ia 67! * 761Xenmoon ausvaies 4 67° 46: Electrocysta ocOscurctaDuata ' 20 46. Cectrocysta sescurctapuiata 267: 46:Emctrocyta soscurtaouiala 3.90! 3 5iGlaomiocysia so A

233° 35:Giaonmacysia so A 3301 261 giganteum 2.33 36iDettangna garmora

230. ‘7 Caucgoeimum amcuum 2$7' 35:Giapnytocysta so A ‘ 33) 2? 'Contosonasnaum sracilks 2$7' 26 Corcesonaenaum gaganteum 2.331 1 78iC vciooseta vieta t.001 * 811 Miereysincmim soo. ' 2.901 ‘80!Miernystrdum ct m. vanaore 2.901 271C. qracules O57! 28iComosonaenaum nodes :

* 33) 28iCorcesonaenduin modes 2.001 1 68tTurmnosonzera hiosa 0.67' 4 5iElectrocvsia densooacuuta

+ 33)_ 1151 Palaecoencmum syroororum ‘37! 36/Oetlanona danmona 3.67: 3 7!Lenwva somxera

337! "HB so * 37) * 17 'Parnecameia ingentata 32.57' + 66\Turmesonaera tiosa 3.87! 341Danea so. ‘331 * BOlMiernystnonuen ct nm -ranaone 267! *76iXennoon austrass

267! 36iDettanona canmona ‘301 37!Lennma soungera 233t 1dA stus nydna

"967! «5: Glectrocysta densooscuata ‘901 1 1SiPalasocystoainum gozewense 2.331 518 \aofa SD. !

267) 31:Framea rages ‘901 *St! Someones ramosus suoso ramosus 3.331 * 71Cangoamum amecuum ! 257! JélHatnasonaera seotata 267) 281 (nodes 3.33] 201Chiamvdeonoresila ct T uma :

237!) °17) Paruecanela indenata 367i BiHase seonata 123: 25/Conmasonaenaum tibrosoinosum i 2 57! 1 84(Patampagesso. 3 2.671 * OSiNematespnaeropsis oerusa 9.331 261Corcosonaendium gigameum 3223) _* 3iAsestomocystus hyena 2 67' 1 20tPheoamum magniicum 3.33! 41 'Owrves couigerum

7.231 20) Chtamvooonoreda ct CS wna 3.67) + 481Soindemes ramosus su0so_jranosus 23u__42'Donves cothgerim :

3.23) 21'Cladcovnmum saeomum 933! + 7'Cangoonesm amicuium 2331 36iFormaa

233) 231Conmzximura_ mmoraia VIR 201Ch ac. wma 2331 31) Frome ‘rages

2331 27'Corccsor grace 2321 21\Cladepywon sasotum 9.331 5 8iHatnasonaere seouata

2133: 331 7Cardosonasnaum callosum 933 33!7?Conmesonasndcrm cauosum 0.30 T3iNorasgmela aoculata

2231 48(Exochosonasndum oidum 2.231 4210ionyes conmgerum 3.33! 2 1 Hysincnosoraencium colersm 2:33) 535iF orennna teroz 933) 431/Dioiryes cagerum (sensu cookson 1945) 0.33! 3 Silmorstosanaencum ugosum 3.33) 73 Hercegneda amcuata 3.331 <4SiEsectrocysta censcoacuiata 0.33) 3 1tlnversaamum exumuram :

222 31! Hystncnesonaencium tuoderum 9231 56iFormaa 9.33) *'01'Microainum ornatum 3.331 +01; Microainsum omarum 2331 S1iFomea ifaghs 9.33) 'O05iNematosonasroosis Senusa 333° OS5iNemalosonserooss sertusa 233 32'Fromea? ‘aevgata 233! | 1 51Pameocystocinium xoizowanse

}.12! '38lChgosonaenaum comoex 2:33) 7Sikyse menttum 2.30 117!Paraiec: i 1 2:33! ‘10iCoercwoarnumn cemrocaroum 233) 30iHvsmcnosonaenaum soo. 3.33) 1 201Pheoanum magniticum 333! +201 Pheocinum magrhcum 233) 3 1'Hysinenosonasnaum tuoderum 2.331 ' 25) Readimum memorandarum 223! $27’ Rotnestra borussica 3331 '07!Nematosprsenoss radecuiala 3.33) '291Samianna reticuntera 2.33! 1 29)Samanaa reucutera 9 32: _ + 10/Cpercweamnum cenrocaroum 0331 $33}Somarnum essa 1.331 '32!Senegainnsm? ciwynense 3.331_ 1 27!Rotnesm_oorussica 3.331 151 !Somtemes ramosus suoso. ramosus , 332) *331)Somamium esso: 9.331 + 291Samtarene rencustera 9.331 '591Th deucata ‘

L323: -39!Somrentes cts. sterotus 2.23) 1 20/Senegaanum? coscuram 0.33! *S2!Tngonoayxidia gineda : 2331 +51) Soutemes ramesus suosp. ramosus 9.331 1 36! ica A 9.33! *78iCycempsesa neta

2.231 *56!Svstematognora otacacanth2 233 *47!Somdentes ramosus suoso. yranomemoram 2 33! 2 7 SiMierhystndmum ct m ‘race 2 saith. pnora cencata 3.331 1 49t ramasus suoso. Nemoranaceou 3 33i__ | 3.4!/Paiamoagesso. 3

32331 +7 91Micrnysingum ct m. tragde 3.331 + §2!Somntemes ramuiderus 3.331 | 86! Ptemsosrmooss sop. } 3.23! 182'Cyvmapasonaera soo. 9.331 1 591TH. Geucala

3.33) +86}Praroscermopss sop. 9.331_* 62!Tngoncoymaa gineia '

83

Jt2' wrmef aqua serentages

$8.97) —g3iGiapnyrocyata exuperans corx 7 23) + $61 Turowmsonaera hiosa

457! 161OeHanona

1233; 176! Xensoon austais 3.201 35: Gtapnviccysia so A 3 33} 27) Corsesonaenceum graciis N w 17 8iCycoosiela neta * 331 46] Electrocysta ocoscurotanuiata ‘00( 231Coraosonaendam nodes 237! 7 Cahgoormeun amcuum ' 3S7t 45:& Sa sata 2567! 911fromea rages 267! 37!Lennnia somgera 257! + 461Soindermes oseudanucatus 337! *81-Micrnystndium sop. 3.87! +84iP ges so. 3

233)! 4 Adsocysta cl. a. Thargarta 333i {3 Ascotomocystus svana 332) + 5iBatacasonaera sc. 333) 20'Chtamvoopnoresiact_ [urna

33201 28iCarcosan g'ganteum 233) _37'Detanara snospnornca

1313 491 Fioraanium anneorvense D335 8tHatmasonaera seonata

2231 _30i Hystncnosonaencum soo. 3.331 3ttK tupiterum

333! +O4IN at n cenusa

1331 '05:N DertUusa

PIR 1 A7'N OOSES i.

3.33! * 101 Opercuiogmun_centrocaroum 3.23: 115: Palasecysiaainum gorowense 2 331 ‘17!Paralecameita incentata J 33) +251] Rendmum memoranierum 33) :32!Senegaunamn? diwynense Jad 33) * 51) Somstemes ramosus sunso. ramosus [ao [ao 331 *591Th omcata 1S 1S 331: 80: Msernysingsum cm vananve 23! *821Cvmatosonaera spo. haa

84 Correlation Matrix for PT 5

Correjation Matrix for Variabies: X41. XS

304 309 310 311 312 304 1 |

309 -93835 {1

310 90098 {.85814

314 £89215 }.96045 |.75493 11

312 74139 |.87105 |.52544 |.92808 |1

ANOVA Table for PT §

One Factor ANOVA-Repeated Measures for X1 . XS§

Source: df: Sum of Squares: Mean Square: F-test: P vaiue:

Between subjects 254 14311.97736 56.34637 18.42889 .000%

Within subjects 1020 |3118.65252 3.0575

creatments 4 5.43712 1.35928 4436 ee

residual 1016 |31713.2154 3.06419

Total 1274 |17430.62988

Reliapility Estimates for- All treatrnents: 94574 Single Treatment: .77707

85 PT6 “Glaphyrocysta exuberans complex! Cordospharidium giganteum! Fibradinium annetorpense” Association

305!) vwermer at jee 22.87! 491Fioragnum annsmrmense 16.33! 26\Cordosonmencium nisum 333! 46iEwctrocysta_coscurctaguiata : § 67| 36!Deltancna danmorra 1 487! 331Glapryrocysia exuoerans com 400i 4iDanea so. 3.33) + 80iMernysinaum cl m. vanabue

2 871 79 71Microginaum ornatum 2.001 27:Cordosonaendum graciks

2.99! 2 5) actr: a cuiata 137) — 20iCNamydoonorelia ci. Cuma 1 $71 2 8!Cordosonaenaut nodes 1671 5 5iFlorentima forox '

1 671 1O5iN maeroosis pertusa ‘ 1871 11 71P: a incentata 4

1 871 1291Samlanma reccustera

1331 361Forma A 1 33) 3 1iHvstmcnosphasnaum tuoitequm 1 33) _*761Xenkoon austraks ,

“309i?! Bagaca: ied ‘00! 15 1!Somdentes ramosus suoso ‘amosus

3.671 SiAndawsieda +

2.57! 3 71Cangocnum

2.47) _58)Hatreasonaera seonata

2.571 *10\Opercvioainum centrocamum

2.67! 116[Pameco oyroonorumn

3.67! 136iSomndemes crassipeds A 2.87! *62{Taggnoaywaa gineda 9 321 3!Ascotomocystus nyana

| 2 Cacopyeaum tc 3:33) 23'Connasnura hmonata

933) 2sic nduim hbrosomesum

2:33)__ 4210 onves cothgerum_ ;

3.33{ 4 81Exochosonsenaum oidum 3.23) 5 1'Fromea tragus 2.331 a 2!bvsinchespraendium tuoderum srevisown 2.33) 35! 5 wLA

3.33) 39timpietospnaencwm cugesum ‘

3.33} 3 Ulaversmamum eximucam

2331 37!Lennna somaera

2.331_1!17 5iPatasocystoaimum gaizowense

3331 120!Ph q

2.331 *25!Rendnum memoranierum

2 333t_ *27'R Qorussica

43,33) 2 33!Someanum asso

3.331_141!Somutemes comutus A '

3.33] | 461Soineernes oseudoturcaius 2.331 147! Som@emes rameses suoso grahomemorany 2 331_148\Somderntes ramosus suoso. yranosus

3331 1491Somdemes ramosus suOso nemoranaceau 3.351 17 3tMicrhystnaum cf m ‘rage

2.33! _ 1 82}Cymanosonaera sop.

9.33) 1831P: qos sp A

86

206 wu er 1guia Sercentages 267 wiiner aqua percentages 3038! wamer agua sercemages

lit 30! 3 3' Giacnvracesta exugerans cota "357! 26'Caorsosonsenmum nisuM 242231 491 Fibracinum annesomense 3 57 25 Comosonaenaum jganteum "6 57! s6iElactrocysta soscurotabulata "933 4 6iEsectrocysta_ aoscurotanuata c.20 45: S:actrocvsta ooscurotapuiata ‘190) 3:3:Glapnyrocysta exuoerans ob {2.901 2 6'Corsosonaendium jiganteum

3.23, (1 7 Parwmecariaia ‘ndentata S33 7 Catgogmram anucuium 3.43! 32; Glapryrocysta exuoerans com 337 49." Sracinum annetormense 3.20! — 49'Fioragimiunt $301 176) Xermkoon austrars

32d 21 swsincnescnaenaium “vorerum 267! 36:Detl danmona 357' 28'Conmosgnaencum nodes

267 ' 380 Wemystraum com. vanaoue 3.47! + 80iMicrnvsingaum tm vananiie 190: 34!Danea so. 223) 33:Ferenuma terox 3.331 291 hn mooes 3.001 130) Miecrnysingum ct nm vanadue ' 230i 28tCordosonasnaium nodes 3.00) 27!Cordosonaendam gracits 2.67) 1 7'Cangocenum amculum i 220! jd area sp 3.001 85'Giaprytocysta so A 2.90) +01! Microcinum ornatum :

2.98! 8 hatmasonaera seonala J ool sai seotmta {1 67t 20iChamyoooneria ct. CO ourre 37' 3 7 Cangoonrum armcuum 3.60! 116iPalmeopendimum pyroonorum 1 67! 36iDeflandna daremoria . 37' 2? Corcosonasncium gracus 247! $SiFlorenuma terox ! §7! 91 !Hwstnenosonaerxtum tuoiterum : 87' ‘76\Xenkoon austras 233! atlHy sohaendum tupdtenim ! 671 *29)Samianaa rencustera |

33) 36(Cetlancna_aanmana 2.00) +1 7iParascansila incentata ‘ 33) 11 7!Paralecameda noertata

23) 45: Zectrocysa densopacuiata ‘87! 101/Microanium omatum 1001 4Si&i ysta 9 sata

23; 181: Somuemes ramosus suoso ‘amosus 187! 1 29tSamanca rencustera 1.90l 9 1 inversscinum earmuram ; 20: 31 Fromea rags 331 20!CNamyooonoreta ct. C. urna 1.90! 116} Pameagenanmum syroonorum : * 39! +‘ QO! Ocercumodinum centrocaroum 331 24iDansasa. 3.971 $iBagacasonaera so. ! 201 5 Pagegpenamum syropne urn 00] 1 “0! Opercuccinum centrocarmum Q 57! 7 7'Corcespraencen sracihs

+ 201 ‘571Tanyosor 1 QOt_*S1tSoententesramosus subse. ramosus 2671 _355\Florentwaa ‘erox

_357' 15: Banacasonaera so. 1 Q0! 176i Xankoon ausvaus 1367! 561Foma a

267' 20: Chiamvoonnoreva cf. S urna 9.671 23:Connunmura hmenara 3671 110100

297! 21 Claccoyxaum sacsotwm 2.67) sS/Es wiata 067! 3° 5i Pam ge ml 257! 2$:Cor terosoinosum 257) 48:Exocnospnasndum dium 3.87! 150|Somlertes ramosia suns. Tulbrevis

357: 35'Gapnviocysia so A 967! SéiForna A 3.671 151'Somdantes ramosus su0sp. @noaus 367: 101'Microgimum omatum 9.67! 1905iN oertusa 3.67! *81iMicrnysindaum soo

2 57' ‘OSiNematosonzeross coriusa 267! |SS'Thasasswopnora ceucata 9.33) 231Connounura tunonaia :

137' ‘36'Sowulernes crassmeiks A 3.67) ‘at'Nhemystncium soo. 9 331 331 ?Corcospnaencum catosum

322 3 Arcaiswlla snomponecra 2331 * 3 Ascotomocystus nvona 2.331 _48iExocnosonsencum dium

233) | PiAscotomocystus nyora J.33! + SiBatacasonsera so. 9.331 §11Fromea tragues 1 222) 23!Connuuimura tenoralz 8331 30\Corcosonassnaum muitsoincsum 2331 8 5iGlaorytocysia so A : 233 33) Carcesa Cs 9392) 3317S FRIRIT 3.331 Sd iHainasonsera seonata

3233: 41. Dionves couigerum 2331 4tiDmnyes 933) 30iHystncnespnaendrumsop 2.33; 48) Exocnosanaensum oigum 2.33!__ 42Oionyes cotigerum ‘sensu coonson 1985) 9 33) 3 Siimpaguinenmso A

2233) 36!Formaa 9.33) dOlHystnchosanasndum soo. 0.33) 39! rugesum 2.231 37'Hatmasonaera ct A seonata 9.231 39! molewsonaengium rugoesum 9.331 32!

T2237 'Lenuma somegera 2.331 _115/Patssccystoanum goizowense 3.331 1O5IN oertusa

223: ' 08: Chgosonaancum compiex 2331 + 27!Aotneane oormssica 3.331 1 431Somsentes ramosus su0s0 _ jranosus ; 223)_ "15. Pasocysiogmum covowense 3 SU '32tSenegaanum? aiwynense 233} 15 7iTanvosonsendurn vanecaiamum . 323) (291Samianaia rencudera 3.33) 136i Scuntemes crassoewe A 2.331 159! Thaasssoonora Ceacara : 2.231 _* 32! Ser 7 adwynanse 2231 1 47!Soundentes ramosus supso_ zanomemo: 0.33) + 7S'Mhernysineamct m_ ragiie

2331 *33:Sormowumn essoe 9331 1 48\Sondemes ramosus sucso. granosus DI3L 1asipr ose sO

222! (+8) Se:nnenes ramosus suoso. granosus 3231 149iSomdemes ramosus sudso. mempranaceous 3.33! '491Sointerses ramosus suoso. Temdranaceow 9.33! 15015. amMosus suoso ‘Tuibdrews

2.33) *52!Somiieres camunterus Q331_ + S6iSy placacantha i 2231 '56:Sv 2331 162!Trgonopyxaa gneda ‘

3.32: '$317h Celicala 3.33) 1 79iMiernysingagn ct im ‘ragule

J.33) * 60: Thalassionora omagica 3.13! + 86/Pterospenmocss sac.

333 ‘61° "acnoainum mrsuum 333 (779i Wemystnaum ct mn. ‘ragse 3.33 "831 Palamoages so. A

2:33 * 86’ Prerosoermoosis sop.

87

Correlation Matrix for PT6

Correlation Matrix for Variables: X1 . Xd

305 306 59792 |1 307 .73364 |.80327 [1 |1 308 92007 |.62847 |.75536

ANOVA Table for PTS

One Factor ANOVA-Repeated Measures for X1 .. X4

source: df: Sum of Squares: Mean Square: F-test: P vaiue Between subieczs 254 3160.85165 12.4443 12.36574 |.0001 Within supjects 765 769.86015 1.00635 | *reatments 3 .089393 0298 0295 | .9932 resigual 762 |769.77076 1.0102 Total 1019 3930.7118 {

Reliapility Estimates for- All treatments: 31913 Single Treatment: 73968

88

Sample 313

td witiner asia Jeroe: s 39 33) 1 86/Turtrospnaesa fossa 367! 55iGlaonytocysia so A 300! J36!Dettangne cdanmons 867] :78iXenmoon austais $33) '17'Paratecaniia indentata 467! 43(Glaghyrocysta exuperans cox 400! 759! Thatassionora dencata 2.33) 5 11Fromaa tragies 2.331 97iLennmea io 2 90t _* 7'!Calgoainnum amewur ’ 571 4lAksocysta cf a margarma 1331 |! NAscotemocystva nydria 133: 201Chiamydoonoreda cf. C. uma ‘331 16!Etectrocysta_o:

' 32) 7 8tCyctopsieta neta 100) 4S8iHainmsonaera seonaia 100] *S1t!Somdentas ramosus suoso. amosus 7.47? 110100 0.57! '20!Pheipainum magnicum ),67!_ 1 48!Somtentes amosus suoso. jranosus 267! 180iMiemysindum ct_m. vanapie 267! 1641Pal ges so. 3 233 211Cacapyncoum saeotun 0.331 27!Cordespnaendum gracilis 3.33) 281Cordosonaendium inoces 333! 27!Dettansna 7332: 45/Esecwacysia censovacuiata 3.331 62!Fromea? laevgaiz 2 331 7 JlHorotogineta aoecwata 333! 20lNvsinchosphaendum soo 2.33) 3 Tinysinchospnaendum tuoderum 233! 291! motetosonaencium im 333) *G1tMicroantum amatum

0.33) ‘oSiNematosphasrooss oertusa

2331 1907IN wadecyiata 9.331 115:Patasocysieainum goizowense 933) 136iS A

3.331 1 46iSomtertes oseudoturcaius 3.33) + 821Cymanespnaera soo. 0.33: 1 86!Ptarasoermooss—————— 300

89

Statistical Information for Sample 313

X14: 304 | Mean: sid. Dev.: Std. Error: Variance: Coef. Var.: COUNT

| | .47008 [2.22636 {1392 | 4.95669 §42.91125 255

| eanimum: Maximum: Ranae: Sum: Sum of Sar.: = Missing: | 10 26° [26 {104.57 [1301.a80s |o

|

X2: 313 Mean: td. Dev.: Std. Error Variance: Coer. Var.: Count:

| .474176 | 2.68898 |.16839 | 7.2306 — [649.26547 255

Minimum: Maximum: Range: Sum: Sum of Sar.: # Missing: | (39.33 | 39.33 | 105.61 |1880.3115 {0

90 Association PT7 “Glaphytocysta species A/ Eocladopyxis peniculatum”

aquia Serce: jes wimer aguia Dercantages 376i witmer 1 31Si 314: waMer aqua percentages | 3A sO A 38.00! 35:Glapny ‘41 $7! $51Glaor 35 00: 3 5iGlapnytocysta so A [14 00; 47! Boca 2433 473 =

26 32! 159):Thaiassioonora dekcaia Aanatosonaenguim® SoCs cti specosum 5331S} *§ O01 ‘1! 7'Paralecameda indemata (“3331Qalimeagamum cuginosa 3339! 317!Detlanana snosononnca i 4 67" 3SiLeatna 2.321 166! Turmosonaera fiosaz 290) 2 8'Cordosonaencium inoces | 2.671 3610efandna canmorna oarztapuiata 2.331 36!Oetlanana carmona 13215 mn? diwynense ) 2.001 *67iTumosonaes 239! 1231 3 8iHatmasonaera seotiata fopustur 871 27 Carmosonasnaum graces Pot $7 Ji Adnalosonasndrum £33! 9 ttlaverscainum exkmuram ooscyrotapulata 281 Cordesonaencum 7ToOCGes 187! s@:Electrocysia : 1 97' CT 1. SORCIOSUITT 1 J0| A SiElectrocysta coscurotaouiata 12SiPalagocysmdman gocowense —y a71 34th HOTRLATY (41.331 ‘ 0i__ 3: 3/Glapnvrocysta exuperans com seoaia 1 33) 120) Preicomum macoficun . 1 331 §a!Hainasonasm

130! 5.1 Soindermes ramosus suoso. ramosus qurmarum | 3 1 20bSenegatmum? , Gol 24'Carsosonsenorm

70} °81'Micrrysindum sop. da rhomoonedra : 30)Fibrocysta Sioolase ' 4 90! SIA 00| com 9.57) si Alsocysia cf_a, narganta hyena +001 3 31Glaprvrocysta_enuoerans 11 90! 13) Ascotomocystus . 367! 28!Corcosonaenoum nodes ! 37timoageumum speciosum “ool 46i€! yst 1.901 287! 41:Omnves coltgernum ' ut !Imoag: soe 7 Got a9 imoestosonaenciun 190! 37 367) 3911 JM fugesum : orevoasvaium 00! 33!Kalosonaencun i 100) 37tLeruma sormgera_ 7 2.67! 7 CitMicrodinwm ornatum i INOse ( * 001 1671 Turmesonaera oaratabuala 1.00) 96lLenuma

2.671 :O7'N OO: 5 T 00) ¢ 1 0tOpercusconwm foun l 367! 1@tCasscnum pasocencum 2.67! ‘1 0iOperculedinum : T7001 136ISomnentes crassioets A ____—— 1 3.971 241Comosonaendum oarmatumn

2.67! 176) Xemkoon austrass | norosonosum 901 \6siturmosonaersowns ' 3 67! 251 Cordesonaencaum 7 67'_ +80 Micrmysingum ctm vanadie t 3.87) _ 33'Giannyrocysta_exvoerans Colx T7871 __* 3iCassaum oaeocerscum ___—______——

—__——— 333: Ji Agnalosonaendium roousium i 1 967) 68ltHatmaspnaera seouata "2 67! 25iCeraosonaensaim WBRsenose

923) | F'Cang amiculum 287] sSiEwcirocysia censcoacuiala [9 67! 31 Hysinenosonaendium ‘uonerum

723i * aiCassionum caeocencum 98lLiaquiodinsum nacnasroononm 9.671 3ttFromea frags 367) 233! 2 5iCordeso hb __ 2.87131 lMysinenesanaenoum“uoderum at_cernvocamum 28211 ————— 2331 251Corcesonaendium zigameum indentata 77,57! 107iNemarosonsercosss_eapecuiNS | 367 117 Paratecanetia 2.330 27! Corcosonaencum gracias i amosus sv0s0. ZATOSS_——— T4397! +25) Rencmum memorantesum 75.87! _1 481Somwertes

3.331 231°Corcesonaendum callosum / ramosus $ugs0_ AMOS __— 1 367! 136tSomdtertes crassoeies A 9,57)_15 1 Sowsemtes

2323 431Donves coikgerum :sensu cooxson 1985} , turcalus 9.87" _1 80} Mucmysinawm tom. vanaoue 757) + 461Sount 9.33! 45:Electrocysia sensopacuata : 942 5th m Homomorcnum Somer | 2671 '7BICyowosietia vara, 2.33! 3 t'Fromaa tragues 733! | TIADteccIMUM renown 3,331__* 71Cango amicusm 32323: 320i Hvsincnosonaendium sop. amcuumn + 7.331 261Chiamyooonoreda ct. wna 3331“ 7'Camocnem 3223! 3itlHyst um tuoterum : "3 431 27tCagooyxcium saesium 1 J 23t 211 Cagepyxmum saeptum 333i _37!Leruma somygera ZZ cadosum 0331 27!Corsosonaencmm grams “~733i__2217?Corgasonaendum

3933) ° 20)Pheodnum magnticu . 3.231 2 7'Getlandra onosonoruca A331 41 Gonyes cov im 2 331 125iAend tt 3 333) 77! Hystncnoxowoma tumescens | 3.33) _411Dionyes colgerum _30!Hvamncrosonasnaum Sop. 32:32! *27'Ronnestia Gorussica : - 23a) 4SiE ya 3.33!

