The Journal of Computer Science and Its Applications Vol

Total Page:16

File Type:pdf, Size:1020Kb

The Journal of Computer Science and Its Applications Vol The Journal of Computer Science and its Applications Vol. 25, No 1, June, 2018 THE JOURNAL OF COMPUTER SCIENCE AND ITS APPLICATIONS Vol. 25, No 1, June, 2018 PREDICTION OF PEDIATRIC HIV/AIDS SURVIVAL IN NIGERIA USING NAÏVE BAYES’ APPROACH P.A. Idowu1, T. A. Aladekomo2, O. Agbelusi3, and C. O. Akanbi4 1,2 Obafemi Awolowo University, Ile-Ife, Nigeria, 3 Rufus Giwa Polytechnic, Owo, Nigeria 4 Osun State University, Nigeria [email protected] , [email protected] ABSTRACT Epidemic diseases have highly destructive effects around the world and these diseases have affected both developed and developing nations. Disease epidemics are common in developing nations especially in Sub Saharan Africa in which Human Immunodeficiency Virus /Acquired Immunodeficiency Disease Syndrome (HIV/AIDS) is the most serious of all. This paper presents a prediction of pediatric HIV/AIDS survival in Nigeria. Data are collected from 216 pediatric HIV/AIDS patients who were receiving antiretroviral drug treatment in Nigeria was used to develop a predictive model for HIV/AIDS survival based on identified variables. Interviews were conducted with the virologists and pediatricians to identify the variables predictive for HIV/AIDS survival in pediatric patients. 10-fold cross validation method was used in performing the stratification of the datasets collected into training and testing datasets following data preprocessing of the collected datasets. The model was formulated using the naïve Bayes’ classifier – a supervised machine learning algorithm based on Bayes’ theory of conditional probability and simulated on the Waikato Environment for Knowledge Analysis [WEKA] using the identified variables, namely: CD4 count, viral load, opportunistic infection and the nutrition status of the pediatric patients involved in the study. The results showed 81.02% accuracy in the performance of the naïve Bayes’ classifier used in developing the predictive model for HIV/AIDS survival in pediatric patients. In addition, the area under the receiver operating characteristics [ROC] curve had a value of 0.933 which showed how well the developed predictive model was able to discriminate between survived and non-survived cases. Model validation was performed by comparing the model results with that of historical data from two (2) selected tertiary institutions in Nigeria. Keywords: HIV/AIDS survival, naïve Bayes’ classifier, predictive model, pediatrics, machine learning ________________________________________________________________________________ _______ 1.0 Introduction Virus /Acquired Immunodeficiency Disease Epidemic diseases have highly destructive Syndrome (HIV/AIDS) is the most serious of effects around the world and these diseases all [1]. HIV is one of the world’s most serious have affected both developed and developing health and development challenges [2]. It is a nations. Disease epidemics are common in type of virus called a retrovirus which infects developing nations especially in Sub Saharan humans when it comes in contact with tissues Africa in which Human Immunodeficiency such as those that line the vagina, anal area, 1 Prediction of Pediatric HIV/AIDs Survival in Nigeria P.A. Idowu, T. A. Aladekomo, O. Agbelusi, and C. O. Akanbi mouth, eyes or through a break in the skin Antiretroviral therapy is the mechanism of [3], while Acquired Immunodeficiency treating retroviral infections with drugs. The Syndrome (AIDS) is the advanced stage of drugs do not kill the virus but they slow down the retroviral infection that swept through the growth of the virus [14]. HAART refers sub-Saharan Africa with venom [4-5]. to the use of combinations of various Globally, HIV continues to be a very antiretroviral drugs with different serious health issue facing the world [6]. mechanisms of action to treat HIV. About 34 million (31.4 million–35.9 million) The epidemic of HIV/AIDS affects people were living with HIV at the end of two classes of people: the paediatric and the 2011 and an estimated0.8% of adults aged 15- non-paediatric individual. The non-paediatric 49 years worldwide are living with the virus, patients are patients above 15 years of age although the burden of the epidemic while the paediatric patients who form the continues to vary considerably between main target of this research are patients countries and regions [6]. In Sub-Saharan whose age is less than 15 years [15]. There Africa, roughly 25 million people were living are four distinct stages of HIV infection with HIV in 2012, accounting for nearly 70 which includes: the primary HIV infection percent of the global total. The epidemic has stage or clinical stage 1 which involves had widespread social and economic asymptomatic and acute retroviral syndrome ; consequences, not only in the health sector clinically asymptomatic stage or clinical stage but also in education, industry and the wider 2 which involves moderate and unexplained economy [8-9]. The epidemic has had a heavy weight loss [<10% of presumed or measured impact