Synthesis of Fast and Collision-Free Folding of Polyhedral Nets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pleat Folding, 6.849 Fall 2010
Demaine, Demaine, Lubiw Courtesy of Erik D. Demaine, Martin L. Demaine, and Anna Lubiw. Used with permission. 1999 1 Hyperbolic Paraboloid Courtesy of Jenna Fizel. Used with permission. [Albers at Bauhaus, 1927–1928] 2 Circular Variation from Bauhaus [Albers at Bauhaus, 1927–1928] 3 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 4 Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. 5 “Black Hexagon” Demaine, Demaine, Fizel 2006 Courtesy of Erik Demaine, Martin Demaine, and Jenna Fizel. Used with permission. 6 Hyparhedra: Platonic Solids [Demaine, Demaine, Lubiw 1999] 7 Courtesy of Erik Demaine, Martin Demaine, Jenna Fizel, and John Ochsendorf. Used with permission. Virtual Origami Demaine, Demaine, Fizel, Ochsendorf 2006 8 “Computational Origami” Erik & Martin Demaine MoMA, 2008– Elephant hide paper ~9”x15”x7” Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/Computational/. 9 Peel Gallery, Houston Nov. 2009 Demaine & Demaine 2009 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/Limit/. 10 “Natural Cycles” Erik & Martin Demaine JMM Exhibition of Mathematical Art, San Francisco, 2010 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/NaturalCycles/. 11 Courtesy of Erik Demaine and Martin Demaine. Used with permission. See also http://erikdemaine.org/curved/BlindGlass/. Demaine & Demaine 2010 12 Hyperbolic Paraboloid Courtesy of Jenna Fizel. Used with permission. [Demaine, Demaine, Hart, Price, Tachi 2009/2010] 13 θ = 30° n = 16 Courtesy of Erik D. -
Open Problems from CCCG 2006
CCCG 2007, Ottawa, Ontario, August 20–22, 2007 Open Problems from CCCG 2006 Erik D. Demaine∗ Joseph O’Rourke† The following is a list of the problems presented on between any two unit-length 3D trees of the same August 14, 2006 at the open-problem session of the 18th number of links using edge reconnections? Canadian Conference on Computational Geometry held in Kingston, Ontario, Canada. Update: At the conference, a related move was Edge Reconnections in Unit Chains defined: a tetrahedral swap alters consecutive ver- Anna Lubiw tices (a, b, c, d) of a chain to either (a, c, b, d) or University of Waterloo (a, d, b, c), whichever of the two yields a chain. It [email protected] was established (by Erik Demaine, Anna Lubiw, and Joseph O’Rourke) that, if tetrahedral swaps Is it possible to reconfigure between any two con- are permitted without regard to self-intersection, figurations of a unit-length 3D polygonal chain, or then they suffice to unlock any chain. more generally unit-length 3D polygonal trees, by “edge reconnections”? Edge Swaps in Planar Matchings Ferran Hurtado (via Henk Meijer) a Univ. Polit´ecnicade Catalunya [email protected] b Is the space of (noncrossing) plane matchings on (a) c a set of n points in general position connected by “two-edge swaps”? A two-edge swap replaces two edges ab and cd of a plane matching M with a dif- ferent pair of edges on the same vertices, say ac and bd, to form another plane matching M 0. (The swap is valid only if the resulting matching is non- crossing.) Notice that ac and bd together with their a c a=c c replacement edges form a length-4 alternating cycle that does not cross any segments in M. -
Constructing Points Through Folding and Intersection
CONSTRUCTING POINTS THROUGH FOLDING AND INTERSECTION The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Butler, Steve, Erik Demaine, Ron Graham and Tomohiro Tachi. "Constructing points through folding and intersection." International Journal of Computational Geometry & Applications, Vol. 23 (01) 2016: 49-64. As Published 10.1142/S0218195913500039 Publisher World Scientific Pub Co Pte Lt Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/121356 Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Detailed Terms http://creativecommons.org/licenses/by-nc-sa/4.0/ Constructing points through folding and intersection Steve Butler∗ Erik Demaine† Ron Graham‡ Tomohiro Tachi§ Abstract Fix an n 3. Consider the following two operations: given a line with a specified point on the line we≥ can construct a new line through the point which forms an angle with the new line which is a multiple of π/n (folding); and given two lines we can construct the point where they cross (intersection). Starting with the line y = 0 and the points (0, 0) and (1, 0) we determine which points in the plane can be constructed using only these two operations for n =3, 4, 5, 6, 8, 10, 12, 24 and also consider the problem of the minimum number of steps it takes to construct such a point. 1 Introduction If an origami model is laid flat the piece of paper will retain a memory of the folds that went into the construction of the model as creases (or lines) in the paper. -