733! 3 461Sointerses oseugoturcatus et 1 goizowense ___ T3331_1SiPaascevstoanum _31'Fromea rages — 12SiRenanum memoranteum 3.331 ‘3 21Tngancoyxaa gineia i323:(2331 76) Hvse nguace 3.341 3.32! 79! Miernysinaium ct m_ ‘rague porussica ' 3331 7 7!Hvsincnonxopoma lumescens 73.931 ° 27ifottnesna awyne nse 3.231 + 84\Paiamoagesso 3 rugosum 3331 32150 anim? ‘3a 49h 3.33) | 36. erospermopss spo. J 33! 343|Kalgsonaencum prevparatum 777931_237'Somteces crassoous 8 —____-____——

su9s2_ TEARS 1 329) (01 Micreainium omarum 727331 491Sommmemes ramosus

i 33d asin oertusa 2.231 *78iCycoosimla eta _ 233) 179 Mecrysindium am ‘ragne 9331 107IN roosss wapeculai2 + 309 ft 3330 '271R borussica 9331: StiMemystnaium

1 39431 °27!Sonvemes crassoeis 3 "

2.33) 1 48)Sairsterses ramosus sucso granosus Sen

{3 331_1491Scunviertes ramosus suoso._ Temaranacen "3.331 1 68\Turmosonaera rotunda

| 3.23. 1791 Mscrnysingium ct m ‘ragae oO

7.33! 1 B0iMicrnysinosum ct im vanape

| 333] *@1!Micmysinaumspo. cr

4 i t Le

9]

317! wemet aqua percemages ‘25 33) S3SiGlaprvtecysia sp A 18 671 diAow = rooustum :

13 00i 46\Ewctrocysta sos

3.671 37!imaagmum spenosum 5.331 _37!Detlanara snosonomtica 4001 s7IE yes Dee

5.87! 4 5lElectrocysta densovacuiata 2.87' 1221Senegammum? diwynense 2.331 1 8iCasectum casocencum

+ §7i Sil Anaaiusieta momoonedra

1.871 331K ‘

t 871 ‘01! Microoimum ornatum t

1 $7' 120! Senegaumun? coscuram I

t ool atA t comotx

aol 1221 Rencinmun memoranternm ad! 168lTuroosonaera rotunca 67) 1 TLAntecdinium renatum ! $7' 2 0tChiamvaconorsila ct. C uma 87! 2 4!Corcosonaendium danmnaum s7t 27'Coraesonaenanm gracahs 87 2 &iCoracspnhaenaum odes 87 3 4ilmoagdinum ct i. soeqosum 6?! DT inversaarvum eximuram 87 36)/Lenuma rugmosa $7\ *1 5iPataeocystocinum gottowense 67! ‘43 'Souwelertes cornutus C 67! ‘67'Turmsonaem oaralabuaa 67 + BT Mberrysindum sop. 33 21'Cacooyxdium sasotum 32! 42Oonves coiscerum isensu coonson +945) { 5 11Fromea tragues 331 5 31Glapnyrocysia exuoerans wix . 433i 7 ZiHormogmeia aprcuata t 33! 77'Hystnchoxoipoma tumescens i 331 LO7IN op: 33: 120/Preoanum magniicum 331 +27! Ronnestia Dorussica : 33: ‘ 461Somn¢ertes ramosus sucso. granosus 33) ‘5 11Somdertes ramosus suoso. amosus 32) 1§21Traoneovarka ginek2 33) 17 81C ycopswia neta 331 1791 Micrnysingum ct m. fragile 331 +80\Mernysingium ct im vanaole 33) * 82'C ymatosonaera sop. 331 * 861P*ercspermooss sop.

92 Correlation Matnx for PT7

Correlation Matrix for Variables: X1 .. X4

314 315 316 317

314 1

315 639485 {1

316 64003 |.95364 {1

317 53587 |.72663 |.76434 |1

ANOVA Table for PT7

One Factor ANOVA-Repeated Measures for X1 .. X4

Source: df: Sum of Squares: Mean Square: F-test: P value: Between subjects 254 §756.58743 22.66373 10.96607 0001

Within subjects 765 1581.0357 2.06671 treatments 3 -02361 .00787 .00379 .3997 residual 762 1§81.01209 2.07482

Total 1019 | 7337.62313 |

Reliapility Estimates for- Ail treatments: 30881 Single Treatment: .71359

93 Sample number 318 teh wiimMe! 1Guia percentages

er 3 aApecindimum sememonanum compen 29:72 46-factrocvsta ooscurctanuiaia : $57 §7'~ roresonaera paratapuala

490! aS5ibiectrocysta

2437 ‘2 Ascctomocystus cwora

230: 33alxXavosonasnaum orevoarvatum

37! 31 Fromea ‘tages 1

33} 26iLenuna ruginosa

1331 +15: gotzowense '

*37'Soincentes crassoeis 3 : i) wy

' 901 298/|Carcosonaenden incoes { 1 901 $5iGlaonviocysta so A |

‘301 37'Imoag mn 1

‘301 397 lLennma soimgera } 730! 98tlung m rum \

‘3G: + O1!Mierocintum omatum 4 “ar -17te i

“90: *68iTuroosonaera rotunda i 67°‘ 1!Aotecaimum reqoum y

fas fas 57' _201Chlamvoconoreidact 2 urna ' Si! a7 $ ween 4

67) 33) Fbrocysta racata |

67: 30} Hystne: 300. i 67! 37 'Hysincnosonaenum tuoderum 5 ' 37' °97'Nematosonaemoss sapecuala |

NI NI +1 0(Coercuocmum centrocaspum | a a

671 130|Senegamum? obscuram i 67! '511Sommtemes ramosus suose. ramosus

$7! ‘69tWetzenea cf w_omtyscnensus i

67° *< 80! Micmvstncum cm vanaone

S7' (91 Micrnysingium soo. fifo 57! * 941 Paumroages so. 3 di 23) 2 Aonaresonaerncium robustum

a23t 3 Andatuseila rnomoonedra walapofapulolofulefafelolojsufa walapofapulolofulefafelolojsufa

22) 1 BiCassatuin caisocencum ~iLLit fur fur a4

frafnr 303 wa wa 33: o

7?

[rd [rd lao lao

fas fas i) 39timowtosonaencum

1 inversiainium wpe wpe ‘ a 2233: (36) A 2 2 + 43!Somntemes connaus C : 3.32) 36) Soinnemes aus |

i 9 22) 178s la neta |

ms i

LLL.

wd.

94

PTS “A dnatosphaeridium multispinosum/ Apectodinium homomorphum” Association

324 924 witrer, Nant zone & 225. 225 witmer, Nant zore 3 328: wimer Tanemoy sercemages

29.76 2 Acnatosonaencum TuMtsoinosum 23.33. 2 Adnaloschaendium Twilisginosum 20.30! 2'Agnatosonaencium *uUdisoinosum

23°32 3 Aoactocinium momomorsnum comptex 23.30! 5. Anactocinium riomomorcnum comorex 3-33) * 2'!Areongera so.

‘5 90) +32 Senagaunium? gilwynerse 1$,.29' 132'Senegalinium? diwynense 2.33! 156\Systematoorora sacacanmna

4.67' 1° 2'Coerculoainium :sraeiarum 4.33) 'O3!Muratoainum fmonanmm 2.001 °51!Somisntes ramosus suoso. “amosus

3.33) ‘O03: Muratodinum ‘imonatum 4.301 1451'Sointerntes ramasus suosg. 7amosus '.57! ‘72! Wermiella samiandica

3.90! 281Corcesonaencium inoaes * 3.33t 281Corsesonasnaum incces ‘.33| 27! Oetlanona snosonornca

2.87 39; Dinooterygrum ciadddes 3.331) 11 21Opercuiadinum sraesanum L331 47! €ociaanoyx1s permcuiatum

2.33: 107'Nemalosonaeropsis irabecuiala 2.57! 107) Nematosonaercoss ifacecuiata 1.90) SiA im Tum

2.93) 15 1iSoinitemes ramosus subsp. ‘amasus 1.87! 130|Senegaunium? odecuram :.COt *C3lMuratocinium timonarum

‘.30' 5 8tHafmiasonaera sactiata ta! 3g Oinopterygium ciaodioes 3.87' 27'Comosonaenonsn gracilis

* 9G. '92'Milliouqoainium guiseopl major 1.331 S58) Hainasonaera Ssepiiata 2.57' 41: Dionyes coligerum

1.90' ‘9 1:Micrnystnaium sop. 1,331 3.9 iimoletosanaendium sugosum 2.67] 5: Electracysta « 0.57! 37'Detlangna shosonontca ! 4.90! 27'Carosonaendium gracilis 1.867' 581Fomac

3.67: 130'Senegatinum? coscuram '.90) 150!Sonmiemes ramosus suoso. TNuitibrevis 3.87' 8 6iGiaonytocysia so 3

2.57' ‘60!Thalassionora pelagica 3.67! I3t?Coroospnaencium caiiosum 9.67! 37'Lennma spinsgera

19.32) 27'Corsospnaenamum gracilis ‘2.67! 5 1iFibrocysia !aopac 3.57) +02) Millloucodinnum Guiseoor Maer

0.33) 291Corcosonaendium :nooes mousium 9.67! 1 10/Ooercuisdinum centrocarpum 3.87! ‘O7'N

2.33; 30iCordospnaendium Tnuarsoinosum 0.67) +81! Micrnysindium sop. 2.67! | 49!Somientes ramosus subep. nemoranacedt

0.331 231? Coraasonaendium catiosum 2.331 30!Corgosonaendium muitisoinosum 2.671 *7O0lWerzeredia amocensnss "3.20! 4 “Dionves colligarum 323! 37'Detlangna_gnospromica 229 28I¢ m:

2.93 42!Dionyes calligenum 0.331 42'Qionyes cosigerum 3.331 JO0!Corcesonaendium mumspmosum

3.32! $01Fibrocysta a1i9qare 2.33 27! Eoctacooyxrs penicuiatum 2.33| 3 1!Cardosonaenchum sovasier

2.33! 5 1:Fibrocysia 1 9.39) 50! Fibrocysia dipoiare $.331 391 Dinaoierygrum ciaodides

3.359 5 31!Giapnveocysta axuoerans cotx 39.331 45iGlapnytocystaso A 3.39) 331Dlonves colligerum ;semsu cookson 1985)

© 9.33, Jd iHystncnosohaendium sop. 3.333 73 Hysiner UNISON 3.391 <46)Electrocysta ocoscurotabut.

3.15! 891) GiuM rugosum 3.33) 3 0lHystricnospnaendium spo. O.33) 3 itFibrocysia raciata

3.32' 93 iKatlosonaendium orevibaroatum 0.391 381Uinguiadinum macnaeroonorum 2.331 57'Forma 3

2.32: 97! Lenuma soingera 9.931 102! Mill MUM gGuIs@OpI maior 3.331 5 31Glapnyrocysta exuperans cou

3.99! 3B !Linguioainium macnaeroonomm 9.331 125i Remarnum memoranderum 2.33) 45iGiaorviocysta_so A

3.99! + *0'Coerculodimum sentrocarcum 9.33! *27!Rornesna Jorussica 2.331_ S8iHalmasonaera seotata

3.33 '25-Renidinum memoranterum 2.39! *36iSomnteres is A 3,331 76 Hysiner nguacs

3.39’ *46,Spiniernes sseudoturcatus - 9.991 145}Sonientes moraius 3.331 7 7ihysinenokxoipoma iumescens

3.33)_147'Somilames ramosus subso. granomembrans__ 9.33! | 46/Sound corurcatus 2.3313 lihysincnospnaenaum tuoterum

» 3.33! 148/Soitentes ramosus subse. granosus 3.391 :47/Spuvtentes ramosus suoso. granomemoran; ——9.331__ 393i Kaflospnaenawn orevibaroatum

3.23) 159'Soinitentas ramosus suoso. nunibrevis 0.341 *48!Somdertes ramosus suoso. granosus $.33! 36)Lereima cugmosa

2.33) 161'Tnecneamum nrsuum 9.331160) Thaiassipnora peiagca 3.33|__ 3 8lLungquiodinrum_macnaeropporum

1.331 182'Cymatosonaera soo. 9.331 161tTreneaimum airsuium 9.331 3GIK TUT docurvaium

2.13' 186i Sterosoermoosis spp. 3.33! 182!Cymauosonaera soo. 9.331 1121Opercuiodinuan israesanum $.33) 186i Pterosoermocsis soo. 3.33{ *1SiPalaeocystoainumn gozowersea

. 3.331 +17! aralecamaiia noemata

2.331 +241 Porysphaencum zonary!

3.33) '2S5iRendinum memorandterum

3.331 ‘27|Rotnesna coresca

3.331 1 36!Sointertes crassipeiks A

9.331) !45iSonttertes mortius

: 2.33} ° 46iSoneentes oseucolurcalus 3.331 'S8iTectaiodinium sedlium

3.351 ' 60! Thatassionora pmagieca_

9.331 + 7S1 jum taguaium

3.35) 131! Micrnvysincium soo.

3.331 ‘861 Perosoermoosis soo.

95

325 226 anmer, Nari. zone ~ a7" 327 mimer, Nani. zane 7

24.23) '° 75) Wilsamcmum taouiatum ‘ 57! ‘56: Systamatocnora placacamna

2* 57 37'Detlanona onosonomca ; Sv! 57'Formma 3

7.33) + 02:Malhoudomnum Gguiseco Naor fw 57! 15 1:Somilentes camosus su0ss. samesus

2.57! 1 09lMuratecinum monatum y ele 20; 3 tthystncnesonaencium tuorternum

2.39! 21Adnatosonaencium mumsoinosum \ 33 7!Paraiecaniaila ingentata

2 2 ue ue

2.390) 1 32iSenegalinum? diwynense ' 43! 132'Senecaanum? ahwynensa

‘47! 3A Katlosonaencium cravinarcatum 57! 2‘Adnatasonaendium mnultisoinosum Poltapop Poltapop

* 37) 937!Lenuma soinigera 4 1 Dionyes coiligerum iy o 2

1.331 46/Gectrocysia ooscurolacuiata } 2.391 107'Nematosonaerons:s ratecuiala

* 3O' + 10/QOoarculicginium centrocaroum 2.901 37!Osttanana onosonontica

‘.3C! ‘5 1!Sointertes_ramasus suoso. “amosus i ‘1,67! 3 8iLinquiocinum macnaeropnorum

*.90! 19811Micrhysindium soo. ! ‘.57) 102'Millioudoainmium guiseoo!) maor

2.47! 50! Fibrocysta ovoolare : ) 3.33) 9 7iLantinta soimigera_

9.67! 107'Nematosohaercosis wapecuiata ! 331 136|So:nitentes crassipeilis A

2.47! 1 56iSystematoonora piacacantna i 001 4$/Electrocysia_ sensooacuiaia

3.57!) | 861Pteroepermopsis soo. | 361 _401Fibrecysta dipolare

3.331 20iChlamyaoonoreila a. SC. uma | 1 1 O01 110!Oparcurcaimum centrocarsum

3.331 25iCoragospnaanaium tibrosoinasum { 67! 28iCorcosonaendium inodes

3.331 27iCorcosonaenaiurn graciitis i 87) 42!Dipnyes couigerum

2232 8! Caregspnaendiwn inodes ' 57's7 61 Finerrgeysia_goscurolagurata Wyola 3.25: _ 331 0inooterygqum ciacades { 6 7 1 a7 Eaciadggyxs oenicuaium

9.30 41! Oipnyes cotligerum ! s 7 { 104’Muratoa:mum monatum

polo polo = 3.33\___ £2! 0ionyes codigarum ; 3 7 ! *5OtSomnitemes ramosus suosp. Tuitibrevis

4.33) 4.31 Dionyes coiligerum (sensu cooKkson 985) | so 3 ¢ ‘9 1'Micrnysindium spo.

3.95: _5iGlaonyrocysta exuoerans cou : 331 6iAoectodinmum Homomorpnum camplex

$.231 4 alHatmasonaera santiata : [OPO 231 201Chlamyvaconoretla ct. C. urna

3.33! 7 §iHysinchoxoiaoma riquace i JO 33! 25iCoraosonaenaium sibrosamosum Jd Jd

3.33) 3 t!hystncnespnaenaium ‘uolerumn 331 27!Cordasonaendium gracilis

3.32) 39limotetosonaendium rugasum , [0a 331 331?Cordasonaandium cailosum

2.34 21tinvarsa:mum exiimuzam : 1G 331 7 6iHystncnoxcipoma_ncuage

3.931 36}Lannra rugosa ‘ fa 33'_ 3JiKailosonaendium srewibaroatum

2.331 381Linguiedenum macnaerconorum 4 fs 33) 36lLanuma cuginesa

3.33 329i Mestasonaenaum sseucocurvatiun pao 331 99iMelitasonaencium oseaucocurvatum

3.33) '0 1} Microcimum omatum Joa -32! 1 12'Coarcutcainmum tsraeanum

2.331 !171Paraecamatia incemata peo -33{ | 15iPataeocystoainium golZowernse

3.331 125) Remdinum memoraniterum ‘ 331 1 25iRendinum nemoranterum

co ca 2.331 130'Senegatwum? soscuram os 33 1 461Sointernes sseucoturcatus

3.25) + 60iThausaipnora deiagiea fcr -33; 147/Somientes ramosus supso. jranomemoran

2.432; 132] Cymatiosonaera spp. 1 for -331 1 48!Soinifertes ramosus sudso. granosus

fas fas _33'_*49/Soinfames -amosus suoso. remoranaceat

Per Per -331_' S8itectatoaintum seiitum fics 33) ' 7 SiWilsonidium tabutatum -33! 3 798iCycioosieila viela

1 | 3.331 borer * 82! Cymanosonaera soo.

— -331_ | 86iParosperncosis soo. a

4 ! “Ty t

t

96

Correlation Matrix for PT8

Correlation Matrix for Vanabies: X1 .. X3

324 325 323

324 |

325 99585 |1

328 .683638 |.638571 1

ANOVA Table for PT8

One Factor ANOVA-Repeated Measures for X4 .. X3

Source: af: Sum of Squares: Mean Square: F-test: P vaiue:

Between subjects 254 3683.1426 14.50056 12.34664 .0001 |

Within subjects 5710 $98.9718 1.17445 | “reatments 2 2.91387 1.45694 1.2417 2398 | | residual 508 | $36.05793 1.17334 | Totat 764 | 4282.1144 | |

Reliability Estimates for- All treatments: 91904 Single Treatment: .79089

97 PT9 “Wetzeliella hampdenensis/ Adnatosphaeridium mutltispinosum/

Thalassiophora pelagica’” Association

323! 329 wumer, Nam, one 7 : 3314! 331 atmer, Nani. zone 3

"9.303 2 Aanatosonaancium Tuilisomosum 38.30) * 7S'Weizeneda “amocenensis

77.301 2!Aar KhumM Munisoimosum | '2.67' 47) Sociacopyrs cancuialum

3.67: | 80! Thaassionora cevagica | 12.671 58!Fomac

$.00! 2 8!Carcosonasndwm inodes i 18.33! 174|Weteteda vaneongtuda

4.00) JAdnatospnaandium oousium

5,47! 7 1!homotyouumn ‘asmanense J! 4.67! {171 Paraiecameia ingentata 3.33) 46'Glacnytocysia so 3 : 3.33! 38tUnguicainwm macnaeroonorum

§.00: 34lFormac , 1 2.00) 15) Electrocysia densopacuiata

4.33! 45i€iectrocysta densonacuiata { 2.87! 103|Muratodinum timonatum

4.93) 47' Eociacopyxs senicuatum a) 4.29) *°72'Wertzeneda samianaica i 2.871 ‘+ 72'Weezeiiela samiandica 2.00! + 701Wetzehaia ramogenensis 2.57 135i) Soindentes ramosus suoso. -amosus | 2.33! _381i.ngquiodmum macnasroonorum i (87! 1241 Potysonaendium zonary!

‘.87! | 60(Thalassionora osiagica

1 S71 JlAdnatospraendum cobusitum ! 1.301 1 2{Areolig So. 1.871 1 2/Areorigera so, !

L.87) 27! Cardosonaenaum gracilis ! 1.90! 371Detlandna onosanontica

‘671 411 Oionyes coliqeeum ‘.00| 46{Electrocysia s0scurataouiata

1.67' 57!Forma3 2.87! 181Cassidium oaisocencun

i 7 671 8 SiGiaonytocysta so A 3.671 5331Fibrocysta ragiaia

1.33) 42'Dionves codigerum 3.67! §9itHeterauiacacysta camaanuia

2 §7! 7 iHysinchoxgigoma nguace 7 anena sptigers, t '.00i 3 8lMatmasonaera saguaia _| .87' SOtHysinchosonaendium soa.