on education, school attendance drops body weight; symptomatic stage or clinical as children become sick or return home to stage 3 is also a conditions where a look after affected family members[10]. presumptive diagnosis could be made on the Moreover, Sub-Saharan Africa remains the basis of clinical signs or simple investigations most severely affected, with nearly 1 in every like unexplained chronic diarrhea for longer 20 adults (4.9%) living with HIV; accounting than one month, unexplained persistent fever for 69% of the people living with HIV [intermittent or constant for longer than one worldwide. Although, the regional prevalence month] and progression or Clinical stage 4 of HIV infection is nearly 25 times higher in that is a condition where a presumptive sub-Saharan Africa than in Asia, almost 5 diagnosis can be made on the basis of clinical million people are living with HIV in South, signs or simple investigations like HIV South-East and East Asia combined and sub- wasting syndrome, pneumocystis pneumonia, Saharan Africa region is the most heavily recurrent severe or radiological bacterial affected region follow by the Caribbean, pneumonia etc. Patient at this stage is in a Eastern Europe and Central Asia, where 1.0% condition where confirmatory diagnostic of adults were living with HIV as at 2011 [2]. testing is necessary [16-17]. Nigeria is the most populous nation in There are different modes of Africa with an estimated population of over transmission of this virus one of which is 160 million people. Government reports mother-to-child transmission. Here, about claim that over 300,000 Nigerians die yearly nine out of ten children exposed are infected of complications arising from AIDS. Nigeria with HIV during pregnancy, labour, delivery has the highest HIV populations in Africa or while breastfeeding [18]. Without with 5.7 million infected people. It is treatment, 15%-30% of babies born to HIV estimated that over 200,000 people die yearly positive women are infected with the virus in Nigeria as a result of HIV/AIDS [11]. At during pregnancy and delivery and a further present, there is no cure for HIV but it is 5%-20% are also infected through being managed with antiretroviral drugs breastfeeding [19]. In high-income countries, [ARV]. There is optimal combination of preventive measures are undertaken to ensure ARV which is known as Highly Active that the transmission of HIV from mother-to- Antiretroviral drug [HAART] [12-13]. child is relatively rare and in cases where it 2 The Journal of Computer Science and its Applications Vol. 25, No 1, June, 2018 occurs, a range of treatment options are unlike regression which allocates a set of undertaken so that the child can survive into records to a real value. This research is adulthood. Blood transfusion is another route focused at using classification models to in which HIV infection can occur in medical classify pediatric HIV/AIDS patients’ setting [20]. survival as either Survived or not survived. HIV epidemic in Nigeria is one of the incurable deadly diseases and it varies widely 2.0 Related Works by region [21]. The impact of HIV/AIDS is Researchers had worked on the prediction of pervasive and far-reaching, affecting HIV/AID prediction using different types of individuals and communities not only variables like CD4 count, CD8. Some of the psychologically but also economically and researcher and the result of their finding are socially. Families lose their most productive in the following paragraphs. members to this disease, leaving children and [27] developed a model to predict elderly people without means of support [22]. survival of HIV/AIDS using sequential and Despite the state of this deadly disease in standard neural networks. The aim of the Nigeria and most especially among children, study was to produce a model of disease there is no existing model in which survival progression in AIDS using sequential neural of infected patient can be predicted. network and compare the model’s accuracy Therefore, this paper present the development with that of a model constructed using only of survival model among paediatric standard neural networks based on HIV/AIDS patients in South Western Nigeria demographic and socioeconomic variables. and the objectives were to identify survival The strength of the study was that sequential variables for HIV/AIDS paediatric patients in neural networks could discriminate patients the South Western Nigeria and formulate who die and patients who survive more survival predictive models based on variables accurately than the standard neural networks. identified [CD4 count, viral load, nutritional The weakness of the study is that only status and opportunistic infection] from the demographic and socioeconomic variables interview conducted with the virologist and were used, which is not sufficient to predict paediatrician at the study area. survival. CD4 count, viral load, opportunistic Machine learning is a branch of infections and nutritional status would be artificial intelligence that allows computers to enough to predict survival accurately in this learn from past examples of data records [23- paper.