Origami Design Secrets Reveals the Underlying Concepts of Origami and How to Create Original Origami Designs
SECOND EDITION PRAISE FOR THE FIRST EDITION “Lang chose to strike a balance between a book that describes origami design algorithmically and one that appeals to the origami community … For mathematicians and origamists alike, Lang’s expository approach introduces the reader to technical aspects of folding and the mathematical models with clarity and good humor … highly recommended for mathematicians and students alike who want to view, explore, wrestle with open problems in, or even try their own hand at the complexity of origami model design.” —Thomas C. Hull, The Mathematical Intelligencer “Nothing like this has ever been attempted before; finally, the secrets of an origami master are revealed! It feels like Lang has taken you on as an apprentice as he teaches you his techniques, stepping you through examples of real origami designs and their development.” —Erik D. Demaine, Massachusetts Institute of Technology ORIGAMI “This magisterial work, splendidly produced, covers all aspects of the art and science.” —SIAM Book Review The magnum opus of one of the world’s leading origami artists, the second DESIGN edition of Origami Design Secrets reveals the underlying concepts of origami and how to create original origami designs. Containing step-by-step instructions for 26 models, this book is not just an origami cookbook or list of instructions—it introduces SECRETS the fundamental building blocks of origami, building up to advanced methods such as the combination of uniaxial bases, the circle/river method, and tree theory. With corrections and improved Mathematical Methods illustrations, this new expanded edition also for an Ancient Art covers uniaxial box pleating, introduces the new design technique of hex pleating, and describes methods of generalizing polygon packing to arbitrary angles. -
Arxiv:1808.06013V1 [Cs.CG] 17 Aug 2018
Realization and Connectivity of the Graphs of Origami Flat Foldings David Eppstein Department of Computer Science, University of California, Irvine? Abstract. We investigate the graphs formed from the vertices and creases of an origami pattern that can be folded flat along all of its creases. As we show, this is possible for a tree if and only if the internal vertices of the tree all have even degree greater than two. However, we prove that (for unbounded sheets of paper, with a vertex at infinity representing a shared endpoint of all creased rays) the graph of a folding pattern must be 2-vertex-connected and 4-edge-connected. 1 Introduction This work concerns the following question: Which graphs can be drawn as the graphs of origami flat folding patterns? In origami and other forms of paper folding, a flat folding is a type of construction in which an initially-flat piece of paper is folded so that the resulting folded shape lies flat in a plane and has a desired shape or visible pattern. This style of folding may be used as the initial base from which a three-dimensional origami figure is modeled, or it may be an end on its own. Flat foldings have been extensively studied in research on the mathematics of paper folding. The folding patterns that can fold flat with only a single vertex have been completely characterized, for standard models of origami [12{15,17,21{23], for rigid origami in which the paper must continuously move from its unfolded state to its folded state without bending anywhere except at its given creases [1], and even for single-vertex folding patterns whose paper does not form a single flat sheet [2]. -
Table of Contents
Contents Part 1: Mathematics of Origami Introduction Acknowledgments I. Mathematics of Origami: Coloring Coloring Connections with Counting Mountain-Valley Assignments Thomas C. Hull Color Symmetry Approach to the Construction of Crystallographic Flat Origami Ma. Louise Antonette N. De las Penas,˜ Eduard C. Taganap, and Teofina A. Rapanut Symmetric Colorings of Polypolyhedra sarah-marie belcastro and Thomas C. Hull II. Mathematics of Origami: Constructibility Geometric and Arithmetic Relations Concerning Origami Jordi Guardia` and Eullia Tramuns Abelian and Non-Abelian Numbers via 3D Origami Jose´ Ignacio Royo Prieto and Eulalia` Tramuns Interactive Construction and Automated Proof in Eos System with