“90! | 06/Nematospnaeroveis ouisuiasa i 0.67' 102! MilloudodiHum guiseoor maior

3.87) 107IN irabecuala 1.90: + 07'Nematosonaercosis ‘rapecuiaia |

1.00] ‘1: O'tCoercuicanmum cemrocarsum ’ 3.87' 1 09!Coercudodinum orevisoinosum

‘,00! !27'Rottnestia dorussica ' 3.67? 1+ 101Ooercuieainum cantrocaroum

'.GQ, ‘91> Micrhysinaum spp. : 9.871 *22!Phtancoendinium ecmnaium

9.57! 25: Cordesonaengium tibrospinosum t 2.87! :51)Somitentes ramosus suds. ‘amosus

3.671 301Cardosanaendum munisoinosum : 0.87' '58}Tectatodimum seititum

0.87! '791C la vieta 2.87’ 3.91 Oinooterygium clacdwes 1

3.67! +6 Electrocysta_goscurotaoulata : 3.33! 20)/Chtamvooonorsila d. C. uma

3.67! J lihystincnosonaendium ‘upitarum _i 2.33! 27) Corsespnasenaium gracilis

93.33) = 28IC JM 1NooSs 3.67) 3 6)Lentirva ruginosa_

2.87' 39\Mentasonaenaum oseudocurvatum ! 2.53! 291Corcosonaendium inodes rocustum

3.57! +02! Miltioudogmann guisecor Narr ‘ 2.33) 33) ?Corsospnaendium calosum

3.67! 126) Rendnnsenso. A 4 2.331 391 Cineoterygrm ciaocides

3.67' :45|Sointentas momius } 0.93{ 411 0ionyes covtigarum

3.871 °46!Scinfentes. oseudciurcatus i 9.331 43tDisnyes coiigerum ‘sensu cooxson *985}

3.67! *+47'Somentes ramosus suosc. granomemorana 3.331 481 Exocnosonaendcium ortidurn

2.871 _'48!Soindentes ramosus subso. yanosus i 0.33( 68iHatniaspnaera seotiata

3 67' +49! Somedenes camosus sucso. Tamoranacsaut 7.331 7 1 Homotrotium tasmaniense 3.87) _' Sal“ actatoonum deilitum ‘ 9.33) 7 7\+4ysincnokorooma tumescens

3.341 Ti Achieta sormomes a. gen. 1. coma. 0.33{ 3 tiHystincnosonaendium tuoterum

3.231 aiA domomoranum comsax | 3.331 JIiKatosonasndium drevibaroatum

9.39) 291:Coresanasnaum inaces rocusium ‘ 9.331 36iLeartinia ruginosa

3.331 331? Cornosenaencum callosum ' 2.33! 100!Memiwvamilarnacia isptoderma

2.331431 Dionyes cotligerum ‘sansu cooxson '985)| 3.33) 1 11!Opercuiocimum cf, d. Jrevespinosum

3.331 481 Sxacnessnaenoaumn ofidum i 3.331 1 12{Ooercuiodimun israsiianum

2.331 11S! Pameocysioainum goizowensa 7.39! 30! Fiorocysta orotare | 2.33) 5 ' Fibrocysta lapoacea i 0.331 + 231Porsonaenaium cto. zonary!

3.95! 52!brocysia_coamosomosa | 3.33) 1261} Renidinum so. A 2.33) 53: Fibrocysta_ cata | 2.331 | 261Somitermes crassipaiuis A

3.931 76) hysinchowotpema ngquade } 0.33! 145j/Soniemes monius

3.33] 7 7tHystncnexotpoma tumescans 1 9.331 1! 46iSomdentas oseucofurcaius

3.33! 1481Sointemes ramosus sudso, jranosus

9.33) 30ihystncnosonaenaium soo. { 3.32! 149/Somfemes ramosus supose. Temoranacaou

2.33! 39} movwetosonaendium rugosum 4 9.33) '53)Somtermtes A

O.231 9 3iKaub UM orevivaroatum |

9.33|_ 103i Muratoginum ‘imonatum : 9.33) *65iTubwermoginium sucatum

3.39) :12!0 isyaenanum ! 3.33) 3 81|Micrnysmaum sos.

9.39, 1151P y im Qolzowense { 3.33] 185i Patamoagesso. ©

3.321 °17'Oaralecametta incentata ‘

9.33) +23) Porysonaandium cio. sonaryt :

3.33| *24/Potysonaendium zonary t

0.3431 + I0!Senegasnum? ooscu !

3.33) + 36+ Sovnet is A i

2.391 *+50!Sointames ramosus sudso. nuitibrevis :

2.33! +SUSoinsentesA |

3.33) ‘6i1Tnet mrsuium i

3.341 'S5iTuosermoamum suicatum '

3.39! ‘75iWilsormenum taoulatum :

98

Correlation Matrix for PT9

Correlation Matrix for Variables: - X1 ... X2

329 331

329 1

331 4735 1

ANOVA Table for PTS

One Factor ANOVA-Repeated Measures for Xy... X2

Source: df: Sum of Squares: Mean Square: F-test: P value:

Between supjeczs 254 1926.28088 | 7.58378 2.23858 C01 |

Within subjects 255 863.88175 3.38777 1 |

Retiapility Esurnates for- All treatments: .35329 Single Treatment: .38244

99 PTI1O “Werzeliella samiandica”’ Association

336! 320 _atmer Nam. zone dé 3321 292 mtmer, Nam cone 3

32.501 * 72) Wetenela samianaca 31.201 1 72'Wetzeneda sarmangica

“8.57 57iForma3 76.67! 1 8iCassiaium paieacemcum '

°$.67! 25'€iectrocysta densooacuiala 3.331 2!Adnatosonaendum mutisoinasum !

°3.67' | 60iThatassionora peiagica $.331 3tAvectodinum ausirasense {

‘.S71 58lFonmac 7.001 tiAcmeta odornowes nf. gen... 1. como. i

.57' +7 C0iWereneia ramocenensis 1 391 1 2'Areosigera sp. }

‘57! ' 7 4iWetzeteia vanetongtuaa 1.30 47 Eoctacopysis percuiatumn i '.331 46!Electrocvsta obscurotabulata 1.49! 1018 Mt 2a leptocerma '

-33| 47! Eociacooyxis penicuiatum 1.33) $5 11Somdertes camosus suoso. ‘amosus !

20! 2 Acnatospnhaencium Tulisoinosum ‘231 17 0tWetzeieka ramodensns:s :

301 * 5 1iSointtertes rarmmosus sudso. amosus 1.001 4010inapleryqum ‘enmamensa :

2.57! lAgnatosonaendium rooustum t a0! Bitty rKquace 1

2.37t 27!Corcosonasnawm gracilis “1,001 103) Muratoarugm ‘imonatum i

3.571 281Corcesonaendium nodes 9.67! 281Cor KHtaT! ‘NOGSS. :

3.57' _37!Detllanana snospnontica 3.67! 331Fibrocysta radiata !

2.57! 98iLenuniz wginosa 9.571 938i Lingusogenum rum !

3.57! 3 7lLemina soingera 3.67! 181) Micrhysindium spo. i

3.57) 38llnguecintum machaeroononsmn » 3.871 1961Pt Sb. |

3.57' 101! Microcintum omatum . 3.33) SIA t onum comolex : —52.__07 Nemaresonaeropsis rabgcviata 2.33! _27'Comospnaengium gracilis

3.57! 11 StPalaeocysteainum golzowanse 9.331 3 7iDettanana phespnonica :

2.57) {22'Pmnancpendimum ecmnatum 3.33} 421 Dlonyes colligerum (sensu cooxscn 985) |

2.57! ‘651 Tuogernoedimum suicatum O.33t 45i&b y '

2.57! 7°18 11 Mucrmysincium soo. 0.33) «6\Electrocysta s0scurotabuata : 3.57! + 86iPterasoecnoosis sop. 9.331 501 Fibrocysia oipelare ‘

3.33 ‘lActi@eia oiormodes n. jen. 2. comb. 2.331 58iFormac ‘

3.331 5 lAcectoaimum “omomeoronum complex 9.33; 71) Homotryotum ‘asmamensa : 2.23) 1 2!Areatgera so. 3.33! dOtHystncnospnaendium soo. :

5.23) 25!Coracsanaendium tibrosoiresum 2.331 39h Im fugosum .

L231 431 Dionves coiligerum ‘sensu cooxson *985) 9.33! 3 1Naverucinum eximuram !

3.331 _32'Fibrocysia coaitesoinasa 9.331 93 Katlosonaenmum srewioamaum ;

3.33) 7 1tHometrvoliun i 3.34) I7\iLentrea sowngera t

3.3231 7 BtHysincnexotooma nguace 9.33| <0 ti Mcroommum omatum i 2.33! 30tHystnchosonaendium sop. 2.33! ‘0 2!Millioucoowwum gquesons maror i

3.332) 9 1iaverscimum exilimuramn © O.3Ft 1O7IA rabecuiata |

3.331 331iKaesonaendum orevibaroatum ' 3.33) *O91Cpercunoownum orevrsomnosum i

2.13) _ 190:Memoramilamaca leotoderma 2.33 1 10/Opercutoanann cantrocaroum ‘

3.231 102!Miltoucocinium gquseoo! maior 9.331 + 158!Pab y WHT QO se :

3.33) 103i Muratocinum fimonatum 2.331 1171Pa indermtata

2.33! 1 ' O!Coercuocinium cantrocarsum 3.33} 1221 P4thanosencinium aemnaturr

2.33) 112'Coercisccinum israetanum 9.331 123} Pory dem cto. tomar :

3.33) (17) Parasecameda incentata 3.33) 1 241Potyspnaengiunr Zonaryt

2.33] 124)Potysonaendium zonam . 3.331 325i Remdreum memorandenum ' 2.331 125! Renamum memoranterum 3.331 132i Senegaumum? aiwy: :

3.331 127'Ronnesta sorussica 3.341 146|Sowntentes turcaty ‘

2.33 '92!Sensgainwm? dilwynense ' 9.391 150!Solentes ramesus suoso. Tuitibrevis |

3.33: '45:Sointertes sseudoturcatus 3.33} 160ITh g !

2.33) 1 491Sointartes ramosus suosp. memoranaceou 2.35} 165iT 1 suicatum

2.331 153!Soindemes A 3.33) 182'!Cymanosomeera sop.

3.33) + 62'Tngoncoveiaa ginetia 3.33! | 95! Patamoagesso. © '

3.33 .75iWilsomaim tabuiaturn

3.33 ‘TolCycoosmela vieta

3.33 192'Cymatosonaera spp.

3.32 ‘95iPaiambages so. C

100 Correlation Matrix for PT70

Correlation Matrix for Variables: ~ Xp. X2

330 332 330 1

332 71924 {1

ANOVA Table for PT10

One Factor ANOVA-Repeated Measures for X1 ... X2

Source: af: Sum of Squares: Mean Square: F-test: P value: | Between subjects 254 | 3954.2721 15.568 §.5413 {.0007 | Within supjects 255 |716.4093 2.80945 i j

treatments 71 00311 .00311 9014 1.9735 | resioual 254 4 716.40619 2.8205 Totai 509 | 4670.6814 a

Reliability Estimates far- All treatrnents: 81984 Single Treatment: .69425

101 PTI1 “Spinidinium macmurdoense |! Forma C” Associanon

333. 323 wamer, Nant. zone 3 334° 334 wtirner, Nan. zone 3

‘40.87! '34,Soinanum macmurcoense 322.501 134)Somadinium nacmurceense

‘9.33) 5 8i Formac 27.33! S58trormac

7.57! *95-Palambagesso. C ‘0.00; 185) Paumbagesso. C

. 2.97! 4 7'Eoctagooyzis penicuatum 3.00: | 80iThatassionora cetagca

2.301 37'Oetiancna onaspnontca 2.57! 37!Oellanana snosonontca

«$71 + 20'Sanegakmum? soscuram 2.33) + 70!Wetzeleila namocenenss

‘1+. Q31 + 2'Areougera so. 2.90) 1 2iAraoigera so.

30% 2!Adnatesonaendium muftisoinosum *.57! 1S58iTectatocinium peiltum

"30! 3 4'Kisseloma coleothrypta *.33i 15 tiSowndartes ramosus suoso. “amasus

* 30' 384 nguieaimum macnaeroonorum ‘ 301 7 2iHomotryollum 3akagum

, (30: + * 3,:Cpercutodimum muiusoinosum + 90! 221Katosonaenoren Ssrewidarbatum

'.301 °° 7! Paralecanieila incantata "201 9BiLinguioadinum macnaeroonorum

‘ 90! *22'Dhthanosendinum ecninatum 7.90) !09;Opercuodinum orewsoinosum

~.30! *60lThatasswnora peiagi *.30{ 117! Paraiecameda incentaia

3.57? ‘ Actieila aformomes n. gen.. 7. somo. *.301 1301Senegaiinium? obscuram

2.57! 38: Oetlanona warcenensis 301 132!Senegalimum? siwynense

3.67! 4CiO!nopterygium ienmamense 1.001 1711Wetzeiieila ‘unans

7671 39ireterawacacysta camoanuia 3.57! 1 Actheita bdornowes n. gen... camo.

3.67! 71 !Homotrvouum tasmaniense 3.67! 221Ci aendhen dt OST

2 37'_ 7 2 Homotrvgnum gatagum 257) 2 a Comosgnaengyum ‘noges

' 367 _33!Kaliosonaendium orevibarbatum 3.57) 3810etlandna wardenenus

4.57' °C9.Coercumainum orevisoinosum 3.57! 41(Cionyes coiligerum

2.57! °33-Senegaunum? asymmetncum c.67! s6!Eectrocysia cbscurotaduiata

2.57) ° 32{Senegasnium? diwynense 2.57' _47!Eoclacopyxs cenculatum

3.57' °5i'Sointtames ramosus subso. samosus 1.67’ 52\Fibrocysta coautosomosa

3.67' °73.Weteleia namodenensis 3.57! 591Forma 0

2.37! + 72'Werenela samiancea 3.871 7 1iHomotryotium tasmamense

2.57) *78iCycioosetia weia 2.57! 7 4iHystncnokoipoma awenacni

1.331 + SlApteodinum vabynamhum 3.671 94!Kisseiovia hrypa

7331 20:Chlamvcoonersila ct. C. uma 2:67! +13!Ooercuiodinnum murtrsomosum

3.33! 22'Ciewstosonaencium awversmpinosum 2.57! + 18)Paucisonaenasim inversibuccinum

3.33: 25:Cordosonaendium tisrospinosum 2.87! 1281S ia chtamydoonhora

3.331 2 7'Cardessnaenaium gracilis 9.671 131|Sanegaliruum? asymmemncum

3.33! 2 81Caracsonaendium inodes 3.57! 165i Tusidermoginaun suicanim

7.33) 33!?Carcesonaendium callosum 2.33) JAoteccinnm cnbosum

3.33) 39) Dinopterygium ctaddioes 3.33] 25!Corcosonaendium ‘ibrosomosum

3.33, 4% Olonyes coligerum 3.331 271Cordaspnaendcium gracitis,

3.33) 12'Slenyes colligerum 3.3313 910imeoterygrum |

2.331 _43:Dlohves colligenim isersu coakson 1985) 2.33! _40!Dincoterygum ‘enmamense

133: +6: c'ectrecvsia_ 2dscurotacuiata 2.231 42! Diehyes colligerum 3.231 7 O!Homotndium calicuium 2.331 S3!Fibrocysta_raciaia

2.39; 7 AlHystnenexoilnama awenacaii 3.331 69 yata camoaruia

2.33) 31 llavernaimum axtimuram 3.33) 7 8) Hyatrie: niguade

3.331 | cO!Memoraniiamacia leptoderma 3.33! 3 0lHysmenosonaenaium sop.

2.33; ‘+0 2'Mallioudoanium guisepp: major 2.33! 331 %Hysincnospnaercosss ovum

2.331 1 1 0iCpercuocimum cantrocarpum 3.33) 91! lrversicinium

2.33! - * 2'Ooercucaimum i 2.331 37!Lerunia soingera

3.331 °15iPaiaeocystoainum gotzowense 3.331 $101Ooercuiodinium camrocaroum

3.32! 11 81Pauessonaendium inversiouccinum 3.33) 1 22)Pmhanopendinum scmnatum

2.53 +23’ Sansonaencium _ct_5. zonan 2.33) _ "2 Potvsphaencwum ct_>. zonarvi 3.33i_ * 28) Samiancia cniarnycoonera 2.331 1241 Peryspnaencnan zonary!

3.391 *36iSoindemes ¢ lis A 2.33! 127tRottnestia oorussica

3.991 + 4S5iSondemes moniius 9.331 136/Soindemes crassiperis A

3.23)‘ 46!Soindertes oseucoturcatus 2.33) 1 46)/Somnemes pseudoturcatus

3.33) ° 48iSomnnenes ramoeus suoso. granosus 3.33) 149)Sondentes ramosus su06Ep. Temoranaceot

2.33! + 49/1Soinitentas ramosus sugsp. nembranaceou: 3.39! + 72)/Wetzenella samianaica

3.331 ° SOiSpintemes ramosus subso. muttibravis 9.331 175iWilsonidium tapuiatum

© 3.33! + 6S5iTubmermoanium suicatum 3.331 1781Cyctoosieda via

3.331 °° 7 Ti Wetzeraila ‘unans

102 Correlation Matrix for PT11

Correlation Matrix for Variables: X71... XZ

333 334

333 1

334 97969 | 1

ANOVA Table for PT11

One Factor ANOVA-Repeated Measures for Xy ... X2

Source: df: Sum of Squares: Mean Square: F-test: P vaiue:

Between subjects 254 3609.80249 14.21182 67.7084 .0001

Within subjects 255 $3.52385 .2099

treatments 1 .00S6 .00S6 026558 .8706

residual 254 §3.53825 2107

Totai 509 3663.32634

Reliability Estimates for- All treatments: 38523 Singie Treatment: .97089

103 PT12 “Deflandria phosphoritica/ Areoligera” Association

336! 336 wimer, Nani. zone 10 335! 335 watmer, Nant. zone 10 | 7} 37! 5. 1 701 Wetzelieta 3. i 22! 2 -39! 160 2 -99| 135iSomicinnum parataoulatum t7 1.301 132 1 =?ti 7 0.67! S9iForma D 1 11 + 1.671 72iHometryptium saladum 1.871 1 70!Wemenella_"amocenans:s \_0.87] _7 4tHystnenoxolpoma esenackii "1,87! 1781 Cycopseda wera i

) 2.871 1711Wetzetella ‘unans "1.33 6 4iGlaonytocysta orcinata ! 0.871 185|Palampages sp. C 1 1.93} 1851Patamoagesso. C | 9.33} __t1Actuetla sdormoxies n. 9en., 1. como. 11.001 195/Sormdinum oaratabuiatum

}3.93t 2|Adnatesohaendium muitrspinosum | 9.671 2]Agnatosonaeridium mudisoinesum i 9.331 6IA ym _Homomaronum complex _|_0.67! _ 9.3/Katlosonaendtum or

| _9.33) 4 7!€octacocyzis pencuwatum 10.87! 98! Lingusoainum machaeroohonsn | ; 9.931 SOlFibrocysia oipolare ' 0.87) (86) Prerospermopsss sop. :

10.331 52tFivrocysta coaii sa '@.331 1 |Acnieda bdormones n. gen. n. como, 1

3.33) 53'Fbrocysta ragiata 2.35! 18! Deftanona warcenensis

1 9.331 6 4/Glapnytocysta ordinata

9.331 7 6iHysinchoxoiooma nquace 53! radiata ‘

* 39.331 _33tKatospnaendium brevibarbatum 5

9.331 9 4iKisseiowa coleotnrypta 8 camoanua i 0.341 98iLinguiedinium macnaeroonorum calbcuum

| 9.33) 100}Membranilamacia |: a 7

(9.33! + O02/Millioudedinium guiseop! major 9.33] 3 2tHysmchossnaendum tuotanim drevisoin | 9.991 107!N 6 . 0.33! 9.4iKigsetovia corectnry sia

9.331 1! 131Coercuioginum muttisoinesum 1 0.33) $22] Phthaneoesndmum scninatum

(_ 5.33! 11 5iPalagocvstodimum gqotzowense {0.9911 241Povsonaendiom zonary:

3.33\_ 1 281Samangia cniamydoonora 0.33! 128!Samanaa cnlamysoonora i

' 0.331 +30!Senegalirsum? opscuram ‘ ?

3.33( 146(Soimternes osaudolurcatus '

9.331 1511Soimiertes ramosus suosp. -amosus t ramosus 1 9.331 15817 oailaum 1 suicaium

|__ 9.33] 1 72!Wetzeteta samtanaica ‘

| 3.331 178iCyctooseda vieta 3

. 0.331 182!Cymatiosonaera spp. L 0.331 18 ttMicrnysindium sop. ‘ ; i : : t

1 j t : i

: ' : 1

} H i } ' |

]

1 | |

1

1

104

Correlation Matrix for PT12

Correlation Matrix for Variables: X4 .. X20

335 336

335 1

336 76476 [71

~ ANOVA Table for PT12

One Factor ANOVA-Repeated Measures for Xy ... X2

Source: df: Sum of Squares: Mean Square: F-test: P value:

Between subjects 254 4296.06572 16.91364 6.28092 0001

Within subjects 255 686.5793 2.69286

treatments 71 44235 44235 16373 6867

residual 254 686.23695 2.70172 1 |

Total 509 4982.74502 | | {

Relianility Estimates for- All treatments: .84079 Single Treatment: .72531

105 Sample 337

237) 337 witmer, Nan. zone 10 28.33) 47! Eociacopyxs semcuatum 24.33) 2 2'Caisiesanaendium oversispmosum 24,00! 170i Wetzellela hamocenensss 3.67! 1351\Someimum pat

"4.39! liAcnisia bformowes n. gan. 1. comp. 4.001 71! Hemotryolum tasmaciense ' 9.331 2tAd rai ur um

i 3.331 1221Phthanogensimum ecninanum 2.93) 6 4!Glapnytocysta ordinata ‘ 2.00: 2 8lLinguiadinium macnaaroonorum 11.67: 2} Adtecdinum cnbdosum 57! 7 2'!Homotryoium patadum .57! 160|Thalassipnora pelagca 67) 1711 Wetzedeta lunans .20) 40) Cineoterygum fenmamense ,001 52!Fibrocysta coaitasowiosa -00) 93}Kaih ndiom orevibaroarum

! .001 1Q0tM ze b

-001_ 1 131Operctiwode Mutts omosum

+ 90! 1511 Spindermtes ras Mos > 9.67! 38) Dellandna wardenenss

9.671 391Dinaoterygium i 0.67! 421Diahyes comigecum 0.67! 158!Tectatodinum seditum 9.67) 1 79ICye! ita veta 6.331 6lAcectodimum Homomoronum compiex 9.33! | 2) Arsoligera_so. 9.33) 281C. chum inooes 9.331 331? Cardospnaendum 19.33) 37 !Qetiandria_snosonortica + 0.393) 411Die 0.33) 42 Dionyes colligecum (sensu cooason 1985} . 0.331 §3lFiorocyst ranata 2.33) 8ditysmer iu! SOO. 3.331 94iKisseiovia coeothrypta 0.33) 102)Milioucodinsum gu:seoot major ‘ 9.331 115}Pat ysioui gol : 9.331 121/Pttn cio. inde 9.331 125i Remainum memorantenim 9.33) _128!Samiandia chiamvooonora 9.33! 132!Senegasunun? cilwynerse \__ 9.3311 481Soindentes pseucoturcatus 0.331 149!Sointerntes ramosus subsp. Memoranacedu 0.33} 165i Tudidermoarwun suicatum 3.33! 1@1!Micrnystridium soo. 19.335 1851 Paamoages so. S 0.331 1 861Pterosnermopas soo. . }

106 Statistical Information for Sample 337

X4:337 Mean: Std. Dev.: Std. Error: Vaniance: Coef. Var.: Count: |.501 73 | 2.85452 | 17876 |[a.14a3 | s6a.94104 [255

Minimum: Maximum: Range: Sum: Sum of Sar.: # Missing: lo | 28.33 |28.33 } 127.94 | 2133.8582 0

107 PT13 “Glaphyrocysta ordinata/ Homotriblium palladium” Association

239! 439 witrmer. Nan. zone 31 i 3381 338 witmar, Nani. zone '1 1

21 57: 44.Giaonviocysta orainata } 27.331 _72!Homotryouum oadagum ;

2° 30. T2thomotryonum sallagum i ‘$.67! §4/Glaonytocysta oruinata '

‘9.33! 22! Cleistoscnaenaium anersoinosum ' 3.33! {Acniela oilormaides f. gen.. 4. som, |

3.32) ‘71 Welzenaia unans 7 §.67! {71iWetzevelia unans :

3.37: 38!Linauiodimum macnaeroonorum ' $.33) 3 8tLinguiscinium_ macnaeroonorum '

34, 78ICy ] 5.00! 401 Dinooterygium ‘anmamense j

371° 5.67' s7iE xig_ oeniculatum ‘

{ 44 callosum 4.00! 177) Parwecanella incenata -

.33! 1511Sointerntes ramosus 2.671 '70!Wetetieia_nampdenensis 1§7! + 78iCycopsieila wata - 1.7! 1,001 i JlAscotomocysius Nydna | 2. ; 1.001 135iSomidinium saratabuiatum ! y, 7? 1.90! ‘5 11Spintertes rarmosus suosp. ramosus 1

3. "45 3.671 2}Adnatosonaendium mumsoincsum t 2. “4 0.871 221Clatetosonaandium cversisoinosum '

149 ‘0.67! 33? Corgosonaenaum callosum :

2. 1 n. 9.67' J8{Oetianana waroenensis | 3. 3 : 0.671 100|Memoranilamaca ieotocerma ;

3 9 claacides ' 9,671 107!Nematosonaercoss ravecuiata

ai! 2.87! 122) Prnanoperidinum senmnatum \ 4 \__0.87) 132)Senegannium? aiwynense I 7 0.67) + 60(Th ora peiag |

? 0.53! 9lAptecaimum cnbosum q

7 + 9.331 42) Blonyes cottigerum j 0.331 391Forma 0 { ‘9.331 7 OlHemetndlium caheul

9.331 32!Hysincnesonaendium tuoderum drewisoin

9.331 331?Hystncnospnaeroosis ovum

19.931 3 Bit dium kroemmealbeimi t

3.33! __39!imolstosonaenaium_rugesum !