Recommended publications
  • Xcode Package from App Store
    KH Computational Physics- 2016 Introduction Setting up your computing environment Installation • MAC or Linux are the preferred operating system in this course on scientific computing. • Windows can be used, but the most important programs must be installed – python : There is a nice package ”Enthought Python Distribution” http://www.enthought.com/products/edudownload.php – C++ and Fortran compiler – BLAS&LAPACK for linear algebra – plotting program such as gnuplot Kristjan Haule, 2016 –1– KH Computational Physics- 2016 Introduction Software for this course: Essentials: • Python, and its packages in particular numpy, scipy, matplotlib • C++ compiler such as gcc • Text editor for coding (for example Emacs, Aquamacs, Enthought’s IDLE) • make to execute makefiles Highly Recommended: • Fortran compiler, such as gfortran or intel fortran • BLAS& LAPACK library for linear algebra (most likely provided by vendor) • open mp enabled fortran and C++ compiler Useful: • gnuplot for fast plotting. • gsl (Gnu scientific library) for implementation of various scientific algorithms. Kristjan Haule, 2016 –2– KH Computational Physics- 2016 Introduction Installation on MAC • Install Xcode package from App Store. • Install ‘‘Command Line Tools’’ from Apple’s software site. For Mavericks and lafter, open Xcode program, and choose from the menu Xcode -> Open Developer Tool -> More Developer Tools... You will be linked to the Apple page that allows you to access downloads for Xcode. You wil have to register as a developer (free). Search for the Xcode Command Line Tools in the search box in the upper left. Download and install the correct version of the Command Line Tools, for example for OS ”El Capitan” and Xcode 7.2, Kristjan Haule, 2016 –3– KH Computational Physics- 2016 Introduction you need Command Line Tools OS X 10.11 for Xcode 7.2 Apple’s Xcode contains many libraries and compilers for Mac systems.
    [Show full text]
  • How to Access Python for Doing Scientific Computing
    How to access Python for doing scientific computing1 Hans Petter Langtangen1,2 1Center for Biomedical Computing, Simula Research Laboratory 2Department of Informatics, University of Oslo Mar 23, 2015 A comprehensive eco system for scientific computing with Python used to be quite a challenge to install on a computer, especially for newcomers. This problem is more or less solved today. There are several options for getting easy access to Python and the most important packages for scientific computations, so the biggest issue for a newcomer is to make a proper choice. An overview of the possibilities together with my own recommendations appears next. Contents 1 Required software2 2 Installing software on your laptop: Mac OS X and Windows3 3 Anaconda and Spyder4 3.1 Spyder on Mac............................4 3.2 Installation of additional packages.................5 3.3 Installing SciTools on Mac......................5 3.4 Installing SciTools on Windows...................5 4 VMWare Fusion virtual machine5 4.1 Installing Ubuntu...........................6 4.2 Installing software on Ubuntu....................7 4.3 File sharing..............................7 5 Dual boot on Windows8 6 Vagrant virtual machine9 1The material in this document is taken from a chapter in the book A Primer on Scientific Programming with Python, 4th edition, by the same author, published by Springer, 2014. 7 How to write and run a Python program9 7.1 The need for a text editor......................9 7.2 Spyder................................. 10 7.3 Text editors.............................. 10 7.4 Terminal windows.......................... 11 7.5 Using a plain text editor and a terminal window......... 12 8 The SageMathCloud and Wakari web services 12 8.1 Basic intro to SageMathCloud...................
    [Show full text]
  • Ginga Documentation Release 2.5.20160420043855
    Ginga Documentation Release 2.5.20160420043855 Eric Jeschke May 05, 2016 Contents 1 About Ginga 1 2 Copyright and License 3 3 Requirements and Supported Platforms5 4 Getting the source 7 5 Building and Installation 9 5.1 Detailed Installation Instructions for Ginga...............................9 6 Documentation 15 6.1 What’s New in Ginga?.......................................... 15 6.2 Ginga Quick Reference......................................... 19 6.3 The Ginga FAQ.............................................. 22 6.4 The Ginga Viewer and Toolkit Manual................................. 25 6.5 Reference/API.............................................. 87 7 Bug reports 107 8 Developer Info 109 9 Etymology 111 10 Pronunciation 113 11 Indices and tables 115 Python Module Index 117 i ii CHAPTER 1 About Ginga Ginga is a toolkit designed for building viewers for scientific image data in Python, visualizing 2D pixel data in numpy arrays. It can view astronomical data such as contained in files based on the FITS (Flexible Image Transport System) file format. It is written and is maintained by software engineers at the Subaru Telescope, National Astronomical Observatory of Japan. The Ginga toolkit centers around an image display class which supports zooming and panning, color and intensity mapping, a choice of several automatic cut levels algorithms and canvases for plotting scalable geometric forms. In addition to this widget, a general purpose “reference” FITS viewer is provided, based on a plugin framework. A fairly complete set of “standard” plugins are provided for features that we expect from a modern FITS viewer: panning and zooming windows, star catalog access, cuts, star pick/fwhm, thumbnails, etc. 1 Ginga Documentation, Release 2.5.20160420043855 2 Chapter 1.