Application to Knot Fold of Regular Polygons Fadoua Ghourabi, Tetsuo Ida, and Kazuko Takahashi Equal Division on Any Polygon Side by Folding Sy Chen A Survey and Recent Results about Common Developments of Two or More Boxes Ryuhei Uehara Unfolding Simple Folds from Crease Patterns Hugo A. Akitaya, Jun Mitani, Yoshihiro Kanamori, and Yukio Fukui v vi CONTENTS III. Mathematics of Origami: Rigid Foldability Rigid Folding of Periodic Origami Tessellations Tomohiro Tachi Rigid Flattening of Polyhedra with Slits Zachary Abel, Robert Connelly, Erik D. Demaine, Martin L. Demaine, Thomas C. Hull, Anna Lubiw, and Tomohiro Tachi Rigidly Foldable Origami Twists Thomas A. Evans, Robert J. Lang, Spencer P. Magleby, and Larry L. Howell Locked Rigid Origami with Multiple Degrees of Freedom Zachary Abel, Thomas C. Hull, and Tomohiro Tachi Screw-Algebra–Based Kinematic and Static Modeling of Origami-Inspired Mechanisms Ketao Zhang, Chen Qiu, and Jian S. Dai Thick Rigidly Foldable Structures Realized by an Offset Panel Technique Bryce J. Edmondson, Robert J. -
GEOMETRIC FOLDING ALGORITHMS I
P1: FYX/FYX P2: FYX 0521857570pre CUNY758/Demaine 0 521 81095 7 February 25, 2007 7:5 GEOMETRIC FOLDING ALGORITHMS Folding and unfolding problems have been implicit since Albrecht Dürer in the early 1500s but have only recently been studied in the mathemat- ical literature. Over the past decade, there has been a surge of interest in these problems, with applications ranging from robotics to protein folding. With an emphasis on algorithmic or computational aspects, this comprehensive treatment of the geometry of folding and unfolding presents hundreds of results and more than 60 unsolved “open prob- lems” to spur further research. The authors cover one-dimensional (1D) objects (linkages), 2D objects (paper), and 3D objects (polyhedra). Among the results in Part I is that there is a planar linkage that can trace out any algebraic curve, even “sign your name.” Part II features the “fold-and-cut” algorithm, establishing that any straight-line drawing on paper can be folded so that the com- plete drawing can be cut out with one straight scissors cut. In Part III, readers will see that the “Latin cross” unfolding of a cube can be refolded to 23 different convex polyhedra. Aimed primarily at advanced undergraduate and graduate students in mathematics or computer science, this lavishly illustrated book will fascinate a broad audience, from high school students to researchers. Erik D. Demaine is the Esther and Harold E. Edgerton Professor of Elec- trical Engineering and Computer Science at the Massachusetts Institute of Technology, where he joined the faculty in 2001. He is the recipient of several awards, including a MacArthur Fellowship, a Sloan Fellowship, the Harold E. -
Origamizing Polyhedral Surfaces Tomohiro Tachi
1 Origamizing Polyhedral Surfaces Tomohiro Tachi Abstract—This paper presents the first practical method for “origamizing” or obtaining the folding pattern that folds a single sheet of material into a given polyhedral surface without any cut. The basic idea is to tuck fold a planar paper to form a three-dimensional shape. The main contribution is to solve the inverse problem; the input is an arbitrary polyhedral surface and the output is the folding pattern. Our approach is to convert this problem into a problem of laying out the polygons of the surface on a planar paper by introducing the concept of tucking molecules. We investigate the equality and inequality conditions required for constructing a valid crease pattern. We propose an algorithm based on two-step mapping and edge splitting to solve these conditions. The two-step mapping precalculates linear equalities and separates them from other conditions. This allows an interactive manipulation of the crease pattern in the system implementation. We present the first system for designing three-dimensional origami, enabling a user can interactively design complex spatial origami models that have not been realizable thus far. Index Terms—Origami, origami design, developable surface, folding, computer-aided design. ✦ 1 INTRODUCTION proposed to obtain nearly developable patches represented as RIGAMI is an art of folding a single piece of paper triangle meshes, either by segmenting the surface through O into a variety of shapes without cutting or stretching the fitting of the patches to cones, as proposed by Julius it. Creating an origami with desired properties, particularly a [4], or by minimizing the Gauss area, as studied by Wang desired shape, is known as origami design. -