4.331 +1310 Ur TY 1 i 0.39) 1241 Porsonaendium zonary 4 ' 9.931 127!Aonnesua corussica .

9.33) 138)Somiemes es C i

9.331 1 491Sointentes ramosus suOso. Temoranacecu

3.33) 158lTectaiodinium seiaum |

: —

4

|

L.

|

LL

a a

108

Correlation Matrix for PT13

Correlation Matrix for Variables: X1 ... X2

228 339

338 1

339 79852 {1

ANOVA Table for PT13

One Factor ANOVA-Repeated Measures for Xz... X2

Source: df: Sum of Squares: Mean Square: F-test: P vaiue:

Between subjects 254 2875.11607 11.31935 8.47392 0001 Within subjects 255 340.6259 1.33579

treatments 1 .00738 .00738 0055 9409 residual 254 340.61852 1.34102 Total 5093 3215.74197

Reliability Estimates for- All treatments: 88139 Single Treaunent: .78889

109. PT14 “Wetzeliella (W.) samiandica/ Fusidinium tabulatum” Association

239! 229 gocaman, Nant woocslock zona °*6 240) 240 goodman, Nan woodstacx zone 16 241) 241 gooaman. Nani wooasiocx zona 16 i 41 90) ‘72'Wetzeliella (W.) samianaica 539.301 172! Werzenelia (W.} samiangica 72.401 172! Walzelella (W.) samiandica : 29.50: 290)Fusicinum sapuiatum n. gen, 3.39. 16.90! 38lLinguiodinum macnaeroonorum 17,801 2901 Fusicimum tabuiatum 9. Jen., 1. 30. 7 501 202'Scnnodinium !S.) austravense 3.001 209|Saindertes supparus 5,301 209!Soindentes sucoarus i

220! 209(Saintentes suoparus 4,301 21Ac tdium muni sm 2.60) 398iLinguiedinum macnaeroonorum : $0! 38tLingulocinium macnaerconorum + 4.201 202|/Sennodintum (S.} ai ih 2.201 200lOpercuodintum amicuium n. 59. i

' + 901 101 Microcinium omatum 3.401 2301 Fusiinium taouiatum n. gen., 1. sa. . 2,20! 202!Scnnodinum (S%} austratiense , 3.60! 'C3lMuratedinum fimoratum 2.90! 103! Muratodinium timonatum ‘2.201 _‘ 2|Areoligera sp. i + 9.30) 110;:Opercuodinum cantrocarpum 1,401 2271Cyctoneonelium femnecatum 1,30| 2'Adnalosonaendium muitsoinosum ' © 9.60) 2!31Oettandna alwynensis 1.00! 100tMamoranttamacia leotogerma . 0.60) ‘00iMemoranilamaca ‘eotoderma | 3.50! 1+ 2!Areotiaera so. 3.801 _ 215'Phtnanoseridinum _-esistante 0.60) 222!Aqnatosonaandium vittatum : 3.60) 243 3lHeteraviacacysta tenmamerss 0.901 222{Adanatesphaandium vitatum 0.401 7 6iMystncnoxeiooma riquace ! ¢.40! 4:1O0ionyes cotligerum 0.80! 101tMicrodintum ornatum 9.401 195lLantemospnaendium sicoare ; 9.401 7 6lHysinchoxolooma nquade 0.601 200{Coarcuioanium amicuium a. 8p. ‘ 9.40) 103)Muratodinum timonatum . 0.40| 33lKallospnaendium drevinarbaium 9.40} tlAchieila oformodas n. gen. 1. coms. ;_9.40t 2151 Fhtnanopendinium resistante ' + 9.401 195!Lantemosanaendium dioolare 9.40] 148!Sointemes ramoaus suosp. granosus 10.40! 228}0inopterygium ¢ di

9.201 ‘O0|Memoraniiamaca lectoderma 9.40| 47! Eoctadopyxss cerculatum 0.40! 39limaletosonagndium rugosum

} 3.40! 20010 7 AMIGUILM N. 3D. : 3.40! 233} Heteraut y fanmamenss ‘9.40! 235i Imoletesonaendium transtocum

| 9.401 207iSointentes ct. S ramosus suosp. camosus » 9.401 8.9 / !mpvetospnaencium rugosum 19.20! LiAcnieila dbifermones n. gen. 7. comb.

| 9.40) 115) Paiaeocystiodmium golzowense 9.401 23511 laendium transiodum 3.201 323/?Cordesonaendum caliosum | 2.401 2'Aagnatosonaendium murtisoinesum “9.201 331 ?Cardosonaandium callosum ‘3.20! —27!Cardesonaandium gracilis t

43 191

3. 3. 4 ramasus 3. 1, 3. 2. 4. 3 2.

9.2 11 4 : - fehmamensis | 9.20{ 38)Deflanarla warcenensis 9.201 1011Microcinum ormatum ‘ 3.20! 2191Warzetietla (W.) articuiata 3.20) 165!Tundermedinium suicatum , 3.20} 121A q sD.

+ 9.201 2281 Dinopterygium clagordes : ' . 0.201 691K ysta L :

' 0.20! 238!?Utasonsendium inversibuccinum } 0.20! 165! Tuodermocinum ‘

bd

bbb

bbid

Tit

110

y 242! 242 goooman, Nan wooastocx zane 16

33.90! 230/Fusiamum tabuiaium 9 gen. 1. 39.

25.50: 172!Welzelielia :W.) samianciea

3.501 202!Scnnoamum (S.} ausirasense

i 6.401 209)/Somtentes supoarus l 1.20 2tAdnatesohaendium muttispinasum

9.801 28/Carcosonaendium nodes

; 9,50) ‘001M lamacia | 0.50! 1 O3{Muratoginum timoratum

9.50) 232\Hemicystodimum zonary

4.601 23 2\Heteraviacacysta tenmamersis

8

3. 1 . 9.20} 331? Corsossnaendium catiosum ' 9.201 25iC pnaerdium librospunosum

9.20! 41/Dipnyes caiiigerum 0.20) 190(Diphyesonss captata n. gen. n. sp.

3.20! _48}Exocnosohaandivm prfidum i__9.201 19 1iGonyawacysia quisepp! subsp. mayor 9.20) 768! Hystneh Aguacte 2.20! 93)Kaiiospnaendium orewbaroatum

0.201 1 SSiLamemosonasndium dipciare

9.20] 200)Opercuiodimum ammeuwm n. sp.

3.201 + 101Opercutodinium cemtrocarpum ET ET 9.201 205iSotntertes nypercantnus ‘9.20! 206!Sointames memoranaceous 13.201 1 4SiSomiertes moniius | 2.26) _1 47!Somntemes ramosus soso, granomemoran: 2.201 15 1/Spindemes ramosus su0so. ramnosus ' 9.20) 297\Soinfemes ct. S. ramosus subsp. ramosus 1 0.20: 211! Tubuiosohaendium oseudocurvatum n. gen. | 9.20( 2731/Dellanana aiwynenss 9.20{ 115/Palaeocystocimum golzowensa i 9.201 215/Phthanosendinum ressteme | 2.20) 23 9)}Wetzetieta (W.) arncuiata 0.201 222iAcnatospnaendium «itatum ) 3.20% 1 2tAreotigera sp. | _9.20}_ 224/iCannosonaerooss ousuiosa : 0.201 47{Eociacopyzxs senxisatum 0.20] _89!imotetosonaendium rugesum

{9.201 235lmoi tdium tt um | 9.20) 101!Microdimum omatum 3.20( 165iTuamermodinum suicatum ' ‘1

yo yo

pops pops

111

Correlation Matrix for PT14

Correlation Matrix for Variables: X71... XB

240 241 242

240 i

241 94496 |]

242 48557 |.64424 |)

ANOVA Table for PT14

One Factor ANOVA-Repeated Measures for X71... X3

Source: of: Sum of Squares: Mean Square: F-test: P value:

Between subjects 254 9826.52528 38.6871 1 7.68774 .0001

Within subjects 510 2566.48 5.03231

treatments 2 .28936 .14468 .02864 3718

residual 508 2566.19064 5.05156

Total 764 12393.00528

Reliability Estimates for- All treatments: -86992 Single Treatment: .69033

112 Sample 243

34d} 243 goodman, Nan woodstock zone 18 55.380: !O1tMicrodinium ornatum

26.401 2{Adnatosonasndium musthoimnosum | 3.401 103'Muratoaimum th ‘__2.00) 172!Wermekela (W.) samiangica «2,20! 3 BiLinguladinum macnaeroconorum i120! 209'Sanifenes supparus 1.90) 215/)Phthanoperktinwn resistente 3.80) 411 Dlohyes cailigenm 9.80) 235limoletosonaendiun traneocum 9,60! 28! Cordosonaenaum inodes 9.80! :00!Memobramilamacia ieptoderma \_ 9.60! 1 1G!Ogercuiaginium camracarpum 2.601 151!Somndertes ramosus suoso. ramosus ‘9.60! 222}Acnatesonaendum vatatum 9.6G! 230i Fusidinium tapwansn n. gen. n. so. 9.40) 147! Somiertes ramosus sudso. granomemoran ' 9.401 3810etlandna wanensnas 2.40) 8 9iHeteraulacacysia camoanuia 2.401 293} Heteravlacacysia tenmamensis : 3.40! 391 imoletosohaendium um 9.40) :65|Tuodermocinum sucatum

3.201 + | Achnieila pilormoides n. gen.. n. como. 2.20; 33!7Carcosohaend th

3.201 25iCoragsonaendium tibrogomosum | 9.201 27} Congasanaendium graciis 3.201_ 1891 Dichyesons= duccinaia n. gen, 4. so. 93.201 190i Olonyesooss capaata nr. gen.. 1. so. 0.201 salExochosonasndtum oridum 19.20! 191)}Gonyaulacysta guaeppt suoso. maior { 9.201 *92ihyoncasphaera maryiancense n. gen... st 3.20) (931 NCNOKOL buibosa, 19.20) 7G) Hystrichonotooma riguade i 0.20! 791 Mystnchospnaendium tubderum 0.201 194\FHystrichospnaerooss dorussica 0.20! 93iKailosohaenctum orenbarbarum 9.20] 195}Lanemosonsendium bivaare 3.201 19S9iLanternoso i, al 3.20! 200! Ocerct i, sp. 0.20) 202!Sennoainium (S.)3 iense 9.20! 203!Sontentes ouiloideus ' 9.20! *48{Soimntertes crassoertis 0.20) 204) Soimdentes ct. S. 3.20! 205/S 0.201 _ 206!Sointertes memoranaceous 9.20) 146!Sointentes os et us i __ 3.20! 148) Soindentes ramosus suoso. grancsus 0.20! :50/Somierntes runosus suosp. mudibrevis 9.201 207!Somtertes ct. S sU08D. ramosus 9.201 208|Soniertes scapratus 3.20) *58\Tectatodinum sedtum 3.201 21?! Tubuiospnaendum ossucccurvaium n. 26h) 0.20! 37(Cetiandna onosohonnea ‘ 0.20! 1151Patasocystoginsum got 9.20) 219!Wetzeteila \W.) amcuiata 9.201 __1 ZlArwaiigera so.

9.201 225 fauca n. so. :. 9.20) 22)Cierstosonaendiumn ip im

3.20) 226iCy incuftum

“9.201 _ 227{Cyctor bury lesnrescatuien

12.201 2281 Cinopterygium ciacoices ___9.20] 231) Hemicysiowmum acueaium n. sb.

113

Statistical information for Sample 243

X41: 243 Mean: td. Dev.: Std. Error: Variance: Coef, Var.: Count:

|.42588 | 3.86698 |.24216 |r 4.9535 907.99152 | 255 |

Minimum: Maximum: Range: Sum: Sum of Sar.: # Missing:

E |55.8 {55.8 | 108.6 ‘3844.44 lo |

114 PT15 “Deflandria macmurdoensis” Association

1

2aai 244 gooaman, Nan) eck Ione * 245i 245 good Nare zone ‘6 246) 248. gooaman, Nam woodstocx zone ‘8

| 22.3901 214/Oeflanana macmuracensis | 39.201 214\0ettanana macmurcoenss ‘31.901 2141 0elandna macmuccensis

12.90) +0 11Micredimum amatum 3.801 221:Weraieila (W.) colectnrypta 11.001 221! Wetzeiieita (W.) cowotnrvota

10.60] 221!Wetzellella (W.) coleatnrypta | 7.201 27!Cordosonaendium gracihs 9.201 22!Ci ital sm

| 3.40] * 2tAreotigera sp. 1 | 7.90! 22\Clestospnaenatum civersisoinosum 6.201 215iPhinanooercinum resistente

§.801 9BlLinguloainium macnaeroopnorum ' | 3.2608 {| 2lAreougera so. 2.60) 231!Hemicystodinum aculeatum n. So.

5,40! 37!Qettanana onospnontica ' 1) 9.201 22371Systematoonara ancyrea 2.00! 212! Dertlanana asymmeinca "4.30! 411Dionyes cotigerum ‘2.801 38{Linguios: ' norm 2.90) 411 0lonves colligerum

9.60! 271Corosonaendium graaiis ' 2.60) 110/Cpercuiogintum centrocaroum » 2,80} 201: Coercwociniumn cotomacense n. sp.

3.20| 172!Wetzeleila (W.) samiandica \ 2.90) 20ti0 Tum n. so. 2.201 5S iHeeraviacacysia f

2.80| 201!Coercuicaoinum sotomacanse fn. $5. | - 2,901 2151Phthanocendimum rassterte 80! 2 7'Conosonaendhsn_graciilts

1.801 210i Tactatodinum osdatum _|, 3.80} 411Dlonyes colligerum 1.601 '70|\Weteonela (W.) harnodenenus

1.801 :60ITH g \ 37!Dellanana 1.681 101) Microginum ornatum

1.80] 230! Fusidinum taouiatun n. gen., 1. $2. | 213 ' 381

2.401 103{Muratodinium timonatum _! t | 1531 ramosus

1811 ramosus ramosus t tenmarmenas 1 3. 1 a. a, 15BiT: Q 146! 4 Q o7! i 177 |Wetzelleta {W.) junars 3. 60! 209!Sonitemes suoparus i ' 19BiAuina ennacea 47t 7 t 9} 2101T . a.

1 9.60} 69iHeterawacacysia carnpanuta 9.40] *101Coercuiodimum cemrocaroum 3.60! 2351! dium transt 0 40} 213/Detlanarta diwynenss

9.40! JalCordeschasndium multisoinosum 2.40} 371Detianerta_onosohomtica 7.401 190(Diomvesoosis capdatan. gen. 1. so. 3.40! 17?tiWerzevella (W.) junarns

3.401 138iSontertes crassipetis 9.40) 2281 Dinopterygium ciaccides

4 3.40! 205{Sointertes hypercanthus 9.20) ‘1Actietia bdormonies n. gen., 1. como.

3. 2411 acuieatum 9. 2.401 1 70\Werzeiieila (W.) hamodenensis 2.20} 331 7?Carcosonaendium callosum 9. 45 transtoaum 2.401 I9IIlmpietosonaencium rugosum 0.201 25! Cardosonaendium fibrosoinosum

0.20! 1lAcmeila odormodes n. n. somo. 3.201 1lAchieila od fn. gen., 1. come. 3.20! 1891 Dionyesooss fL gen... n. so.

i n. como. 3.20] _331?Caraosonaendiun callosum 3.20! 192i+4yoncasonaera marylandense Nf. jen.. 1. so

0.201 13/?Corassonaenaum caiiosumn 320! 25iCordosohaendium fibrosomosum 9.201 1931Hvstncnonolpoma_ oulbosa

0.20! 28/Coroosonaendium inoces __} _9.201 _ 28!Cordesonaendium inoges 0.20! 78 iHystncnoxoipoma_nquace

9.201 189/Oionvesoosis Duccinata n. gen.. n. sp. ‘ 0.20! 48lExocnosonaendium bifidum 9.20! 99lKallosonaendium orewbaroarum

9.20! *90iDionvesopsis caniata n. gen. 7. s3. 2.20) _ *92lrvoncasohaera maryianoense o sen 7.50_ 9.201 ‘95iLamtemospnaendium bivorare

0.20! 48) Exochosonaenaium oifidum 9.201 193iKystr ouibosa 3.201 199!ILamernosonasndium raciatum

0.20! 1 92!Hyond, Marylandense n. gen.. 9. 5 2.201 79iHystncnospnaendium tuniterum 0.201 104iNematosonaenosis

0.20! 193I/Hysincnokoipoma bulbosa 0.201 *97lLantemospnaendium /appaceum 3.20! 200!Cnercuicainium armeculum nso.

3.20! 194iHysincnosonasropsis borussica 3.20) 103}Muratocinum tlmonatum 6.201 202!Sennedinwm (S.) austraiensa

0.201 195lLantemasonaendium ap0lare __| _9.201 *04!Nematosohaerooses oalcomniana 9.201 !381Saintermtes crassinedis

0.201 199lLanternosonaendium radiatum | @.201 200!Coercumainium armcuum n. so. 3.201 205iSondemes nypercanthus

9. 100} Memoranitamacia } 9.201 141/Soinientes comutus 0.20! 206!Sonvtertes memoranaceaus 3. Sennoamnum australiense 9.201 204!Somirentes ct. S. crassipeiis 0.20! 145iSoirtentes monius Q. 04! 0.20! 206/Sontentes membranacecus 9.20! 147!Sontemes ramosus subsp. granomemoran: 3.201 | 45(Soindermes momius 9.20} + 48!Somientas ramosus sunsp. jranosus

9.201 *46/Sointertes pseuoclurcatus 3.201 150!Somstentes ramosus suoso. Nuttibreves 1 a6! 3.20] 147/Spindertes suoso. granamemorani 3.201 158/Tectatocinium oeiitum

Taz Tamosus 0.20! 148/Spintentes ramosus subsp. granosus 0.201 ‘601TH 0

’ ramosus 9.201 150!Spinitentes ramosus svoso. mutibrevs 8.201 211'Te Dseudocurvatum n. gen

7!Sommlemes ct. 2.20) 209\Soinitentes suopans 3.201 217! Soindinum rotundum 7 9.20; 160/Thatassmnora petaguca 9.201 172!Wecenella (W.) samtandica

213i Detlandna 3.201 211/Tub i vatunin. gent 3.201 2!Adnatosonaendium mufispmosum 175) 2.201 38/Detlanana wardenens:s, 9.20! 222\Adnatosonaencium vmatum 7 9.201 2iAdnatosohaencium munisoinosum *_9.201 224/Carnnosor pusLuoEa

1 2.20! 222/Adnatosonaendium vittatum 2.201_ 2301 Fusicinium tabuiatum gen. 7. 30. 0.201 224!Cannosohaeropss pusuiosa 3.20) 235limotetosonaendium transtodgum 0.201 226/Cyctoneonetium incutum 0.261 23617_tosonaendium inversibuccinum

jenmamensis 0.20) 227!Cycionegheuum lemniscatum 0.201 237!Syster ancyrea iversibuccinum 2.201 47IE y 0.201 230}Fusiinium taoulatum n. gen., 1. so. 9.201 231!Hemucystodineum acuieatum n. so. 9.201 293!Heterauiacacyeta fenmamensis 3,20) 101(Microomum omatum 0.201 1 8S5(Tubmermocinenn sutcatum

115

Correlation Matrix for PT15

Correjation Matrix for Variables: Xz... X3

244 245 246

244 1

245 84606 |}

| 246 .80409 |.96751 1

ANOVA Table for PT15

One Factor ANOVA-Repeated Measures for X1 .. X3

Source: df: Sum of Squares: Mean Square: F-test: P vaiue: Between subjects 254 4981.02975 19.61035 14.80823 .9001 Within subjects 510 675.38667 1.32429

treatments 2 23414 11707 .08809 9157 residual 508 675.15252 1.32904

Total 764 5656.47642 L

Reliability Estimates for- All treatments: 93247 Single Treatment: .82152

116 Sample 247

Wmonatum

2ot 3.80) 151)/Sowdemtes ramosus sudso. ramosus | 3.80! 170) Werzelella (W.) hamodenensss |

0.901 !7 UU Werzeleta (W.) iunans

2 1 Te sulcatumn 1 2 Giversisoinesum

+ $.201 222}Agnatosonaendium vittatum ) O.20t 223}Canrmngia minor ' Q.201 224C. pusuigsa {0.20} 20iChtamydopnoralia ct. C. uma | 0.20! 230i Fusdinum tabuiatum n. gen., n. sp. 0.20) 23 1\tHemicystoginum aculeatum n. so. ' 6

117

Statistical information for Sample 247

X41: 247 Mean: Std. Dev.: Std. Error: Variance: Coef. Var.: Count: |.43216 | 2.64987 16594 |7.0218 613.17255 | 255 Minimum: Maximum: Range: Sum: Sum of Sar.: # Missing:_ lo l3s.6 |35.6 —|rt0.2 jiasi.16 fo

118 PTI6 “Wetzeliella (W.) lunaris/ Deflandria phosphortica/ Thalassiophora pelagica”’ Association

wooostocn zone '5 256} 256 googman. Nani woodstocx zone ‘16 174 tw. 51 401 +711 Werzelieda (W.) 'unans ‘2 so. 46.80) 37! Getianana dnosonortca 37'Detiandna “a -20: 27! Cordosonaendium gracilis 3.801 212)Detlandria asymmeatnca 21 4i0ellanana 3.60! 170)Wetzetiella (W.} hamodenensis

0.201 ‘60! Thatassignora ig

3.20) 2131Dettancria diwynensis

7.26) 2141 Oefiancria macmurooensis

» 3.201 1 2}Areottgera sp.

i 3.201 22! Ctestosonaendium crvarsisoinosum

t 9.201 69iHeterayiacacysia campanuia

‘3.201 237!Sysiematoonora ancyrea

119 257! SPSCES 264 ‘SPURNS 1 276t SPECES . . 7 7 7.90! 171) Wetenelia 29 901 216 3.40 3.40} 170 40} . t 5 . . 1511

120 Correlation Matrix for PT16

Correlation Matrix far Variabies: X. .. XS

% i 250 251 7864 1 267 62844 |.80887 1 268 .§3083 |.68455 37611 7} 70 74225 |.95447 | .82454 71318

ANOVA Table for PT16

One Factor ANOVA-Repeated Measures for Xz we XS

Source: of: Sum of Squares: Mean Square: F-test: P value: Between supiects 254 |20121.07464 |79.21683 114.9525 {.0001

Within subjects 1020 | 5403.856 §.2979 |

treatments 4a .20342 05085 | 00856 .9998 residual 1016 |5403.65258 5.31856

Total {1274 |25524.93064 | !