    [Show full text]
  • Pyconfr 2014 1 / 105 Table Des Matières Bienvenue À Pyconfr 2014
    PyconFR 2014 1 / 105 Table des matières Bienvenue à PyconFR 2014...........................................................................................................................5 Venir à PyconFR............................................................................................................................................6 Plan du campus..........................................................................................................................................7 Bâtiment Thémis...................................................................................................................................7 Bâtiment Nautibus................................................................................................................................8 Accès en train............................................................................................................................................9 Accès en avion........................................................................................................................................10 Accès en voiture......................................................................................................................................10 Accès en vélo...........................................................................................................................................11 Plan de Lyon................................................................................................................................................12
    [Show full text]
  • Python Guide Documentation Release 0.0.1
    Python Guide Documentation Release 0.0.1 Kenneth Reitz February 19, 2018 Contents 1 Getting Started with Python 3 1.1 Picking an Python Interpreter (3 vs. 2).................................3 1.2 Properly Installing Python........................................5 1.3 Installing Python 3 on Mac OS X....................................6 1.4 Installing Python 3 on Windows.....................................8 1.5 Installing Python 3 on Linux.......................................9 1.6 Installing Python 2 on Mac OS X.................................... 10 1.7 Installing Python 2 on Windows..................................... 12 1.8 Installing Python 2 on Linux....................................... 13 1.9 Pipenv & Virtual Environments..................................... 14 1.10 Lower level: virtualenv.......................................... 17 2 Python Development Environments 21 2.1 Your Development Environment..................................... 21 2.2 Further Configuration of Pip and Virtualenv............................... 26 3 Writing Great Python Code 29 3.1 Structuring Your Project......................................... 29 3.2 Code Style................................................ 40 3.3 Reading Great Code........................................... 49 3.4 Documentation.............................................. 50 3.5 Testing Your Code............................................ 53 3.6 Logging.................................................. 58 3.7 Common Gotchas............................................ 60 3.8 Choosing
    [Show full text]
  • Prof. Jim Crutchfield Nonlinear Physics— Modeling Chaos
    Nonlinear Physics— Modeling Chaos & Complexity Prof. Jim Crutchfield Physics Department & Complexity Sciences Center University of California, Davis cse.ucdavis.edu/~chaos Tuesday, March 30, 2010 1 Mechanism Revived Deterministic chaos Nature actively produces unpredictability What is randomness? Where does it come from? Specific mechanisms: Exponential divergence of states Sensitive dependence on parameters Sensitive dependence on initial state ... Tuesday, March 30, 2010 2 Brief History of Chaos Discovery of Chaos: 1890s, Henri Poincaré Invents Qualitative Dynamics Dynamics in 20th Century Develops in Mathematics (Russian & Europe) Exiled from Physics Re-enters Science in 1970s Experimental tests Simulation Flourishes in Mathematics: Ergodic theory & foundations of Statistical Mechanics Topological dynamics Catastrophe/Singularity theory Pattern formation/center manifold theory ... Tuesday, March 30, 2010 3 Discovering Order in Chaos Problem: No “closed-form” analytical solution for predicting future of nonlinear, chaotic systems One can prove this! Consequence: Each nonlinear system requires its own representation Pattern recognition: Detecting what we know Ultimate goal: Causal explanation What are the hidden mechanisms? Pattern discovery: Finding what’s truly new Tuesday, March 30, 2010 4 Major Roadblock to the Scientific Algorithm No “closed-form” analytical solutions Baconian cycle of successively refining models broken Solution: Qualitative dynamics: “Shape” of chaos Computing Tuesday, March 30, 2010 5 Logic of the Course Two
    [Show full text]
  • Introduction to Python ______
