Application of Quantum Process Calculus to Higher Dimensional Quantum Protocols Simon J. Gay Ittoop Vergheese Puthoor ∗ School of Computing Science School of Computing Science and University of Glasgow, UK School of Physics and Astronomy
[email protected] University of Glasgow, UK
[email protected] We describe the use of quantum process calculus to describe and analyze quantum communication protocols, following the successful field of formal methods from classical computer science. We have extended the quantum process calculus to describe d-dimensional quantum systems, which has not been done before. We summarise the necessary theory in the generalisation of quantum gates and Bell states and use the theory to apply the quantum process calculus CQP to quantum protocols, namely qudit teleportation and superdense coding. 1 Introduction Quantum computing and quantum communication have attracted great interest as quantum computing offers great improvements in algorithmic efficiency and quantum cryptography helps to provide more secure communication systems. Quantum computing, with its inherent parallelism from the superposi- tion principle of quantum mechanics, offers the prospect of vast improvement over classical computing. The most dramatic result is that Shor [21] showed a quantum algorithm which is more efficient than any known classical algorithm for factorisation of integers. Quantum process calculus is a particular field of formal languages which is used to describe and anal- yse the behaviour of systems that combine both quantum and classical computation and communication. Formal methods provide theories and tools which can be used to specify, develop and verify systems in a systematic manner. This field has been successful in classical computer science and to use these math- ematically based techniques to describe quantum systems is one reason for developing quantum formal methods.