Reliability Estimates for- All treatments: 43312 Single Treatment: .73618

12]

PT17 “Spinidinium bilineatum’” Association

254! SPSCES 265) Fos 266! SPECES | 51.401 216) Soineinium oineatum n. so. 71.201 216 1Sowndirnum oineatum nm. so. 325.201 1 71'Wetzenela (W.) iunans 4

11.30) 22, Claisiosonaendum drversisainosum 7.30| '9%!Gonyamacysta guseoot sudso. Tajor 25.30) 2° 6!Sommnum oiineatum 1. so. {

3.80: 220! Wetzeueila iW.) coalita n. so. 5.00l 171! Wetzeleiia (W.) iunans 5.20! ° 70lWatzeneida iW.) namogenensis : 430) 209/Spinitemes sucparus 4.201 209/Somtemes supoarus 5.40! ' 2lAraougera so. ; 2.401 «7 Werzaneila WW.) lunans 2.001 22!Clestosonaendium cversieoinosum 5.201 3'Aotecainium snbasum :

3.401 7 1 'Homotryouum tasmaniense 2.001 7 1 Homotryokum lasmanensa 5.20)‘ 60) Thaassionora oetagica |

|__ 2.60} +9 1iGonyauiacysta guisepp! subso. maior 1.80! 1701 Werzeweda (W.) h res 4.201 22!Ciamstosonaandium civersiscinosum : | 2.201 170}\Wetzeuella (W.) namodenensis 1,401 411 Dionyes coiligerum 3.401 7 1!Homorydlum tasmaniense 3 1 90] 160lThalassianora peiagica 201 ti Acnietia_ offormondes n. gen. 7. COMO. 2.601 209/}Sondentes suoparus |

i * 801 __* 2!Areoligera so. +201 1 60|Thalasspnora oelagca 2.90! 15 1!Sointemes ramosus suoso. amosus i

| 4.201 201!Ocercuicaintum $8 1. SB. 1.001 28/Unguieanum macnaerconorum 1 .40f 2151 Pmnancoensinum resistenta

"4.904 1 !Achieila ortormnomes n. Jen.. 3. camo. 4.00! 201\Opercisedimum potomacense n. so. +, $01 2lAdnatosonaendium mutisornesum

(9.801 4 7IEociacopyue penicuiatum 0.80) JlApteccinum cnbdosum 1.261 2211 Werzetieila (W.) colectnrvota

i 9.80! 231?Corcaspnaencium callosum 9.8C| 235limettospnaendium (ranstocum 130i itactetla Dilormoies n. gon.. a. come.

atl cwlosum 15 8lTectatocinmum 0 151 ati sgl 191 16 suicalwm 328i a7 165i Tupidermocinum sucatum | 3 8lLinguiocinum macnaeraonerum 204\Somitemtea ct. S. crassipodis

| 9.401 100!Memorantilamacia | dema | 0.40} Sth yea campanuia 9.401 11S|Pataeocystodinum goizowense ‘ i 9.40t 22 4iCannosonasrooss ousuosa 0.40! 7 2tHomotryolium paiacum 2.401 3S3iimoletosonaendium rugosum i 1 9.401 2291? Eisenacua scrooicuaa 3.201 _27tComosonasndium gracillis 9.40) 296) ?Liosonaencium inversiouccinum i | 3.401 299 !Heteraulacacysta tenmamensis ' 90.20! 190!Dipnyesopsis capnata n. gen.. 1. so. 3.20| 27!Cordosonaencum gracilis ' 3.401 72\Homotryolium paitagum + 9.203 Si bty Nquace 9.20] 2aI1C haendium inodes

3.201 3\Apteoainum cribosum 0.20) 7Sitvetncncepnaendium tuoderum 0.201 189|Dignyesooss ouccinata n. gen.. 7. so.

' 9.201 25iCorcosonaendium tibresoinosum 0.201 33lKatospnaencium orevibaroatum 3.201 !95iLantemosonaendium dicolare |

o.20! 27!Corsesonaendivm graciits 9.20| '97iLanemosonasndium iaopaceum 9.20} :!97lLanternosonaencium laopacaum | 1 93.201 + 89'Dionyesoosis_Suceinaia n. sen. n. so. 2.20! *00iMemoranitamacia ‘aotogerma 3.20! 1 98iLantamosonaendium oilatum n_ so. |

1,3.201 190!Dior Capttata n. gen. 1. so. 9.201 103!Muratedinum ttmonatum 3.20! + 00i\Memorarsilarnaca iaptocerma |

3.261 _48/Exocnosonaenaium odicum 9.20! 200!Ooercuedinum ammcuum nso. $.201 103M nium fi m 3

|_3.201 +92!Hvonaasonaera maryiancense 2 gen... so 9.201 1101p wm ¢ set 9.201 200!Coercucdinum amiculum n. so. :

1, 9.20! 7 6tHysincnoxoisoma nguace 3.20! 1S8!Teciatoaimum seilitum 3.20! 1101Operculogimum centrocaroum {

1 9.201 195iLamemosonaendium divolare 9.201 210fTectatocimum osdatum 3.20) 20 1lOperculodinum coromacense a. so. } | 3.20) '97!Lamernosohaendium iappaceum 19.201 78tOetiancria wamdenenss 9.201 °*38!Somdertes crassipallis i

| 9.201 + 98(Lamemosonaendium ovatum n. so. 3.201 115}Patasocystodinium golzowense 2.201 213\Detlanana cnwynensis |

0.20] 200!Opercuroedinum n. SD. 3.201 215}Phtnanapendinium rest 3.20: 3 8}Deliancna warvenensis | ' 9.201 + 10!Coerculocinium cantrocarpum 9.201 221'Wetzeiieda (W.) coleathrypta 3.201 228{Dineoterygium ¢

19.201 _ 202'Scnnoaimum (S.) austraiiense 9.201 _* 21Areotigera so. 9.201 229)7Eisanacnia scrovicuiata | 9.201 205iSoinitertas hypercanthus 3.20) 229i? Eisenackia scrooicuiata 2.20! 233\iheterauiacacysta fenmamansis 1 9.20! 1511Soindentes ramosus supso. camosus 0.20! 233|Mewrauiacacysta tenmamensis 3.201 234i Hemotryoium alisum 1. so. ' ‘0.201 2071Sointemes ct. 5S. ramosus suoso. ramosus | 9.201 3SIilmosetasonaandium sugesum 3.201 23Si!n a transtoaum :

! 0.20] *S8iTectatocinium peilitum + 0,20) 236)7L3 dium inversibuccinum :

| 9.201 210!Teciatoainium psilatum 9.201 165iT

19.201 2131Dellanana aiwynense : ! | 9.201 _38/Detlanona wardenense \

9.201 115{Palasocystodinium gozowense ! ' {9.201 S9lHeterawacacysta campanuia : ' ' "9.201 23 4\Hometrvoilum aligum a. so. : t |.9.201 235lIimotetosohaendium transtoaum ‘ . 4 ! 0.20! 236!?Litosonaerdium :nversibucemum ' 4 — 2

: : f 4

-— —

; ' ' i

‘ 1

Le

122

269) SPSCES 273 Secs !

40.00) 173i Wetzetela (W) ‘unans "40.201 2361Spimatmum ouineatum n sp. a

28.801 216!Soimeanium dilingatum n. so. 1 26.20! 171 Werzenetia (W.) lunans ,

14,201 160/Th 19a delagica | 13.001 1511So:nfentes ramosus suoso. ramosus

10.201 170!Werzelieila (W.) namoaenenss ' 5,60} +80! Thalaseiphora peiagica

6.40/ 151/Spintentes ramosus suoso. ramosus 3.80) _170|Wetelleta (W.) hamodenensis

2.401 _1 2!Areoligara so. ‘3.801 299/Soindentes supparus

2.001 2|Adnatesonaerndium mumspinosum i 3.201 7 1 Homotryoitum tasmanense

1.00} 7 11Homoyonum tasmaniense | 2.40) 1 2!Areotigera so.

9.401 tlActielta brtormoxdes n. gen.. 1. como. 1 1-201 _138(|Sointertes crassioeilis

0.40]_' 87!Aptgoginum incompositum nso C20! 2 Agnatospnaengium muitispinosym | 2.40! 27!Cordospnaenaium gracilis ! 9.80! +891 Olonyesopsis ovocinata n. jen, 1. 39.

9.401 19 t!Gonyautacysta quiseop! subso. marr ! 9.80] 9 lLinguioainum machaeroonorum

0.40! 22! Clerstosonaendium crversisoinosum | 9.40] 7 8lHystnchokoipoma nquace

2.201 7 8ibyenchokalooma nguace [0.401 22! Cieistogpnaendium civersisoinosum

0.20: 138lSointemes crassipeils ' 9.201 11Achieila bdormondes n. gen., 1. come.

9.20! 1481Sointertes ramosus sudso. zranosus | 9.20! 29} Cordospnaendum inodes

0.20! 38! Detlancna wardenensis 1 0.261 411Diohyes colligerum

0.201 133lSomainium asso | 9.20{ 191!Gonyauacyeta quiseop: sudso. maior

: ; ! 6.20 381\Cetl wardenenss

‘ ' ' t

1 q

!

4 '

1 . I 1

; i { \

: 4 :

( : 4 ‘ :

; ‘ | :

y

! |

i

i ' | '

' ! !

}

i t

i | |

i {

. 4

1 i

V 1 1

1 i :

1 ' :

|

1

+f

1:

a:

123 Correlation Matrix for PT17

Correlation Matrix for Variables: w X5

264 265 266 269 27) 264 1

265 97045 |1

266 62956 |{.6265 1

269 58464 |.59889 }|.96461 ]

271 81201 |.83367 |.9000S |.90565 |1

ANOVA Table for PT77

One Factor ANOVA-Repeated Measures for X1 ... XS

Source: af: Sum of Squares: _ Mean Square: F-test: P value: Between subjects 254 12255.06867 48.2483 16.2559) .0001 Within subjects 1020 | 3027.408 2.96805 treatments 4 .15354 .03838 .01288 .9997 residual 1016 |3027.25446 2.97958 Total 1274 =| 15282.47667

Reliability Estimates for- All treatments: .93848 Singie Treatment: .75316

124

(%SZ apt apt

@#e*#

*

<)

&@ fe

UOWWOD

FF

is

08S

AIDA

F

8B

JO

E EF HE

UONRUASaIdas

‘saloads

JROTYdBIH

aye]

[a3

|

e]JOUIpP oe

“ds BIasT0aIy

125 Cc

Meee ex UR ee ee SE ee ee ee BB eee OR Se mes | || ”

Byeinqejoiiosqo we BaeInges 4 Unjeniquly WniuIpoyeinyjyy BSADON Sol 0€

BESEPSRERSSESRESESISSS FSP BER? ee bee eee eee EEE eS Ok ee BEE EE EEE EEE EE bt 5 =e

126 *x[dosleraqnxo eysADOAUde[H

~ OL

PRZU2ERP ZRH RAR AY ZRH SB BE BB SE ee SD SEU EERECRETE EE EELS44 mere BRS ERE SHEE BRE Et eee Ss EE rt ttt ett tet + re tee tt t Byeinqeyelovydsouriquiayy S¢ Se

3 wi a) a mh a 2 5 ee ttt ul As Ta

Yordulos winqdiowouoY tiniuipopady 127 EF BES eS Ee eR RE eee eett OS tt tt ttt et +++

| Bye op SBReEBEBRAaHEHRERBRBE EZ HRERAZ SEER EES BIOCOWSEPEYL Fete ttt Of

V ds BISADOJA yde ID Deas » YP RP wo wo@ w& Be oo -» 2 @ © @ @N 6 8 #&® ¢ 2 &@ @2® @ N tle sz

eaowsz wdt Nu SS @ @ &@Y 8 “4 zbe rls 992 Gre a neon & + @ Hw

BoIpUeUIeSB]fOIOZIO ee = NM,

08 JsUSOpINMOeU LN TUIpIUTdS

SV

= s= =2 S38 3% 328 8 8 € 5

nm yeUmnNDmUlUlUUlUCU BERBERS B BE HEHHH

Tanjeynqeyuntuipisny 09

ase

902

652

are

Sez

cre

eee

det

vee tes

oze

Sze

dhe

whe tie

ece

sot

402 ra

vel est

esi

ce

oe

Ldh O£ O£

vis

Ve

ete

BEE

eS eS oa. oa.

me se

mw NN

19% ascsRBResoegses NH NH id @unweonwes

RERH

sve RN a

oe itt

EE

+t wee

SB - -

ist »®

@ @ ozs @

KBE @ @

see wen

Ss Ss S22S88 S22S88 it ©

FEB

& & @& @& vie SHUN]

THNyeUIO

We =

Ly @ B]PSl]aZ1O

KBE “ 8seas 8seas

UNTO bz

itt “wu

ER * *

IpOIPy 6)

al © @ @

ER se

to

BS

BS i ah

se 129 APPENDIX B:

MODERN ANALOG FORTRAN MODEL X, Z

MODEL OUTPUT DATA

130 DINOFLAGELLATE MODEL 4 A Song ene newee ECOSYSTEM DYNAMICS MCDEL 5 DEGREES WARMER THAN BASTC YELLOW SEA MODEL CVA) BY 5. 2 OMNLEY, 2396 Ae PHYTOPLANKTON POTENTIAL (NUTRIENT? AL-XLe SPECIES 1-190

CFV AwL-Zz CYSTS TO SEDIMENT

(20) IMPLICIT REAL (L,M: DIMENSION X(23} ,XD.23)} DIMENSTON AC(12) COMMON TDY REAL M41,M42,M43 OPEN (6,PFILE=’ CON’ } OPEN (7,FILE='C:OUT.DAT’) ST INITIAL CONDITIONS DATA X /1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,1.,2., +1.,1., Lejl.yk ,i-,i.,1.,1.,1.,500./ DATA AC /1.,1.,1.,1.,1.,1.,1.,1-.,41.,1.,1.,1./ a5. TEMP219 SAL=2 TA=TOTAL CYSTS IN SEDIMENT Cy TA=1. Ne=4 T=0. TMAK=21.0 DT IS 0.001 YEAR CT=.001

Cy 2CUTR IS THE NUMBER OF ITERATIONS PER OUTPUT LOUTR=53 .33333333

Q) OUT IS THE COUNTER FOR THE OUTPUT INTERVAL TOUT=IOUTR+1 WRITE COLUMN HEADINGS WRITE (6,1)D WRITE (7,1)D i FORMAT(’ (DEPTH=',F5.1,’ METERS)’)

RITE(6,2) WRITE (7, 2} 2 FORMAT(’ TIME, SPl SP2 SP3 SP4 SP5 SES Se7 +SP8 Seg SP10')

C BEGINNING OF CALCULATION LOOP 3 CONTINUE iF (TOUT. LT.IOUTR)GO TO 5 WRITE ($,4)T, (X(1I),I=1,10) WRITE (7, 4)T, (X(I),I=1,10) 4 FORMAT ('', F5.2, 10F7.0) ICUT=0 5 TOUT=ITOUT+H1L Cc CHECK FOR =ND OF SIMULATION IF(T.GE.TMAX)GO TO 99 CALL RS (X. XD, T, DT, N,D, TA, AC, TEMP, SAL) T=T+DT GO TO 3 a9 STOP =ND COIS COCOCO COCO COCO CT COC COOCOO COO CSCC OC OO COCO OC OC OOO CCC COCO COS SC CIS Soe CCl SUBROUTINE DFOS(K,XD,T,N,D,TA,AC, TEMP, SAL) 131 ZTMPLICIT REAL (L,M) DIMENSION XD(23) ,X(23) DIMENSION MONTE (14) ,8(14} DIMENSION AC (12) COMMON TDY

TEIS SUBROUTINE CONTAINS THE DIFFERENTIAL EQUATIONS

STATEMENTSal BELOW ARE USED TO FLUCTUATE TIME FOR SEASONS

POM TWY=T-AINT(T)

TDY+ IS TIME WITEIN YEAR IN DAYS o TOY=TWY*3e€5.

0} TR IS TWY IN RADIANS TR= (TWY) *6.28318

q) MONTH IS THE MIDDLE DAY OF EACH MONTH DATA MONTH/G.,125.,46.,74.,105.,136.,16€.,156., +Z27.,258.,288.,319.,349.,365./

STATEMENTS BELOW VARY TEMP AS A SEASONAL SINE FUNCTION

oan AMT IS THE ANNUAL MEAN WATER TEMPERATURE oriD.bT.25.) AMT=1 ~- ei tb. GE. 25). AND. (D.LT.75) ) AMT=20 iF (D.GE.75.) AMT=25. CAND IS THE AMPLITUDE OF THE TEMPERTATURE CURVE C7) IF (D.LE.25.) TAMP=10.0 IFi(D.ctT. oe -AND. (D.LE.50.))TAMP=5.0 DE. (D.GT.50.) .AND. (D.LE.75.)) TAMP=4.0 ZF AD.GT. 58. TAMP=4 .0

QC) TFS IS THE DHASE SHIFT OF TEMP CURVE IN RADIANS TPS=1.75585 TEMP=AMT+SIN (TR-TPS) *TAMP FUAG=1 IF (TEMP.LT.18.) FLAG=0

Oo STATEMENTS BELOW VARY SALINITY THROUGH TIME DATA $/1.2,1.1,1.1,0.8,0.6,0.8,0.8,1.1, ~2.4,2.4,3.0,0.8,1.41,1.2/ DO 101 IT=1,14 102 ZF (MONTH(I) .GT. TDY) GOTO 102 202 HFA= (TDY-MONTH(I-21) ) / (MONTH (I) -MONTH (I-1i) ) HMC=S(I) -S(I-1) SAL= (HFA*HMC)+S (1-1) 22 (D.LT.15.)SAL= (SAL*1.4) ZFC{(D.GE.15.).AND. (D.LE.25.)})SAL=(SAL*2.0) DP ((D.GT.25.) .AND. (D.LE.50.))SAL=(SAL*2.5) ZFC (D.GT.50.}) .AND. (D.LE.75.))SAL=(SAL*3.0) DF(D.GT.75.}) SAL=3.4 INPUTS, Z IS DEPENDANT ON DEPTH IN METERS Z1=150 DPCD.ST. 1c.) Z1=100 TPCCD.LE.2Oo.)AND. (D.GT.50.))Z1=150. TPACD.LE.SC.)} . AND. (D.GT.25.)} Z1=300 DEP (D.LE.25.) Z1=750

HIS SECTION iS FOR SPECIES 1, A NEARSHORE ‘BLOOMER’

Oa THIS IS SPECIES 1 GROWTHRATE VL23=1.0*%(23 TE. (TAMP.LT.4.) .OR. (SAL.GE.2.5))X(1)=1. IF (TEMP.GE.20.).AND. (SAL.GT.1.))X(i}=(1.05*X(1)) TP. (TEMP.LT.i5.}).AND. (X{1).GE.1iC.)) Ai2patO.95*x 41) c THESE ARE COND T= TONS OF SPECIES 1 ENCYSTMENT TP(eX (23) .LT.50.)X {2a} =6(.1*X(4))+xK(12)) rE PpaMe LT 3) 02) .AND. (TEMP.GT.23.3)X(2i)=-(0.1*K%{1°} 4+X (il c THIS IS WHAT HAPPENS IF SPECIES 2 RUNS CUT OF NUTRIENTS TF(X(23}) .LT. 50.) Xft) 22 Cc C THIS SECTION IS FOR SPECIES 10, AN OCEANIC FORM Cc THIS IS SPECIES 10 GROWTHRATE ViLOZ3=1.0*X (10) IF / (TEMP .LT.18.).OR. (SAL.GT.2.0}})X(10) =(1.02*X (1033 IF ((TEMP.LT.i8.) .OR. (SAL.LT.2.0))X(10) =1. c THESE ARE CONDITIONS OF SPECIES 10 ENCYSTMENT IF( (TEMP.LT.28.02}).AND. (FLAG.EQ.2.))X{(20)=(0.50*X{16)}+ +X (20) Cc THIS IS WHAT HAPPENS IF SPECIES 10 RUNS OUT OF NUTRIENTS TF(X (23) .LT.50.18% (160) =21. C C TEIS SECTION IS FOR SPECIES 2, A COOLER NEARSHORE BLOOMER c THIS IS SPECIES 2 GROWTHRATE V223=1.0*XK(2} TFC ((TEMP.GT.15.) AND. (TEMP.LT.20.))AND. (SAL.GT.1./)X%(2)= +(1,.05*K(2}} IF((( (TEMP.ET.15.) .OR.{(TEMP.GT.20.}).OR. (SAL.LE.2.3)3 +X(2}=1. TF(TAMP .LT.2.0);X(2)=21 Cc THESE ARE CONDITIONS OF SPECIES 2 ENCYSTMENT IF (K(23) .LT.560)X%(12)=(0.1*X(2))+xX(22) IF(fTEMP.LT.25.2) .AND. (TEMP.GE.15.0))X(12)=(0.05*X(2)}-xKi212} IP i (TEMPE .GT.17.08)} .AND. (TEMP.LT.18.))XK(22)=(C.05*X(2)3+4X(12) Cc THIS IS WHAT HAPPENS IF SPECIES 2 RUNS OUT OF NUTRIENTS IF (X(23) .LT.50.)X(2) <1

C THIS SECTION IS FOR SPECIES $3, AN OCEANIC FORM c THIS IS SPECIES 9 GROWTHRATE VG23=1.0*X(9) IF((TEMP.GE.18.).AND. (SAL.GT.3.2}))X(9)=1.02*X(9) IF( (TEMP.LT.18.).OR. (SAL.LT.3.2))X(9}=21. Cc THESE ARE THE CONDITIONS OF SPECIES 9 ENCYSTMENT DO 111 T=1,14 Lid IF (MONTH (I) .GE.TDY)X(19)=(0.05*X/9))+X(19) Cc THIS IS WHAT HAPPENS IF SPECIES 9 RUNS OUT OF NUTRIENTS TE(X(23) .LT.50.)X(9)=

C THIS SECTION IS FOR SPECIES 3, AN OCEANIC FORM, ASSOC SPF 4 Cc THIS IS Deen 3 GROWTHRATE V323=1.0*XK (3) TP PEMD. GT.20.) .AND. (SAL.GT.3.0))X(3)=(%(3!+20.) TF(X(4).LE.100.)X (3321. 02*x (4 7) IF (X(4) .GT.100.)X(3}=(X (3) *0. 99) TE CITEMP LE.2€@.) .0OR. (SAL.LE.2.C0)}})X(3)=<+16 IPITAMP.LT.2Z.53EN (3) ='Hi2) /100)} 2 THESE ARE THE CONDITIONS OF SPECIES 3 ENCYSTMENT IPUX (22) LT. 50.)eX (13) =0.2*K(5) -K 15} TPIM(4) GE.LOO.) XK (2b =(4 (2) *O.234%(223 C THEIS TS WHAT HAPPENS IF SPECIES 3 RUNS OUT OF NUTRIENTS TF (X(23) .LT. 50.3 xX (3) 22

C TEIS SECTION IS FOR SPECIES 4, AN OCEANIC FORM c THIS ITS SPECIES 4 GROWTHRATE IF ((TEMP.GT.i8.).AND. (SAL.GT.3.0))X (4) =(X(4) +30.) IF(X (2) .LE.100.)X%(4) =1.02*xX(4} IF(X(3) .GT.100.)X%(4) =X (4) *0.90 IF ( (TEMP .LE.18.}.OR. (SAL.LE.2.0))X(4)=10 IF (TAMP.LT.2.5)X% (4) =(X (4) /10) THESE ARE THE CONDITIONS OF SPECIES 4 ENCYSTMENT

0) IF(X (23) .LT.50.})X(14}=(0.1*X(4) ) +X (14) IF (X(3).GE.100.)X(22)=(X(4)*0.1)+X (22) THIS IS WHAT HAPPENS IF SPECIES 4 RUNS OUT OF NUTRIENTS

(o) IF (X(23).LT.50.)X(4)=1.