    Center for Teaching, Research and Learning Research Support Group American University, Washington, D.C. Hurst Hall 203 [email protected] (202) 885-3862 Introduction to Python ___________________________________________________________________________________________________________________ Python is an easy to learn, powerful programming language. It has efficient high-level data structures and a simple but effective approach to object-oriented programming. It is used for its readability and productivity. WORKSHOP OBJECTIVE: This workshop is designed to give a basic understanding of Python, including object types, Python operations, Python module, basic looping, function, and control flows. By the end of this workshop you will: • Know how to install Python on your own computer • Understand the interface and language of Python • Be familiar with Python object types, operations, and modules • Create loops and functions • Load and use Python packages (libraries) • Use Python both as a powerful calculator and to write software that accept inputs and produce conditional outputs. NOTE: Many of our examples are from the Python website’s tutorial, http://docs.python.org/py3k/contents.html. We often include references to the relevant chapter section, which you could consult to get greater depth on that topic. I. Installation and starting Python Python is distributed free from the website http://www.python.org/. There are distributions for Windows, Mac, Unix, and Linux operating systems. Use http://python.org/download to find these distribution files for easy installation. The latest version of Python is version 3.1. Once installed, you can find the Python3.1 folder in “Programs” of the Windows “start” menu. For computers on campus, look for the “Math and Stats Applications” folder.
    [Show full text]
  • Release 2.7.1 Andrew Collette and Contributors
    h5py Documentation Release 2.7.1 Andrew Collette and contributors Mar 08, 2018 Contents 1 Where to start 3 2 Other resources 5 3 Introductory info 7 4 High-level API reference 15 5 Advanced topics 35 6 Meta-info about the h5py project 51 i ii h5py Documentation, Release 2.7.1 The h5py package is a Pythonic interface to the HDF5 binary data format. HDF5 lets you store huge amounts of numerical data, and easily manipulate that data from NumPy. For example, you can slice into multi-terabyte datasets stored on disk, as if they were real NumPy arrays. Thousands of datasets can be stored in a single file, categorized and tagged however you want. Contents 1 h5py Documentation, Release 2.7.1 2 Contents CHAPTER 1 Where to start • Quick-start guide • Installation 3 h5py Documentation, Release 2.7.1 4 Chapter 1. Where to start CHAPTER 2 Other resources • Python and HDF5 O’Reilly book • Ask questions on the mailing list at Google Groups • GitHub project 5 h5py Documentation, Release 2.7.1 6 Chapter 2. Other resources CHAPTER 3 Introductory info 3.1 Quick Start Guide 3.1.1 Install With Anaconda or Miniconda: conda install h5py With Enthought Canopy, use the GUI package manager or: enpkg h5py With pip or setup.py, see Installation. 3.1.2 Core concepts An HDF5 file is a container for two kinds of objects: datasets, which are array-like collections of data, and groups, which are folder-like containers that hold datasets and other groups. The most fundamental thing to remember when using h5py is: Groups work like dictionaries, and datasets work like NumPy arrays The very first thing you’ll need to do is create a new file: >>> import h5py >>> import numpy as np >>> >>> f= h5py.File("mytestfile.hdf5","w") The File object is your starting point.
    [Show full text]
  • Lfpy Homepage Release 2.1.1
    LFPy Homepage Release 2.1.1 LFPy-team Oct 12, 2020 CONTENTS 1 Tutorial slides on LFPy 3 2 Related projects 5 3 Contents 7 3.1 Download LFPy.............................................7 3.2 Developing LFPy.............................................7 3.3 Getting started..............................................7 3.3.1 Dependencies..........................................7 3.3.2 Installing LFPy.........................................8 3.3.3 Uninstalling LFPy.......................................9 3.4 Documentation..............................................9 3.4.1 Installing NEURON with Python................................ 10 3.4.2 Installing NEURON with Python from source......................... 14 3.5 LFPy on the Neuroscience Gateway Portal............................... 16 3.6 LFPy Tutorial.............................................. 17 3.6.1 More examples......................................... 19 3.7 Notes on LFPy.............................................. 20 3.7.1 Morphology files........................................ 20 3.7.2 Using NEURON NMODL mechanisms............................ 22 3.7.3 Units.............................................. 22 3.7.4 Contributors........................................... 22 3.7.5 Contact............................................. 23 3.8 Module LFPy .............................................. 23 3.8.1 class Cell ........................................... 24 3.8.2 class TemplateCell ..................................... 32 3.8.3 class NetworkCell .....................................