THIS SECTION IS FOR SPECIES 8, A MID-DEPTH COSMOPOLITAN FORM OVO

Ty THIS IS SPECIES 8 GROWTHRATE V823=1.0*X (8) IF ( (TEMP.GT.2 S } ONS (SAL.GT.2.06))X(8)=1.02*X(8) IF ( (TEMP .GT.18.).AND. (‘TAMP.LT.2.))X(8&)=1.005*X (8) = ( (TEMPLE LE.) (OR, (SAL.UB.2.0))X(8) <2. THESE ARE THE CONDITIONS OF SPECIES 8 ENCYSTMENT IF(X (23) .LT.50.)X(18) =(0.1*X (8) } +X (18) IF ((TDY.GE.319.) .AND. (TDY.LT.319.3))X(18)=(0.5*X(8))+X(18)

oO THIS IS aed _HAPPENS IF SPECIES 8 RUNS OUT OF NUTKIENTS IF (X(23). -50.)X(8)=2.

0) THIS SECTION IS FOR SPECIES 7, A MIDDEPTH FORM

(70) THIS IS SPECIES 7 GROWTHRATE W723=1.C#X (7) IF (((SAL.GT.1.5) .AND. (TEMP.GT.17.)).AND. (X(8).LT.10.)) +X (7) =3. O1*x (7) IF(X¥(8}.GE.500.j)X(7)=5. IF(({SAL.LE.1.5).OR. (TEMP. LE.17.))X(7)=1. THESE ARE Oe eo vo OF SPECIES 7 ENCYSTMENT (R23). -50.)X% ND tee tao }) +X (17) ((TDY.GE.200.) AND. TDY.LT.200.3))X(17)=(0.1*X(7})+X(27)

c) THIS IS WHAT HAPPENS IF “SPECIES 7 RUNS OUT OF NUTRIENTS IF (X(23) .LT.50.)X(7j 221.

THIS SECTION IS FOR SPECIES 6, A MIDDEPTH FORM

aaa S IS SPECIES 6 GROWTHRATE V623=1.0*X (6) IF({SAL.LT.2.5).OR.(X(8) .GT.100.))X(6}=(.75*X(8)) IF ((SAL.GT.2.5).AND. (X(8) .LT.100.))X(6)=(1.008*X(6})

() THESE ARE THE CONDITIONS OF SPECIES 6 ENCYSTMENT IF (X (23) .LT.50.)X (16) =(0.1*X(6))4+X(16) IF ((TDY.GE.200.) .AND. (TDY.LT.200.3))X(16)=(0.1*X(6})}+X (16)

0) THIS IS WHAT HAPPENS IF SPECIES 6 RUNS OUT OF NUTRIENTS IF (X¥(23).LT.50.)X(6)=1

0) THIS SECTION IS FOR SPECIES 5, A MID DEPTH COOLER FORM

Cv0oyv THIS IS SPECIES GROWTHRATE I word V5Z23=1.0*X (5) LF i (TEMP .ST.15.) .AND.‘(TEMP.LT.16.)) .AND. ((SAL.GT.2.5° .AND ~({SAL.LT.3.0)7;) 0 '5)=2.C1*X(5) IPCOCTEMP.LE.15.).OR. (SAL.LE.1.5))X(5)=10. IPC CTEMP.GE.18.1.0R.(SAL.GE.3.0))X%(5)=1 THESE ARE THE CONDITI NS OF SPECIES 5 ENCYSTMENT TF(X(23} .LT.50.;XK(25.=(0.2*X(5))+e (15) TF ((TDY.GE.300 . AND. (TDY LT.300.3))X(15)=(0.1*¥/5))-H:15) TEIS IS WHAT HAPPENS IF SPECIES 5 RUNS OUT OF NUTRIENTS IP(X(23) .LT.50.)x%(5)=2

(> eyo) ao) ome) (>) EQUALS EQUALS +X(28)4+X(19)4+X(20)+X(21) DIFFERENTIAL eeecececececccececcec\ececececec\ecccececcececceceaceecececececececcac +V82Z5-V925-V1i023 AC(6)=X({(16)/TA AC{il}=X(21)/TA AC(i0)=X AC(7)=X(17) AC(/5)=X(15) AC(4)=X(14)/TA AC(2)=X(13)/TA AC(2}=X(12)/TA AC(i.=X(11) TA=X XD{10) XD(G9)=V923-(2.0*X(9)) XD DIMENSTON =ND RETURN XD(7i=V723-(1.0*X{7) HD ZXD14}; en DIMENSION SUBROUTINE XD XD(5)=V523-(1.0*X(5) XD(2} HD(23)=Z1-Vi23-V2z23-V323-V423-V523-VEZ3-V7IzZF FOLLOWING XD MP T2=T-DT2Z sms, DIMENSION DO DO CALL CALL oo XD XD(20)=0. XD(29})=0. ZXD(17}=C. ZD(i5)=0C. XD XD(18)=0. XD(16)=C. XD(14)=0. XD(13)=0. XD(12)=0C. XD(i21)=0. C{8)=X(18)/TA 21S) Cil2)=X%(22)/TA (8) 63} =T+DT (6) ii} lI) =DT Ll 2 (21) (22) (11)4+X =X(19)/TR =V623- =V623- =V323- =V423-(1.0*X(4) DFOS(X,XD,T,N,D,TA,AC, DFOS(XP,XPD,T2,N,D,TA,AC, =VZ22-{1.0*X =Vi23-(2.0*X11)) =K(I)+MD(I} 21,23 I=1,23 THE TOTAL =V1023-(1.0*¥(10)) } ) /2 =C. =0C. (20) ARE X(23) NP PERCENT (12) AC /TA /TA (2.0*X (1.0*X RES /TA /TA CYSTS EQUATIONS (12) (Z3} (X,XD,T, THE +X (2.0*X(3)) ,XD(23) (13)+X (6) (2) *DT2 (8) OF BASELINE IN ) ) } ) } 1 } SEDIMENT CYST (14) DT,N,D,TA,AC, +X (22) TYPE +X 135 CHANGES TEMP, (15) TEMP, IN 4X(16) SAL) TOTAL TEMP, FOR SAL) +X% ENCYSTMENT (17) SAL) + ih (at X(1)=X(2I}+(XD(1)}4+2*XPD DO XR(I)=X(I)+XQD(I)*DT DO KO(T} CALI CALL 4 3 DFOS(XO,xXOD,7T2,N,D,TA,AC, DPQS =¥ JT=1,23 f=1,22 + (KE, +XPD(T) XRD, TT,N,D,TA,AC, *DT2Z (1) +2*XOD 136 TEMP, TEMP, (1) +XRD(T} SAL) SAL) } (DEPTH= 60.0 METERS) moter X OTAT Wn 109) 'd © SP7 SP8 ‘d Xo TIME, SP1 SP2 SP3 SP4 SP5 mn a ph 1. Sg 1. 1.

0.00 1. 1. 1. PB 0.08 1. 1. 10. 10. 10. 1. 1. O.17 1. 1. 10. 10. 10. HP 1. 1.

ee PPE 0.25 1. 13 10. 10. 1. 1. 10. 1. 1.

0.33 1. 720. 10. i

PRP 0.41 52. 1. 10. 10. PPP 2. 1. PPP 0.50 2961. 1. 10. 10. 4. 1. Q.58 i. 1. 10. 10. 1. 1. 0.66 1. 1. 10. 10. 3. 7.

0.75 1. 3. 10. 10. WwW

N 3. 34.

0.83 1. 159. 10. 10. 1. 1. BARR 0.91 1. 1. 10. 10. 1. 1.

1.00 1. Ll. 10. PREP

10. 1. 1. PRERPPPPPHP

bth OCONRPPRPEH PRPRPUNPEPP

(DEPTH= 70.0 METERS) OQ rary tg SP7 SP8 SP9 mn SP2 SP3 SP4 TIME, SPl i. 1. 1. 0.00 1. 1. 1. 0.08 1. 1. 10. 10. 1. 1. PRP 1. 10. 10. 0.17 1. 1. 1. 0.25 1. 13. 10. 10. 1. 1. PRP 720. 10. 10. 0.33 1. 2. 1. 0.41 52. 1. 10. 10. 4. 1. PRP 10. 10. 0.50 2961. 1. 1. 1. 1. 10. 0.58 1. 3. 7. 0.66 1. 1. 10. 10. WW 10. 10. 3. 34. PIP 0.75 1. 3. 1. 1. 159. 10. 10. 0.83 1. 1. 1. 0.91 1. 1. 10. 10. PPP

1. 1. PRPRPPPRPHPHERPRRE OCONFRPPHPRE OCONFRPPHPRE 1.00 1. 1. 10. 10. PR

(DEPTH= 80.0 METERS) SP7 SP8 SP9 SP10 OV n

TIME, SP1l SP2 SP3 mn ‘9 ‘9 SY SY 1. .00 1. 1. 1. 1. 12. .08 1127. 2. 5. 135. -17 1609. 3. 27.

1560. h Wh owjymbr .25 1819. 3. 138. .33 96. 1. 1.

188. 1. 1. eP PRPRPPEHE PRPRPPEHE 41 RPRPPPRP .50 276. 1. 1.

.58 63. 1. 1. RPNPER 223. 1. 1.

66 PREP

PPP PPP PREP PREP 63. 1. 1. RPP .75 P 170. 1. 1.

. 83 PPPRPPRPRPERP

91 1. 1. i. MPRPP MPRPP

1. 1. PEP

PRPPPRPHHPPPWANE PRPPPRPHHPPPWANE PPPRP PPPRP BPE BPE 63.

.00 PREP FPoOoOOaOaaoOooCoCceooa0o0°o FPoOoOOaOaaoOooCoCceooa0o0°o

137 (DEPTH= 60.0 METERS) “hoDSce Y OUTPUT Oo Mm a8] H TIME, SPl SP2 SP3 SP4 SP5 SP6 SP7 SP8 — ‘J \o .00 1. 1. 1. 1. 1. 1. 1. 1.

.08 1. 57. 10. 10. 1. 2. 1. 1. PP .17 1. 3265. 10. 10. 1. 4. 1. i. Pp

£25 1. 1. 1. 1. 1. 1. 1. 1. HPP 13. 1. 10. 10. 1. 1. 2. 1. 720. 1. 10. 10. 1. 5. 5. 7. Pee

000000 1 1. 10. 10. 1. 2. 2. 4. 1 1. 114. REP

141. 1. 1. 1. 1. PPP

90900 1. 1. 1. 1. 1. 1. i. 1.

PRP 1. 1. 96. 127. 1. 1. 1. 1. 1 9. 10. 10. 1. 1. 2. 2. 1 488. 10. 10. 2. 1. 4. 1.

HPREMPP

POOOCO 1 29. 10. 10. 1. 2.

1. 1. PEEP

(DEPTH= 70.0 METERS) TIME, SP1 SP2 SP3 SP4 SP5 S 6 SP7 SP8 SP9 SP1 1. 1. 1. tg 1. 1. 0

. 08 Ll. 57. 10. 10. 1. 1. 1. RPO eR

0o0 17 1. 3265. 10. 10. 1. 1. 1. ANE ANE co

1. 1. PHP

1. 1. 1. RPP .33 13. 10. 10. 1. 2. 1. 41 720. 10. 10. 1. 5. 7. PRP

50 1. 10. 10. 1. 2. 4. RP ooo

58 114. 141. 1. Ll. 1. PARTIR -66 1. 1.

PP ee 1. RP -75 96. 127. 1. 1. 1. .83 2. 2.

ee 10. 10. 1. 4. i. H> 10. 2.

00 1. 1. PRPRPP PPENPP

rPomogdgoeo .00 PREP NS) \Q 10. 10. 1. NEPRPRPRPPNUPEP

(DEPTH= 80.0 METERS) 6 SP7 SP8 SP9 SP10 TIME, SP1 SP2 SP3 SP4 SP5 Ss 9 1. 1. 1. 1. fo fo 00 1.

.08 1127. 270. i. 2. 5. 12. mt

.17 1609. 270. 1. 3. 27. 135. Pp Pp ke 1819. 270. 1. 10 3. 138. 1560. Wh ow

25 PPP .33 1. 1. 1. 133. 154. 1. 1. 1.

-41 Pee

1. 1. PRB

1. EPPPWPNE

.50 PPP 1. 1. -58 RPP 114. 141. 1. .66 32. 1. 1. 1.

1. 1. PHP

96. 127. 1. PPP PPP PPP .75 PP . 83 1. 1. 1.

-91 114. 141. 1. 1.. 1. PRP PRP

1. 1. PRPPPRPRPRPEH

l. 32. 1. PPE

PREP PREP

. 00 PREP rPooomnoocooooo0o0o rPooomnoocooooo0o0o

138 oa Woy 4 i) cy Cy ) AAAMAMNAYD WRITE TA=TOTAL BEGINNING DT SET TOUT IOUTR +#i.,1.,21.,2.,2.,2.,1.,1.,1.,1.,500. +SPi2') IS WRITE A WRITE WRITE N=4 X1i-2z x23 AC D=(D WRITE WRIT DY=.061 T=0. SAL=2. TEMP=19. D=05 DATA DATA OPEN OPEN REAL DIMENST x1-X10 BY TMAX=4C. TA=1 COMMON DINOFLAGELLATE AC AC AC AC(2 AC{ AC Be FORMA FORMAT WRITE CONTINUE FORMAT 5 Be! TOUT=IOUTR+2 IOUTR=2000 INITIAL IMPLICIT Rot IF LOC t] ae IS ( { f

Hed (6) DEGREES DINOPLASELLATE IS 0.001 (IOUT {4} y fENSION var ¢. COLUMN 3 ; Oke 10 © J THE O}=C. ’ ’ \ \ meee (6, (6,1) (7,1) AC X M41,M42,M43 THE CYSTS (€,FILE=‘' Wim (7,FILE='C:OUT.DAT’ — I It Ntil lt It (’ OF PEYTOPLANKTON C. | 0

DOO d ~NN aooonoc oO t oO TDY ON .L ~s /1.,1.,1.,1.,21.,1.,1.,1. YEAR COUNTER CONDITIONS — Soha /1.,1.,1.,1.,1. NUMBER REAL T.LOUTR) TIME, CYSTS SPECIES CAWLEY, CALCULATION

é tH yee AC X(23),XD(23) WARMER dtyqg too: HEADINGS IN urs = tr (12) CON’) SEDIMENT (Ly) MO TO O THE FOR OF SP1 GO ECOSYST 19596 1-10 DEPTH SEDIMENT ITERATIONS TO SP2 POTENTIAL Z LOOP 2 FL... ) EM CHANGE OUTPUT SP3 DYNAMICS SP4 139 dj PER (NUTRIENT) AND INTERVAL P S6 SP7 SP6 SP5 heyhey OUTPUT CYSTS MODEL dey (VERSION hed SP& SPOS WITE SP10 FRONT) SPit TAtIe3r ave T=O z LOUT=lLOUT+1 C CHECK FOR END OF SIMULATION IF(T.GE.TMAX} GO To 95 CALL RKS(X,XD,T,DT,N,D,TA,AC, TEMP, SAL) T=T-+DT GO TO 3 ag STOP BND eee eee eeemceeeeeeeees* C$COCOCCOCCECOCO CONC SCOOT COC CCE CS UBROUTINE DFOS(X,XD,T,N,D,TA,AC,TEMP, SAL) SMELT OTT REAL (i,™) DIMENSION XD(22),X%(23) DIMENSION MONTH (14),S (14) DIMENSION AC(lL COMMON TDY

THIS SUBROUTINE CONTAINS THE DIFFERENTIAL EQUATIONS

STATEMENTS BEL ow ARE USED TO FLUCTUATE TIME FOR SEASONS Oaaaga TWY=T-AINT(T

c.) 4 J a iS TIME WITS iIN YEAR IN DAYS TDY=TWY*365. CC TR IS TWyY IN RADIANS TR= (TWY) *6.28326 C MONTH iS THE MIDDLE DAY OF EACH MONTH DATA MONTH/0.,15.,46.,74.,105.,136.,166.,196., +227.,258.,288.,319.,349.,365./

C STATEMENTS BELOW VARY TEMP AS A SEASONAL SINE FUNCTION Cc AMT IS THE ANNUAL MEAN WATER TEMPERATURE TF(D.LT.25.)AMT=1 IF((D.GE.25) .AND. (D.LT.75)) AMT=18 IF (D.GE.75.;AMT=25. c ip IS THE AMPLITUDE OF THE TEMPERTATURE CURVE IF(D.LE.25.) TAMP=10.0 TF t(D. GT.25.). AND. (D.LE.50.)) TAMP=7.0 IF ((D.GT.50.).AND. (D.LE.75.)) TAMP=6.0 IF (D.GT.75.)} TAMP=4.0 L TPS IS THE PHASE SHIFT OF TEMP CURVE IN RADIANS TPS=1.75585 TEMP=AMT+SIN (TR-TPS)* TAMP FLAG=1 - IF (TEMP.LT.18.)FLAG=0.

C STATEMENTS BELOW VARY SALINITY THROUGH T IME DATA S$/1.2,1.1,1.1,0.8,0.6,0.8,0.8,2.1, +1.4,1.4,1.0,0.8,1.1,1.2 DO idi I=1,14 2o2 IF (MONTE (I} .GT.TDY) GOTO 102 Loe EFAs (TDY-MONTH(1-1)! / (MONTE (2) -MONTH (2-2 HMC=S /I)-S(1-1) SAL=(HFA*HMC) +S(I-1: TFID.LT.15.)SAL=(SAL¥*2.4; TF ((D.GE.15.) AND. (D.LE.25.))SAL=(SAL*1.8) TP ((D.GT.25.)AND. (D.LE.75.))SAL=(SAL*¥2.C) "FID. GT.75.)SAL=2.4 - INPUTS, Z IS DEPENDANT ON DEPTH IN METERS Zisiss. TP (D.GT.75.)21=106. IF(‘D.LE.75.).AND. (D.GT.25.))2Z3=300. IF(D.LE.25.)Z1=750.

-) THIS SECTION IS FOR SPECIES 1, A NEARSHORE ' BLOOMER’ TEZIS IS SPECIES i GROWTHRATE:

oy VIZ3=1.0*X (23 TE. (TAMP.LT.4.:.0OR. (SAL.GE.2.5))X(i)=1. TE EME GE 20.) AND. (Sa GT ,}X(L)=f2. 08" 61) } IF‘ (TEMP.LLT.1 -AND. (X(1}).GE.10.)) X(2)=(0.95*X(2); THESE ARE CONDITIONS OF SPECIES i ENCYSTMENT: IP(X(Z2) .LT.SO.)X (1a) =(6.2*X (1) )4X(21)3 IF | (TEMP.LT.23.02).AND. (TEMP.GT.23.))X%(11}={{0.1*X(i)°-X (il) THIS IS WHAT HAPPENS IF SPECIES 1 RUNS OUT OF NUTRIENTS ITF(M (23) .LT.50.3X(2) 21.

THIS SECTION IS FOR SPECIES 10, AN OCEANIC FORM

moog THIS IS SPECIES 10 GROWTHRATE VilOZ3=1.0*X (i 0}. IF ( (TEMP. LT 8.) .OR. (SAL.GT.2.0})})X(10)=(1.02*X(10); IF) ‘¢TEMP.LT.18. y OR. (SAL. LT.2.0})}X(i0)}22. THESE ARE CONDITIONS OF SPECIES 10 ENCYSTMENT IF ((TEMP.LT.18.02) .AND. (PFLAG.EC.1.)}X(20)=(C.50*X(10): ~X (20)

a) THIS IS WHAT HAPPENS IF SPECIES 10 RUNS OUT OF NUTRIENTS IF (% (23) .LT.50.)X(10)=

THIS SECTION IS FOR SPECIES 2, 2B COOLER NEARSHORE BLOOMER

on THIS IS SPECIES 2 GROWTHRATE V223=1.0*X(2) IF ( ((TEMP.GT.15.).AND. (TEMP.LT.20.)). AND. (SAL.GT.1.};XK(i2j= +{1.05*X(2)) IF (i ((TEMP.LT.15.).OR. (TEMP.GT.20.)).OR. (SAL.LE.1.3):3 +X(2)e1. TF (TAMP.LT.2.0)X(2)= THESE ARE CONDITIONS oF SPECIES 2 ENCYSTMENT IF (X¥ (23) .LT.50)K(12)=(0.1*X(2))4xX(12) TE LTEME GE ay OB) AND. CRD ea eto cte bee lay toe tae) IF ((TEMP.GT.17.08).AND. (TEMP. LT.18.))X(212)=(0.05*X%(2)'4+X%(12)

co THIS IS WHAT HAPPENS IF SPECIES 2 RUNS OUT OF NUTRIENTS IF (X¥(23) .LT.50.)X(2)=1.

THIS SECTION IS FOR SPECIES $, AN OCEANIC FORM

myn THIS IS SPECIES 9 GROWTHRATE V9Z3=1.0*X(9) TP ( (TEMP.GE.18.) AND. (SAL.GT.3.2)})X(9) =1.03*K (9) IF ((TEMP.LT.18.) .OR. (SAL.LT.3.2))X(9)}=2

O) O) THESE ARE THE cONDET TONS OF SPECIES 9 ENCYSTMENT DO 211 I=1,14 i IF (MONTH (I) .GE.TDY) X(19)=(0.05*X(9)}4+X(139)

TEIS IS WHAT HAPPENS IF SPECIES & RUNS OUT OF NUTRIENTS ry ry TRUM ‘233 .LT.50.:K% (S321

ovo) THIS SECTION IS FOR SPECIES 3, AN OCEANIC FORM, Z32S0C SE <¢

Cy TETS IS SPECIES 3 GROWTHRATE V32Z2=1.0*H13) TE (OTRMPE GT.20.}) .AND. (SAL.GT.3.0)}¥(31=(¥i3°-20.; TE (R(4}) .UE.100.)X¥(3) =(2.02*K (4) )} TRON (4) .GT.100.)¥%(3) =(X (35 *0.99) IF ( (TEMP .LE.18.).OR. (SAL.LE.3.0))*(3)=10 TP (TAMP.LT.2.5)%(3)=(X(3)/200)3 THESE ARE THE CONDITIONS OF SPECIES 32 ENCYSTMENT

©) IF (IX (23) .LT.50.°R (13) =0.2*K(3)4+% (23) TP(M(4) .GEL1LOO.}XK ( Qi) = (KX (33 *o. 21421) TELS IS WHAT HAPPENS IF SPECIES 3 RUNS OUT OF NUTRIENTS

O GF (X(23) .LT.5c0.7°X (3) 42

THIS SECTION IS FOR CIES 4, AN OCEANIC FORM THIS IS SPECIES ¢ T

(y03 V42351.0*X% (4) SAL.GT.3.0))X(4)=(X%(4) +30.)

IF((TEMP.CT.15 e Gj ZPCX(3) .LE.LO¢c =1) O2*X (4) IP CR (3) .GT.10C ) =X (4; *0. - ~~ If. (TEMP .LE.L& LE. 3. ;)%(4)=10. TF CTAMP.LT.2.5 ~-- THESE ARE THE CON s “OF SPECIES 4 ENCYSTMENT

C) tJ TFiX (23) .LT.50 ) =(0.1*X(4)}+X(14) ZP(R{3; .GE.106 )= (X(4)*C.1j) +X (22)

i) SPECIES 4 RUNS OUT OF NUTRIENTS

THIS iS WHAT HAP? A

IF (X(23) .L7.5 "2 op ~

mtraeIS SECTION IS FOR SPECIES 8, A MID-DEPTH COSMOPOLITAN FORM

mon THIS IS SPECIES & GROWTHRATE VE535=2.0*X (8) \

Rd TEMP.GT.LE. .AND. (SAL.GT.2.0) 2*X (8)

‘ bd wif. (TEMP .GT.1E ) .AND. (TAMP .LT.2.) OO O5*xX (8)

Ra ( (TEMP @ .LE.is JOR. (SAL.LE.2.0C)}

tJ Wy ED

4 4 ty ty By By Cor 7h 7h NDITIONS OF SPECIES .5O.)R to Wtf X(18)=(0.1*x%(8}) eT

s

aes aes 3B. 315.) -AND. (TDY.LT. See oe a enone 7) r4 Sd qo HAPPENS IF SPECIES 8 RUNS OUT OF NUTRIENT

FAD .5C.) )X(8)=1

W W tc

b b 38. 38.

TEIS SECTION IS FOR SPECIES 7, A MIDDEPTH FORM

org) TEIS IS SPECIES 7 GROWTHRATE V723=1.0*X (7) if i ((SAL.GT.2.5) .AND. (TEMP.GT.17.))AND. (X(8) .LT.10.}) -“X(7})=1.01*K(7)} IF(X(8} .GE.S50C.)X(7)=5. IF ( (SAL.LE.1.5).OR. (TEMP.LE.17.))X(7)=s1.

) THESE ARE CONDITIONS OF SPECIES 7 ENCYSTMENT IF (X(23) .LT.560.)X(17)=(0.1*X(7))+X (17) IF((TDY.GE.200.)} .AND. (TDY.LT.200.3))X(17)=(0.2*%(7))4+X(17

0) THIS IS WHAT HAPPENS IF SPECIES 7 RUNS OUT OF NUTRIENTS IF (A(23) .LT.5C0.)N(7)=1.

THIS SECTION IS FOR SPECIES 6, A MIDDEPTH FORM

paQ THIS IS SPECIES § GROWTHRATE V6Z235=1.0*X(6) DF. (SAL.LT.2.5° .OR. (X(8) .GT.100. iereteatereeres IF. .SAL.GT.2.5 .AND.(X(6) .LT.1 Des KlSr;=(1. OOB*R IE THESES ARE THE rete OF SPECIES 6 ENCYSTMENT 2F E(23; .L7.50. oe p= lO. eee as oF. TDY.GE.2CC. "AND. [TDY. T.Z0G.3;,)E(16)=(0.1*e6) jf +R °1E

() TRIS If WHAT HRD PENS iF SPECIES € RUNS OUT OF NUTRIENTS DP R123; .LT.8°0.32% 46) =2

THIS SECTION IS FOR SPECIES 5, A MID DEYTH COOLER FORM

60) THIS IE SPECIES 5 GROWTHRATE

C2 VS2Ssl.0*XK(5!

142 TF (((TEMP.GT.15.) .AND. (‘TEMP.LT.18.)). AND. ((SAL.GT.1.5) .AND +{SBRU.LT.3.0)))%(5) =2.01*X (5) TFL (TEMP.LE.15.).0R. (SAL.LE.1.5))X(5)<=10. TE ((TEMP.GE.28.).0R. (SAL.GE.3.G)})X(5)=1 Cc THESE ARE THE CONDITIONS OF SPECIES 5 ENCYSTMENT TP(X (23) .LT. 50.3% (15) =/0.1*X% (5) } 4X (15) TE ((TDY.GE.300.) .AND. (TDY.LT.300.3))X(25)=(0.1*X{(5))+xX% (25) c THIS IS WHAT HAPPENS IF SPECIES 5 RUNS OUT OF NUTRIENTS TF(X(23) .LT.50.)xX(S5)e21.

Cc DIFFERENTIAL EQUATIONS XP (23) =Z1-Vi23-V223-V323-V4232-V523-V623-V723- +V823-V923-V1023 (Di) =VL23- (1.0*X(1)) XD (2) =V223-(1.0*X(2)) XD (2) =V323- (1.0*X(3))} (b(4)=V4235- (1.60*X(4)) XD (5) =V523-(1.0*X(5}) XD (6) =V623-(2.0*X (6) ) XD(7) =V723- (1.0*X(7)} XD (8} =V823-(1.0*X(@)) XD (9) =V923-(1.0*X(9)) MD(i0)=VioZ23-(1.0*xK(10))} A C THE FOLLOWING ARE THE BASELINE CHANGES FOR ENCYSTMENT XD(L1l}=0. XD(12)=0. XD(i3}=C. XD(1i4)=0. XD(1i5)=0. XD(16}=0. XD(17)=0. XD(18}=0. XD(19)=0. XD(20})=C. ro(22) 20. XD(Z2)=0. Cc Cc TA EQUALS TOTAL CYSTS IN SEDIMENT TA=X (11)4+X (12) +X (13) +X (14) 4+X(15)4+%(16)4+xX(17) + +X (18) +X (19) 4X (20) 4K (21) +X (22) - C AC EQUALS THE PERCENT OF CYST TYPE IN TOTAL AC(i)=X(11)/TA AC(2Z2)=X(12)/TA AC(3)=X(13)/TA AC(4)=X(14)/TA AC(5)=X(15)/TA AC(6)=K(16)/TA AC(7)=X (17) /TA AT (8) =¥/18)/TA AC(S)=X (19) /TA BOLLS)=K (20) /TA AC(il)=XK(21)/TA AC{iZ}=XK (22) /TA RETURN END COCO COC COC COC OC OC CO COCO CECE COC OCO COC COC OCOCOCOOO COC COCO COCO COCO COCO COLL SUBROUTINE RES (X,XD,T,DT,N,D,TA,AC, TEMP, SAL) DIMENSION X(22) ,XD(23). 143 DIMENSION DIMENSION DT2=DT/z Tz=T+DTzZ TT=T+DOT CALL DFOS ~e “ “ DO i ITe=1, 22 MPT) =K(I }+XD (I) *0T2 CALI DFOS XP,XPD,T2Z,N,0D,TA,AC,TEMP, SAL) aA 4 OTL

~ < a4 ODE ODE 3 ~~ ¢

}

-

4+ fi) bi 'd a]

pe

§

~)

i

0)

t CP ty ty es WM ~ TA, AC, TEMP,SAL)

ps u FAD eH a} Vv

ta) rs + ob dd ' Ri --

Hi tA tA

O iy “ —-+

1) tu A bt ay ro RD,TT,N,CD,TA,AC,TEMP, SAL) OD ~ bet

UD) oben

il \ 4rei fh + tH XD(I}+2*XPD(I) +2*XQOD(1I)+XRD(I)) *{DT/6 og

mee

a — f

144 mors.& OVTAUT TIME, SP1 SP2 SP3 SP4 SP5 SP6 SP7 SP8 SP9 SP10 SPil SP12 TIME (DEPTH= 5. 0) 4 0.00 1.00 1.00 1. 00 1. 00 ae 0060 1.00 1.00 1.00 1.00 1.00 00 1. 00 TIME (DEPTH= 10. 0) 2.00 0.90 0.00 0. O1 0. 01 QO. 00 QO. 00 QO. 00 QO. 00 QO. 08 QO. 00 .O6 0. 00 TIME (DEPTH= 15. 0) 4.00 0.89 0.00 OQ. 01 -O1 .00 .00 .00 QO. 00 0. Q9 QO. 00 .00 0. 00 TIME (DEPTH= 20. 0) 6.00 0.89 0.00 Q. o1 -O1 . 00 .00 . 00 .00 09 .00 .00 Q. 00 TIME (DEPTH= 25. 0) 8.00 0.89 0.00 0. O1 .O1 00 .00 .00 .00 .09 00 .00 0. 00 TIME (DEPTH= 30. 0) 10.00 0.87 0.01 Q. O1 .O1 -00 00 00 00 10 00 .00 QO. 00 TIME (DEPTH= 35 .0) 12.00 0.85 0.01 0. .O1 .00 .00 00 00 -10 00 .00 0. 00 TIME (DEPTH= 40. 14.00 0.84 0.02 0. -O1 00 .00 00 00 -i1 .00 .00 0. 00 TIME (DEPTH= 45. 16.00 0.83 0.02 0. .O1 00 .00 .00 .00 .12 . 00 .00 0. 00 TIME (DEPTH= 50. 18.00 0.82 0.02 Q. -O1 .00 .90 .00 -00 -12 00 .00 QO. 00 TIME (DEPTH= 55. 20.00 0.81 0.03 QO. -O1 .00 00 .00 .00 -13 -00 -00 0. 00 TIME (DEPTH= 60. 22.00 0.79 0.04 0. -O1 -00 00 .00 . 00 .13 -O1 -00 0. 00 TIME (DEPTH= 65. 24.00 0.78 0.05 Q. -O1 .00 .00 .00 .00 14 .O1 .00 0. 00 TIME (DEPTH= 70. 26.00 0.77 0.05 QO. .O1 .00 .00 00 00 14 .O1 .00 0. 00 TIME (DEPTH= 75. 28.00 0.77 0.06 QO. -O1 .00 .00 .00 .00 .14 -O1 .00 OQ. 00 TIME (DEPTH= 80. 30.00 0.61 0.04 QO. .08 -00 .00 .00 00 .12 00 .06 OQ. Ol TIME (DEPTH= 85. 31.99 0.52 0.04 Q. 13 00 .00 .00 .00 il .00 .09 Q. Ol TIME (DEPTH= 90. 33.99 0.45 0.03 OQ. .17 .00 .00 .00 .00 .10 .00 .12 0. Ol TIME (DEPTH= 95. 35.99 0.40 0.03 Q. .20 00 00 00 .00 .10 00 -13 0. Ol TIME (DEPTH=100. 37.99 0.36 0.03 0. .22 00 .00 00 .00 .09 00 -15 0. O21 TIME (DEPTH=105. 39.99 0.32 0.03 0. 24 .00 00 .00 .00 .09 00 -16 0. O1

145 APPENDIX C:

PLANTS 77 FORTRAN CLUSTER ANALYSIS PROGRAM

146 DEBUG SUBCHK C DEBUG TRACE C AT 4839 C TRACE ON C AT 12345 C TRACE OFF END DEBUG (LE A a 2 ae He ee ie he ie a he fe 2c 2c fc ae a 2k a a ee oe a iC RC 2 2 ee 2 ie 2 2 ee ee ie ie 2 i a he ae a se ae a ie ie AC 2 2 HH He kOe he 2 2 * PROGRAM PLANTS2 : PERFORMS CLUSTER ANALYSIS OF INPUT DATA. *O WRITTEN BY PLANTS, REVISED BY ARNIE MILLER & TOM ROUNDS * MODIFIED BY BRET BENNINGTON * FILEDEFS: 04= INPUT OF PLOTTING AND CONTROL PARAMETERS * Q5= INPUT OF DATA SET 06= OUTPUT OF TEXT OF RESULTS * Q7= OUTPUT OF DATA SET (+/- INVERS. OR TRANSF.) —* 10= OUTPUT OF PLOTTING INSTRUCTIONS * INNANNANANNADA % C THE INPUT DATA WILL USUALLY BE IN THE FOLLOWING FORM: * * N ROWS : FOR SAMPLES(D,J=1,N_SAMPLES * BY M COLUMNS : FOR SPECIES(J),J=1,M_SPECIES *

CARRAAAD A a aa Rai i a aI ICSI a I a BOI GI i ak aca acai ak ai i ak i ak ak af ak ak ak ak a ak ak fe kak ae i ak ae ke i

* C CONTROL CARD PARAMETER: ITEST (USED TO SPECIFY Q OR R MODE)

C ITEST = +1 : NO INVERSION OF DATA MATRIX (Q-MODE) * C ITEST = -1 : INVERSION OF DATA MATRIX (R-MODE) * C ITEST = 00 : ENDS RUN OF PROGRAM (THIS MUST BE ON THE VERY LAST

Cc CARD FOR THE PROGRAM TO END SUCESSFULLY} * Cc ALSO MAY BE USED TO CONVERT/INVERT DATA W/O CALCULATING* C SIMILARITY COEFFICIENTS & W/O PLOTTING IF USED WITH * Cc NCOEFF- 1 Cc * C SIM. COEFF. CODE: MCOEFF * C MCOEFF = 01 : NO TRANS. + JACCARD COEFF. (P/A) * MCOEFF = 02 : NO TRANS. + CZEK. (DICE) COEFF. * MCOEFF = 03 : PERCENT TRANS. + CZEK. COEFF. * MCOEFF = 04 : PERCENT MAX. TRANS. + CZEK. COEFF. * MCOEFF = 05 : LOG10 TRANS. + CZEK. COEFF. - * MCOEFF = 06 : NO TRANS. + HOMOGEN. FUNCTION * MCOEFF = 07 : PERCENT TRANS. + HOMOGEN, FUNCTION * MCOEFF = 08 : PERCENT MAX. TRANS. + HOMOGEN, FUNCTION * MCOEFF = 09 : LOG10 TRANS. + HOMOGEN. FUNCTION * MCOEFF = 10: D'BLE TRANS. IF INVERSION ELSE PERCENT TRANS.. ICE * D'BLE TRANS = PERCENT TRANS. FOLLOWED BY PERCENT * ADANAANANANIANON

147 Cc TRANS. AFTER INVERSION. * C MCOEFF = 11 : PERCENT TRANS + FREEMAN-TUKEY TRANS. + CZEK. COEFF. * C MCOEFF = 12 : PERCENT TRANS. + CHORD DISTANCE COEFF. (CRD) * C * C NEW SIM. COEFF CODE : NCOEFF * C NCOEFF = -1 :TERMINATES RUN AFTER DATA TRANSFORMATION AND/OR

Cc INVERSION WITHOUT CALCULATING SIMILARITY COEFFICIENTS * C AND WITHOUT PRODUCING A DENDROGRAM IF USED WITH * Cc ITEST 00 * C NCOEFF = 01 TO 09 : SAME AS MCOEFF *

INTEGER TITLE(20),FORMT(20),CSIM(7),LABEL(12), BLANK INTEGER M,N ITEST,MCOEFF,NCOEFF, VALI,VAL2,D,1,J,K,MT.NX,

*NPASS IM1L.LVROW,LVCOL,NBROW,NBCOL,NXM1,JADJ,NROWS,NUM,KOLT KOLF. *NROWT,IX,IXM1,NUMX,IC,NM1,NPI IBOOK.INDEX 1 .INDEX2.NP.IPASS REAL PERC.PMAX,PQ.PNO.V.W, VALMIN VALMAX,SMAX,COMBO,HEIGHT.LENGTH

*X.Y.YSCALE,CHARHT,XNUM,XSYM, YPOS,CONST REAL MULTTOT. SQTOTISQTOTK,CCOS,CRD INTEGER ROWCD(200, 12), TEMCD(200, 12), NUMBR(200) INTEGER COLCD(200,12) REAL DATA(200,200),OUT(200,3),SIMCO(200,200),BOOK(200.200), *SUM(200),T(200),PLOCX(200).PLOCY(200), TMP(200,200) EQUIVALENCE (SIMCO,BOOK) DATA BLANK.IPASS/Q),0/ 4839 CALL PLOTS(0.0,50) (078 9 ie ee Ae a a 2 2 ie a 2 ie A ae 2 ae fe 2s ake ae ake ak ake 3k 2k 2k ae ae ae fe ake ak ae ae 2 a ak ai 2 2 2c ee Fe 2h 2k 9k 2 ie i ic a 2a 2 2 ai 2 * C READ IN TITLE HEADING (UP TO 80 CHARACTERS) 4840 READ (5,100) TITLE WRITE (6,100) TITLE 100 FORMAT(20A4) (RE A a 2 ie a a a a a ee a 2 2 fe ee 2 ake ac 2 i a iC 2k 2 ae ae ae ak ak fe a ai ok iC FC RI 2k ICC a 24 2 i 9k ac ae a ak 2 2 ae ake aie ae

* C READ IN EXECUTION-TIME FORMAT FOR INPUT DATA 4841 READ (5,100) FORMT WRITE (6,100) FORMT (CR 2 2 ate ake 2k ae aie ae aie 2 ee ace 2 a 2k 2 2k 2c ee a ak aie 2 a ak ake a ae ate oh 2 a ai ak ak ae abe ai akc ake ake ic ake 2 2 oc oe ae a 2 2c a8 2k 2c oe ak ake 2k 2 2c a ee * 5 READ IN N (#HROWS/SAMPLES) & M (#COLS/SPECIES) AND FIND MAX. OF N RM 4842 READ (5.101) NM WRITE(6.101) NM 101 FORMAT(3.2%.13) D=N IF(M.GT.N) D=M

*

148 C DIMENSIONALIZE ARRAYS C FIND OUT HOW TO DIMENSIONALIZE ARRAYS AT EXECUTION TIME IF POSSIBLE. CABS O SCI SIOI ICI I SIGGI ESO IRIS ISI IGG ISK ar Ka A I AI ICI ICI ICR ICR AI ICRA CC I

C INITIALIZE COLUMN AND ROW CODE ARRAYS DO 1234 J=1,M DO 5678 K=1,12 COLCD.K)=BLANK 5678 CONTINUE 1234 CONTINUE DO 8765 I=1,N DO 4321 K=1,12 ROWCD(.K)=BLANK 4321 CONTINUE 8765 CONTINUE (Lo Re 2 a he ee 2h ici 9 i a a ae a a 2k ake 2k ae a a 2 ae oie akc 2 a 2k ae ae ae 2k ae fe ak ake 5 8 ic he fe 2 2 2 2k i ie 2 2 2 2k 2s 2c ae 3k ok

* C READ IN COLUMN CODES (12-A4 FIELDS EACH) FOR SPECIES, 1 TO A CARD. 23. DO3J=1.M 24 READ (5,100) (COLCD(.K),K=1,12) 3. CONTINUE

* C READ IN ROW CODES (TWO 4-CHAR. FIELDS EACH) (USUALLY SAMPLES) C AND THE DATA MATRIX (N-ROWS BY M-COLUMNS) 25 DO4I=1,N 26 READ (5,100) (ROWCD(,K).K=1,12) 27 READ (5,FORMT) (DATA(LJ),J=1,M) C READ (5,FORMT) (ROWCD(LK),K=1,2),(DATA(LJ)J=1,M) 4 CONTINUE 12345 CONTINUE (Ce I II aE AC A ICR EI RCI ICI AR ak aC IC 2k CE 2 C2 2 Co AR RCA A a ak A IC OR OK a ak a a a af a af a a a a aK

C READ IN HEIGHT AND LENGTH OF DENDROGRAM PLOT IN INCHES, ALONG WITH C THE VALUE OF "NEWPEN"”, THE PLOT LINE THICKNESS (1-NARROW TO 5- WIDE). C THEN CHECK FOR ILLEGAL VALUES AND SET TO MAXIMUM IF FOUND. READ (4,104) HEIGHT,LENGTH,NP 104. FORMAT(F4.1,1X,F4.1,)X,11) IF(HEIGHT.GT.34.0) HEIGHT=34.0 CARO GCG oii i a aC IS IC IC aI I I KC a ICI IC I a Ca i aE A CE CC I CR a OR a

C READ IN CONTROL CARD PARAMETER (ITEST), AND SIM. COEFF. CODE (MCOEFF) READ (4,102) ITEST. MCOEFF.CONST 102. FORMAT(2,1X.12.1X.F7.3)}

C TEST FOR ILLEGAL MCOEFF VALUE TF(MCOEFF.GE.1.0R.MCOEFF.LE.12) GO TO 835 WRITE(6.105) MCOEFF 105 FORMATCSIM COEFF. VALUE OF '/J2,' IS ILLEGAL.’)

149 GO TO 999 (8 2 2 ee He ee 2k he ee 2h 28 2k ke ee ee he ie Ae Ck i a 2k ae 2k ee ke 2 Re oe ak 2 ee 2 ae te fe ae 2 Cae Ae aR 2a Oe 2

* C TEST FOR TRANSFORMATION TYPE (IF ANY) 835 IF(MCOEFF.EQ.1.OR.MCOEFF.EQ.2.0R.MCOEFF.EQ.6) GO TO 825 IF(MCOEFF.EQ.4.OR.MCOEFF.EQ.8) GO TO 1226 IF(MCOEFF.EQ.5.OR.MCOEFF.EQ.9) GO TO 1227 IF(MCOEFF.EQ.11) GO TO 1228 (LE A a 2 ee a ake i 2 a IC A 2 ae 4 2 AE 2k ee 28 a ake 2k a a 2k 2 256 21 ae a 2c 2 a a ae 2k ee 2A 2 2 2 6 2 he 2c oe ae akc 2k ae ak

* C CONVERTS RAW DATA TO PERCENTAGES : (MCOEFF=03,07,10,12) 1225 PERC=0. DO 89 I=1,N DO 87 J=1,M PERC=PERC+DATA(LJ) 87 CONTINUE DO 88 K=1,M DATA(,K)=(100*DATA(,K)/PERC) 88 CONTINUE PERC=0. 89 CONTINUE GO TO 825 (78 A i a 2 he a 2k 2 2 2 2 ak IC IC A 9c 2c 2 oe ake ak a 9k 2 ke 2 ic akc aie ae ake ake ae a a ak aR 2k aC 2 2k 24 96 ai RC iC 2 he a a 2 ha ae ai 2 a 9 2 2

C PERFORM ARCSIN FREEMAN TUKEY TRANSFORMATION (MCOEFF=11) 1228 DO 404 J=1,N MULTTOT=0.0 DO 408 J=1,M MULTTOT=MULTTOT+DATAG,J) 408 CONTINUE DO 414 J=1,M DATA(J)=.5*(ASINGQRT(DATA(LD/(MULTTOT+1)))+ S ASIN(SQRT((DATA(LJ)+1 /((MULTTOT+1)))) 414 CONTINUE 404. CONTINUE IF (IPASS.GT.0) GO TO 830 420 GOTO 825 (C3 AI RR I I I a ICA a IC A IC ICI a RCA OR CR OR OR RR NCA Ok 2 2k 2 RCO 24 2k I AR IC 2K ICR Ea 2k a a 2k ak a ok 2k

C COMPUTES A PERCENT MAXIMUM DATA TRANSFORMATION : (MCOEFF=04,08) 1226 PMAX=0. DO 96 J=1,M DO 97 I=1,N IF(DATA(,J).GT.PMAX) PMAX=DATA(LJ) 97 CONTINUE DO 98 I1=1,N DATA J=(DATA(1,J/PMAX)*100. 98 CONTINUE PMAX=0 96 CONTINUE GO TO 825

*

150 C COMPUTES A LOG10 TRANSFORMATION (MCOEFF=05,09} CIF NO CONSTANT IS SPECIFIED A VALUE OF 1.0 WILL BE USED. C (NOTE : DECILES WILL BE COMPUTED BASED ON A COUNT SIZE OF 300} 1227 IF(CONST.LT.0.0001) CONST=1.0 DO 111 I=1,N DO 112 J=1,M DATAC.J)=ALOG1 0(DATA(I,J)/30)+CONST) 112. CONTINUE 111 CONTINUE (C97 IE RE CR I 2k HAR A EO CO ak a a Ra a A a BIC A I a RE A RO i a a

C TEST FOR DATA INVERSION (ITEST NEGATIVE) 825 IFUTEST.GT.0) GO TO 830

K C INVERT 'DATA’ MATRIX FOR R-MODE CLUSTERING. 800 DO 801 I=1.N DO 802 J=i,M TMPG,D=DATA(LJ) 802 CONTINUE 801 CONTINUE DO 805 I=1,N DO &06 J=1.M DATAGU,D=TMP(,D 806 CONTINUE 805 CONTINUE DO 810 I=1,N DO 811 K=1,12 TEMCD(.K)=ROWCD(LK) 811 CONTINUE 810 CONTINUE DO 815 J=1.M DO 816 K=1,12 ROWCD(J,K)=COLCDG.K) 816 CONTINUE 815 CONTINUE DO 821 J=1,N DO 822 K=1,12 COLCD(LK)=TEMCD(LK) 822 CONTINUE 821 CONTINUE MT=M M=N N=MT IPASS = IPASS + 1 IF(MCOEFF.EQ.10) GO TO 1225 CFR A a ae 2 3 ee a a I ek a a a oe 2 2c ek ai ak a a a a 2 2c 2c ake ake 2 ae ee ake 2 ae ae 22 eae ae a ic ie 2 ak 2 2c ae a ke eo C WRITE OUT DATA MATRIX (TRANSFORMED IF REQUESTED) TO FILEDEF UNIT 07 830 WRITE (7.100) TITLE IF(MCOEFF.EQ.1.OR.MCOEFF.EQ.2.0R.MCOEFF.EQ.6) WRITE(7.301) IF(MCOEFF.EQ.3.0R.MCOEFF.EQ.7.OR.MCOEFF.EQ.12) WRITE(7.302) IF(MCOEFF.EQ.4.0R.MCOEFF.EQ.8) WRITE(7,303) IF(MCOEFF.EQ.10.AND.ITEST.LT.O) WRITE(7.313)