    [Show full text]
  • Pymrt Documentation Release 1.0.0
    pymrt Documentation Release 1.0.0 Tinghui Wang May 14, 2018 Contents: 1 Python Environment Setup 1 1.1 Python 3.6 Environment.........................................1 1.2 Setup Tensorflow.............................................2 1.3 Setup Mayavi...............................................2 1.4 Known Issues...............................................3 2 Multi-Target Tracking 5 2.1 Dynamic Models for Multi-target Tracking...............................5 2.2 Gaussian Component........................................... 10 2.3 Gaussian-Mixture Probability Hypothesis Density Filter........................ 12 2.4 API.................................................... 16 3 Reference 21 3.1 Multi-Target Tracking.......................................... 21 4 Indices and tables 23 Bibliography 25 i ii CHAPTER 1 Python Environment Setup As the packages has a few package dependencies and get them set up properly for your python environment may be tricky sometimes. The following provides a general suggestion on how to set up each packages for better performance on various operating systems. 1.1 Python 3.6 Environment On MacOS and Windows 10, I personally recommend MiniConda package installer for python environment. Mini- Conda provides most numerical calculation packages such as numpy and scipy, pre-compiled for all operating systems with Intel Math kernel Library - probably the best performance you can get as pre-compiled binaries. It also includes virtual environment management so that you can have multiple Python environments co-existing on your ma- chine. MiniConda is installed with minimal packages and you can add additional packages that you need incrementally to keep a minimal footprint on your hard drive. 1.1.1 Windows Setup Setup MiniConda on windows, simply follow the link and download the installer for you Windows OS. Run the installer to install MiniConda to your machine.
    [Show full text]
  • Oracle® Spatial Studio Guide
    Oracle® Spatial Studio Guide Release 20.1 F17646-05 March 2021 Oracle Spatial Studio Guide, Release 20.1 F17646-05 Copyright © 2019, 2021, Oracle and/or its affiliates. Primary Author: Lavanya Jayapalan Contributors: Chuck Murray, Mamata Basapur, David Lapp, Carol Palmer, L.J. Qian, Siva Ravada This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited. The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing. If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, then the following notice is applicable: U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any programs embedded, installed or activated on delivered hardware, and modifications of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users are "commercial computer software" or "commercial
    [Show full text]
  • Proceedings of the 7 Python in Science Conference
    Proceedings of the 7th Python in Science Conference SciPy Conference – Pasadena, CA, August 19-24, 2008. Editors: Gaël Varoquaux, Travis Vaught, Jarrod Millman Proceedings of the 7th Python in Science Conference (SciPy 2008) Contents Editorial 3 G. Varoquaux, T. Vaught, J. Millman The State of SciPy 5 J. Millman, T. Vaught Exploring Network Structure, Dynamics, and Function using NetworkX 11 A. Hagberg, D. Schult, P. Swart Interval Arithmetic: Python Implementation and Applications 16 S. Taschini Experiences Using SciPy for Computer Vision Research 22 D. Eads, E. Rosten The SciPy Documentation Project (Technical Overview) 27 S. Van der Walt Matplotlib Solves the Riddle of the Sphinx 29 M. Droettboom The SciPy Documentation Project 33 J. Harrington Pysynphot: A Python Re-Implementation of a Legacy App in Astronomy 36 V. Laidler, P. Greenfield, I. Busko, R. Jedrzejewski How the Large Synoptic Survey Telescope (LSST) is using Python 39 R. Lupton Realtime Astronomical Time-series Classification and Broadcast Pipeline 42 D. Starr, J. Bloom, J. Brewer Analysis and Visualization of Multi-Scale Astrophysical Simulations Using Python and NumPy 46 M. Turk Mayavi: Making 3D Data Visualization Reusable 51 P. Ramachandran, G. Varoquaux Finite Element Modeling of Contact and Impact Problems Using Python 57 R. Krauss Circuitscape: A Tool for Landscape Ecology 62 V. Shah, B. McRae Summarizing Complexity in High Dimensional Spaces 66 K. Young Converting Python Functions to Dynamically Compiled C 70 I. Schnell 1 unPython: Converting Python Numerical Programs into C 73 R. Garg, J. Amaral The content of the articles of the Proceedings of the Python in Science Conference is copyrighted and owned by their original authors.
    [Show full text]