151 IF(MCOEFF.EQ.10.AND.ITEST.GT.0) WRITE(7,302) IF(MCOEFF.EQ.5.OR.MCOEFF.EQ.9) WRITE(7.310) CONST IF(MCOEFF.EQ.11) WRITE(7,315) IF(MCOEFF.EQ.13) WRITE(7,315) 301 FORMAT( NO TRANSFORMATION) 302. FORMAT(’ PERCENT TRANSFORMATION’) 303 FORMAT( PERCENT-MAXIMUM TRANSFORMATION’) 313. FORMAT(' DOUBLE TRANSFORMED’ 315 FORMAT( PERCENT AND FREEMAN-TUKEY TRANSFORMED) 310 FORMAT(' LOG-10 TRANSFORMATION, CONSTANT = '.F7.3) WRITE(7,304) 304. FORMAT(DATA IS IN A (10(£7.3,1.X)) FORMAT’) WRITE (7,200) 200 FORMAT('’) DO 5 J=1,M WRITE (7,100) (COLCD(J,K),K=1,12) 5 CONTINUE DO 6I=1.N WRITE(7.100) (ROWCD(LK),K=1,12) WRITE(7.201) (DATA(LJ),J=1,M) 201 FORMAT(IO(F7.3,1X)) 6 CONTINUE WRITE (7,200) 7% a a a a 2k ek ea ee ae ae fe a fe ake ac ake 2c 2c ake 2 2 ak ae ac ake a ake fe ae ake ake 2k ae ae Be 2 2 a kc ee a ak a ae ae eae ae ak ie ke 2c 24 ie 2k

* C TEST FOR END OF PROGRAM (USE TO CONVERT/INVERT DATA W/O PERFORMING C CLUSTER ANALYSIS) READ(4,102) ITEST, NCOEFF,CONST IFUTEST.EQ.0.AND.NCOEFF.LT.0) GO TO 9999 IF(CONST.LT.0.0001) CONST=1.0 a 2 Re A 2 ee he ee a ae te Fe 2 RC a a ERC EC ake 2 2 2 2 2 kK I I IC CC Oe 2 3 ie a i i oc 2k 2K aK

* C INITIALIZE MATRICES. DO 8 J=1,N SUM(I)=0. Td)=1. NUMBR())=1 DO 9 J=1,M SIMCOC,J)=0. 9 CONTINUE 8 CONTINUE (78 7 2 2h ae 2 2k ee ae a ee 2k 2c fe 2 oie ae ae as 2 2k ef 2 ee ee ie 2 ke 2 kee ee 2 eo a a ak ke 2 ak 2k 2k oe aie 2 a 2k 2c a a ee 3k 2k 2k * C TEST FOR SIM. COEFF. TYPE (JACCARD, CZEKANOWSKI, HQM, OR CRD) IF(MCOEFF.EQ.1) GO TO 125 IF(MCOEFF.GE.6.AND.MCOEFF.LT.10) GO TO 126 IF(MCOEFF.GE.12) GO TO 450

C COMPUTE 'CZEKANOWSKI COEFFICIENTS AND STORE IN LOWER TRIANGULAR C (LESS DIAGONAL) PART OF MATRIX 'SIMCO'. (MCOEFF=02.03,04.05, 10.11) DO 10 J=1,N

152 DO 20 J=1,M 20) SUM(D)=SUM(1D)+DATAG,J) DO 30 K=1.1 IF (LEQ. K)GOTO 30 W=0. DO 40 J=1.M VALMIN=AMINI(DATA(,J), DATA(KJ)) 40 W=W+VALMIN _.. SIMCO(.K)=(2.*W)/(SUM()+SUM(R)) 30 CONTINUE 10 CONTINUE GO TO 15 (ER A ee Ne RR RR 24 AC 2 2k a 2 a A Ae 2 2 2 he he he 2 ae ae ie ke fe Re ak ee fe ee aE fe 2k oS fe te af fe Fe As ae te ie hc 2c C COMPUTE CHORD DISTANCE COEFFICIENTS AND STORE IN LOWER TRIANGULAR C (LESS DIAGONAL) PART OF MATRIX ’SIMCO’. (MCOEFF=12) 450 DO 455 I=1,N DO 460 K=1,] IF (LEQ.K)GOTO 460 MULTTOT=0. SQTOTI=0. SOTOTK=0. DO 465 J=1,M MULTTOT=MULTTOT+DATAG,J)*DATAK,J) SQTOTI=SQTOTI+DATAG,J)**2 SOTOTK=SQTOTK+DATA(K,J)**2 465 CONTINUE CCOS=MULTTOT/SQRT(SQTOTI*SQTOTK) CRD=SORT(2.*(1-CCOS)) C-- ADJUST CRD TO O TO 1 LOW TO HIGH SCALE SIMCO(I,K)=1-CRD/SQRT(2.0) 460 CONTINUE 455 CONTINUE GO TO 15 (OBAGI AIRC ICES ISAS SI IGS AICI IOISI AOI IACI AI I III II AR A aC

C HOM : FREQUENCY MODULATED RELATIVE HOMOGENEITY FUNCTION (HALL 1967A) C (MCOEFF=06,07 ,08,09) 126 DO iI I=1,N DO 21 J=1,M

SUM(Q)=SUM(D+DATA(LJ)

bo bo he he CONTINUE DO 31 K=1,] IF (LEQ.K) GO TO 31 W=0.0 DO 41 J=1,M VALMIN=AMIN1(DATA(LJ),DATA(K,J)) VALMAX=AMAXI(DATA(LJ).DATA(KD) W=W+VALMIN V=V+VALMAX 41 CONTINUE SIMCO(L.K)=C(W+(W*W/V))/(SUM(I)+SUM(K))

153 31 CONTINUE 11 CONTINUE GO TO 15

C COMPUTE JACCARD COEFF (MCOEFF=01) 125 DO 95 I=1,N DO 94 K=11 IF(LEQ.K)GO TO 94 PQ=0. PNO=0. DO 93 J=1,M IF(DATA(K,J).GT.0..AND.DATA(LJ).GT.0.)PQ=PQ+1. IF(DATA(K,J).GT.0..AND.DATA(LJ).EQ.0.)PNO=PNO+1., IF(DATA(K,J).EQ.0..AND.DATA(LJ).GT.0.)PNO=PNO+1, 93 CONTINUE SIMCO(I,K)=PQ/(PNO+PQ) 94 CONTINUE 95 CONTINUE (CE He a fF fe he Re ke Ae ke 2 2 ae a ae ak a ae ae 2k 2k 2k 2k A 2 2k ae 2 ke 2 2 2 2 2 a fee fe fe ke 2 2k 2c 2k 26 2k 2 fe ke ke 2c he fe fe 2c fe ie fe fs oe 2 2 ie

* C ARRAY'BOOK’, WHICH OCCUPIES SAME LOCATIONS IN MEMORY AS ARRAY 'SIMCO' C IN ORDER TO CONSERVE SPACE, WILL BE USED FOR BOOKKEEPING PURPOSES. C ONLY THE UPPER TRIANGULAR (INCLUDING DIAGONAL) PART OF 'BOOK’ WILL BE C USED, SO VALUES CONTAINED IN 'SIMCO' WILL BE UNDISTURBED. EACH COLUMN C IN ARRAY ‘BOOK’ CONTAINS THE NUMBERS OF THE SAMPLES CLUSTERED C TOGETHER IN THE OPPOSITE COLUMN IN 'SIMCO’. 15 DO 16 [=1,N 16 BOOK(1.D=FLOAT(N-D+1. NX=N NPASS=1 (8 BR 2 ke ae 2 2 2 2 2 2 2h 2 ee 2h A Fe 24 2 3 ah fe ke IC ee 2 2 Ck 2k 2h 2k 2 2 2 ee 2 he 2 a 2 ae fe he ke ie abe ie fe fc ie kee ee aie oe oe ake ke ie

* C'SMAX’ WILL CONTAIN THE LARGEST CORRELATION COEFFICIENT IN THE CURRENT C 'SIMCO' MATRIX. THE ROW AND COLUMN NUMBER OF THAT VALUE ARE RECORDED C IN 'LVROW' AND 'LVCOL’, RESPECTIVELY. ‘SMAX’ IS INITIALIZED AT THE C BEGINNING OF THE SEARCH TO A VALUE LOWER THAN THE FIRST CORRELATION C COEFFICIENT ENCOUNTERED. THE SAMPLES OR CLUSTERS WITH THESE HIGHEST C VALUES WILL THEN BE CLUSTERED. 45 SMAX=SIMCO(2,1)-1. DO 50 I=2,.NX IM1s=I-1 DO 51 J=1,IM1 IF(SMAX.GE.SIMCO(U,J)) GO TO 31 SMAX=SIMCO(J)

154 LVROW=I LVCOL=J 51 CONTINUE 50 CONTINUE (CE ke 2 Re ie A ke Ree ke i I RFE AC ACR I Re Fk Fe FO ke ie ak Re I AOR Ae Re Fe he Ae eae 2 ee 2 he ie 2 fe ke oe ie fe 2 ak ie * C SAMPLE (OR CLUSTER) NUMBERS ARE CLUSTERED AND THEIR SIMILARITY C COEFFICIENT IS RECORDED IN ARRAY 'OUT' FOR LATER PRINTOUT AND PLOT. COMBO=T(LVROW)+T(LVCOL) NBCOL=N-LVCOL+1 NBROW=N-LVROW?+1 OUT(NPASS,1)=BOOK(1,NBCOL) OUT(NPASS,2)=BOOK(1,NBROW) OUT(NPASS,3)=SMAX (7 2 i a he ake 2h he ie ake 2h he a Re A Ae ie 2 A ae ee ke ie 2 ie A Re ete he ke eke fe ke kee ke ake ake Ree he fe oe ke Fe ie 2 2c he eee ake ae C SIMILARITY COEFFICIENTS ARE CALCULATED FOR THE NEW CLUSTER & COMPUTED C AND STORED IN 'SIMCO". 'SIMCO' IS THEN COMPACTED BY REMOVING THE ROW C AND COLUMN OF THE SAMPLE WITH THE LARGER NUMBER WHICH WAS CLUSTERED. C ARRAY 'BOOK' IS ALSO UPDATED TO REFLECT THE CHANGE DUE TO THE . NEW C CLUSTERING. DO 60 I=1,NX IF(I.LEQ.LVCOL) GO TO 60 IF(IL.LT.LVCOL) SIMCO(LVCOL,D= *(T(LVCOL)*SIMCO(LVCOL,D+T(LVROW)*SIMCO(LVROW,D)/COMBO IF(I.GT.LVCOL.AND.LLT.LVROW) SIMCO(I,LVCOL)= *(T(LVCOL)*SIMCO(LLVCOL)+T(LVROW)*SIMCO(LVROW,D)/COMBO IF(I.GT.LVROW) SIMCO(,LVCOL)= *(T(LVCOL)*SIMCOd,LVCOL)+T(LVROW)*SIMCOd,LVROW))/COMBO 60 CONTINUE T(ILVCOL)=COMBO NXM1=NX-1 DO 70 I=LVROW,NXM1 JADJ=0 DO 75 J=1,1 IF (J.EQ.LVROW) JADJ=1 SIMCO(,J)=SIMCO(I+1,J+JADJ) 75 CONTINUE 70 CONTINUE (78 7 2 ee ee he ah ee ee ee ae He he RA He Re A Re he ie Ree Re ee ee He ae he ke Fe Fe A AC ke Re ke ne ke 2 2k he ee he ke Fe fe 2c aie oie 2 ake oe ic * C ARRAY ‘NUMBR' CONTAINS THE NUMBER OF SAMPLES COMPRISING EACH CLUSTER. NROWS=NUMBR(LVCOL) NUM=NUMBR(LVROW) KOLT=NBCOL KOLF=NBROW DO 501 I=1,NUM

155 NROWT=NROWS+I BOOK(NROWT,KOLT)=BOOK(I,KOLF) 501 BOOK(I,KOLF)=0. IF(LVROW.EQ.NX)GO TO 535 DO 505 I=LVROW,NXM1 IX=N-I+1 IXM1=IX-1 NUMX=MAX0(NUMBR(I),NUMBR(+1)) DO 515 IC=1,NUMX BOOK(IC,IX)=BOOK(IC,[IXM1) 515 CONTINUE 505 CONTINUE 535 NUMBR(LYCOL)=NUMBR(LVCOL)+NUMBR(LVROW) IF(LVROW.EQ.NX) GO TO 545 DO 510 I=LVROW,NXM1 510 NUMBR()=NUMBR(I+1) 545 NUMBR(NX)=0 DO 550 I=1,NX 550 SIMCO(NX,D=0. NPASS=NPASS+1 NX=NX-1 IF (NX.EQ.1) GO TO 80 GO TO 45 80 CONTINUE NMI1=N-1 (76 A A Ae ee fe he ee ae ake Re ee 2 af Ne a ee fe ke a ee ak Re he ee Ae a a ee ee ee eA 2 i ke eh 2 ee fe ee 2h he 2c 2 2c 2 2 2k 2k ak F C WRITE OUT RESULTS AS TEXT FILE TO FILEDEF UNIT 06 WRITE(6,100) TITLE WRITE(12,100) TITLE WRITE(12,'(14,2X,"SAMPLES")') N WRITE(14,100) TITLE 2001 FORMAT(IS) IF(ITEST.EQ.1) WRITE(6,305) 305 FORMAT(' Q-MODE}) IF(ITEST.EQ.-1) WRITE(6,306) 306 FORMAT( R-MODE’ IF(MCOEFF.EQ.1) WRITE(6,307) 307 FORMAT(' JACCARD COEFFICIENT) IF(MCOEFF.GE.2.AND.MCOEFF.LE.5) WRITE(6,308) 308 FORMAT(’ CZEKANOWSKI COEFFICIENT’) IF(MCOEFF.GE.6.AND.MCOEFF.LE.9) WRITE(6,309) 309 FORMAT(' HOMOGENEITY FUNCTION’) IF(MCOEFF.EQ. 1.0OR.MCOEFF.EQ.2.0R.MCOEFF.EQ.6) WRITE(6,301) IF(MCOEFF.EQ.3.OR.MCOEFF.EQ.7) WRITE(6,302) IF(MCOEFF.EQ.4.0R.MCOEFF.EQ.8) WRITE(6,303) IF(MCOEFF.EO.5.OR.MCOEFF.EQ.9) WRITE(6,310) CONST WRITE(6,200) WRITE(6,202) 202 FORMAT('SIM. COEFF. VALUES FOR DENDRO. BRANCHES:’) DO 90 I=1,NM1 VALI=IFIX(OUT(I,1)) VAL2=IFIX(OUT(I,2)) WRITE(6,203) OUT(I,1),(ROWCD(VAL1,K),K=1,12),OUT(I,2),

156 *(ROWCD(VAL2,K),K=1,12),OUT(L3) 203 FORMAT(F4.0,'=',12A4,5X,F4.0,'=',12A4,5X,F5.3) 90 CONTINUE WRITE(6,200) WRITE(6,204) 204 FORMAT(DENDRO. BRANCH CODES IN DENDROGRAM ORDER’) DO 91 I=1,N IBOOK=IFIX(BOOK(LN)) WRITE(12,'(F4.0)') BOOK(I,N) WRITE(14,205) I(~ROWCD(IBOOK,K),K=1,12) C WRITE(6,205) BOOK(,N),(ROWCD(UIBOOK,K),K=1,12) 205 FORMAT(I4,' = ',12A4) 91 CONTINUE WRITE(6,200) Cope Sora iojiaiioiiioiaiiciiaiak ciak aaiaidaicat dak gai ia aici aici a a ka Ia a a aaa I kak ak ai aka a i ie ak C PLOT THE DENDROGRAM. (SENDS PLOTTING INSTRUCTIONS TO FILEDEF UNIT 10) C 34 INCHES IS THE MAXIMUM WORKING HEIGHT FOR THIS ROUTINE ON THE C VERSATEC PLOTTER, WHILE THE LENGTH MAY BE CHOSEN AS DESIRED. C THE VALUE OF "NEWPEN"” DETERMINES THE PLOT LINE THICKNESS. CALL NEWPEN(NP)

Cc C THIS DRAWS THE AXIS. DATA CSIM /4HCOEF,4HFICI,4HENT ,4HOF S,4HIMIL,4HARIT4HY / CALL SAXIS(0.0,(HEIGHT+0.1),CSIM,25,LENGTH,0.0,0.1,0.1, *(LENGTH/10),(LENGTH/10))

C C THIS SCALES THE DENDROGRAM. NP1=N+1 YSCALE=HEIGHT/FLOAT(N) XNUM=LENGTH-+0.2 XS YM=LENGTH+0.9 CHARHT=0.2 IF(YSCALE.LT.0.25) CHARHT=0.075 IF(YSCALE.LT.0.25) XS YM=LENGTH+0.7 DO 601 I=1,N IBOOK=IFIX(BOOK(I,N)) Y=FLOAT(NP1-I) PLOCX(IBOOK)=LENGTH PLOCY(IBOOK)=Y *YSCALE C IFC(YSCALE.LT.0.15) GO TO 601

C C THIS NUMBERS AND LABELS THE BRANCHES OF THE DENDROGRAM. YPOS=PLOCY (IBOOK)-(CHARHT/2) CALL NUMBER(XNUM,YPOS, CHARHT,BOOK(LN),0.0,0) DO 71 K=1,12 LABEL(K)=ROWCD(BOOK,K) 71 CONTINUE CALL SYMBOL(XSYM, YPOS,CHARHT,LABEL,0.0,48) 601 CONTINUE

C C THIS DRAWS THE DENDROGRAM'S BRANCHES. NM1=N-1 157 DO 610 I=1,NM1 X=LENGTH*OUT(,3) INDEX 1=IFIX(OUT(I,1)) INDEX2=IFIX(OUT(I,2)) CALL PLOT(PLOCX(INDEX1),PLOCY (INDEX 1),3) CALL PLOT(X,PLOCY(INDEX1),2) CALL PLOT(X,PLOC Y(INDEX2),2) CALL PLOT(PLOCX(INDEX2),PLOCY (INDEX2),2) PLOCX(INDEX1)=X PLOCY(INDEX1)=(PLOCY(INDEX1)+PLOCY (INDEX2))/2. 610 CONTINUE CALL PLOT(PLOCX(INDEX1),PLOCY (INDEX 1),3) CALL PLOT(0.0,PLOCY (INDEX 1),2) (Bea ddeicgokioisokioicak iiaaiioigciaiiaiiciniagiaicioaainioigakiia lok aicaickaiakcaek aka kak aka aka C TEST CONTROL CARD VALUE FOR END OF PROGRAM OR FOR RE- EXECUTION OF C PROGRAM (IF REQUESTED) IF(ITEST.EQ.0)GO TO 999 CALL PLOT(LENGTH+3.,0.,-3) GO TO 825 C END PROGRAM AEE EIGIO AGOGO GIO I GIGIOIO AAA IO ISO I GIO OI IOI IIE IE III IKK 999 CONTINUE CALL PLOT(LENGTH+3.,0.,999) RETURN 9999 END

158 VITA: Jon C. Cawley EDUCATION: 1994-1996 Virginia Polytechnic Institute and State Univ., Blacksburg, VA Masters of Science. Defended July 29, 1996. *Major Advisors: R. K. Bambach / D.M. McLean / B. Parker *Topic: Dynamic Systems Analysis of Fossil Dinoflagellates from the Atlantic Coastal Plain, USA.

Aug. 1993 SD School of Mines and Technology/NJ State Museum Summer Field Course: Field Paleontology and Biostratigraphy Crow Creek (Lakota Sioux) Lands, South Dakota *Collected and Documented Cretaceous (Mosasaurs, Plesiosaurs, ). *Conducted stratigraphic measurement and sampling of Cretaceous Pierre Shale sections. *Graduate level project: Palynological lab processing and investigation of fossil spores and pollen from Pierre Shale members; paper submitted.

1981-1986 The Pennsylvania State University, State College, PA Bachelor of Science *Major: Earth Science (Geology) Minor: Writing *Earth and Mineral Sciences Interest House member - Chairman of academic committee, 1 year - Creator and Editor of bi-weekly house newsletter. 1983-1986 - Field trip Officer for PSU Geosciences Club. *PSU Museum of Anthropology, Intern (worked with European Paleolithics) 1983-1985 Undergraduate Thesis: The Bradford Oil Basin: A Regional History of Oil Technology, 1986. (39 thousand words)

EXPERIENCE:

August, 1995 Pennsylvania Registered Professional Geologist #PG-001529-G

Sept. 1993 NICET Certification in Engineering Technology, Level 1 Certification number: 084120

1989-Present CQS_Inc., Harrisburg, PA Development and Technical Partner Develop and implement laboratory testing procedures; perform aggregate tests to PA and AASHTO specifications; develop environmental consulting programs; oversee field projects. Studies in Geomorphology and land use. Project work in limestone for sorbent purposes, field and lab projects in Alkali Silica Reactivity and use of fly ash as pozzolon. *Corporate Officer, November 1990; AASHTO lab accreditation, July 1991. *Co-author of PACA Resolution on Alkali Silica Reactivity. 1992. *Named in Whos Who Registry of Business Leaders, 1994/1995

159 1989-1994 Temple University Geology Department, Philadelphia, PA Manager Organization of teaching labs and field trips; substitute lab instructor; responsibility for department equipment and vehicles; maintenance and operation of thin section lab, photography lab and darkroom; maintenance and expansion of teaching collections; design of geologic displays; liaison between vendors and department for purchasing of equipment; general support to faculty, staff and students. *Member of Dean’s Committee on Hazardous Chemicals - Author of CAS Guidelines on Lab Training and Practice. *Member of Dean’s Security Task Force Committee.

1986-1989 Tethys Consultants Inc./ Mid-Atlantic Testing, Harrisburg, PA Staff Geologist Performed field geology; data reduction;report preparation and editing; implemented water sampling programs;established SARA III chemical inventories for industry. Assisted and implemented drilling programs in coal waste and limestone for cogeneration and aggregate use. Co-developed and set up Mid-Atlantic aggregates testing lab; performed aggregates tests to PA and AASHTO standards. Performed carbonate measurements for limestone in cogeneration. *AASHTO accreditation for laboratory, April 1988 (1st in the U.S.)

UNIVERSITY TEACHING AND AWARDS

May, 1996 Virginia Polytechnic Institute - 1996 Tillman Excellence-in- Teaching Award.

May, 1995 Virginia Polytechnic Institute - 1995 Tillman Excellence-in-Teaching Award.

Virginia Tech, Paleontology 4304 Spring Semesters 1994 and 1995. Lab Instructor (Upper-level class included invertebrate, vertebrate, and botanical Paleontology for majors.)

Virginia Tech, Physical Geology 1104 Fall Semester 1994, Summer 1995. Lab Instructor (Chosen for pilot program of interactive teaching for Physical Geology to nonmajors, Fall 1994.)

Virginia Tech, Historical Geology 1114 Summer 94, Fall and Spring 95/96. Lab Instructor (Topics included land processes, fossils, time relationships. For majors/nonmajors.)

ACTIVITIES: 1995-1996 Sigma Gamma Epsilon - Earth Sciences National Honor Society. Virginia Tech (Alpha Mu) Chapter. Blacksburg, VA (Advisor for undergraduate Earth Sciences Honor Society. Placed emphasis on interdisciplinary communication between the different Earth Science departmental majors on campus.)

160