Practical Applications of Rigid Thick Origami in Kinetic Architecture
PRACTICAL APPLICATIONS OF RIGID THICK ORIGAMI IN KINETIC ARCHITECTURE A DARCH PROJECT SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI‘I AT MĀNOA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTORATE OF ARCHITECTURE DECEMBER 2015 By Scott Macri Dissertation Committee: David Rockwood, Chairperson David Masunaga Scott Miller Keywords: Kinetic Architecture, Origami, Rigid Thick Acknowledgments I would like to gratefully acknowledge and give a huge thanks to all those who have supported me. To the faculty and staff of the School of Architecture at UH Manoa, who taught me so much, and guided me through the D.Arch program. To Kris Palagi, who helped me start this long dissertation journey. To David Rockwood, who had quickly learned this material and helped me finish and produced a completed document. To my committee members, David Masunaga, and Scott Miller, who have stayed with me from the beginning and also looked after this document with a sharp eye and critical scrutiny. To my wife, Tanya Macri, and my parents, Paul and Donna Macri, who supported me throughout this dissertation and the D.Arch program. Especially to my father, who introduced me to origami over two decades ago, without which, not only would this dissertation not have been possible, but I would also be with my lifelong hobby and passion. And finally, to Paul Sheffield, my continual mentor in not only the study and business of architecture, but also mentored me in life, work, my Christian faith, and who taught me, most importantly, that when life gets stressful, find a reason to laugh about it. -
Continuous Blooming of Convex Polyhedra Erik D
Masthead Logo Smith ScholarWorks Computer Science: Faculty Publications Computer Science 5-2011 Continuous Blooming of Convex Polyhedra Erik D. Demaine Massachusetts nI stitute of Technology Martin L. Demaine Massachusetts nI stitute of Technology Vi Hart Joan Iacono New York University Stefan Langerman Universite Libre de Bruxelles See next page for additional authors Follow this and additional works at: https://scholarworks.smith.edu/csc_facpubs Part of the Computer Sciences Commons, and the Discrete Mathematics and Combinatorics Commons Recommended Citation Demaine, Erik D.; Demaine, Martin L.; Hart, Vi; Iacono, Joan; Langerman, Stefan; and O'Rourke, Joseph, "Continuous Blooming of Convex Polyhedra" (2011). Computer Science: Faculty Publications, Smith College, Northampton, MA. https://scholarworks.smith.edu/csc_facpubs/31 This Article has been accepted for inclusion in Computer Science: Faculty Publications by an authorized administrator of Smith ScholarWorks. For more information, please contact [email protected] Authors Erik D. Demaine, Martin L. Demaine, Vi Hart, Joan Iacono, Stefan Langerman, and Joseph O'Rourke This article is available at Smith ScholarWorks: https://scholarworks.smith.edu/csc_facpubs/31 Continuous Blooming of Convex Polyhedra Erik D. Demaine∗† Martin L. Demaine∗ Vi Hart‡ John Iacono§ Stefan Langerman¶ Joseph O’Rourkek June 13, 2009 Abstract We construct the first two continuous bloomings of all convex polyhedra. First, the source unfolding can be continuously bloomed. Second, any unfolding of a convex polyhedron can be refined (further cut, by a linear number of cuts) to have a continuous blooming. 1 Introduction A standard approach to building 3D surfaces from rigid sheet material, such as sheet metal or cardboard, is to design an unfolding: cuts on the 3D surface so that the remainder can unfold (along edge hinges) into a single flat non-self-overlapping piece. -
© Cambridge University Press Cambridge
Cambridge University Press 978-0-521-85757-4 - Geometric Folding Algorithms: Linkages, Origami, Polyhedra Erik D. Demaine and Joseph O’Rourke Index More information Index 1-skeleton, 311, 339 bar, 9 3-Satisfiability, 217, 221 base, see origami, base, 2 α-cone canonical configuration, 151, 152 Bauhaus, 294 α-producible chain, 150, 151 Bellows theorem, 279, 348 δ-perturbation, 115 bending λ order function, 176, 177, 186 machine, xi, 13, 306 antisymmetry condition, 177, 186 pipe, 13, 14 consistency condition, 178, 186 sheet metal, 306 noncrossing condition, 179, 186 beta sheet, 158 time continuity, 174, 183, 187 Bezdek, Daniel, 331 transitivity condition, 178, 186 blooming, continuous, 333, 435 bond angle, 14, 131, 148, 151 Abe’s angle trisection, 286, 287 bond length, 148 accordion, 85, 193, 200, 261 active path, 244, 245, 247–249 cable, 53–55 acyclicity, 108 CAD, see cylindrical algebraic decomposition, 19 additor (Kempe), 32, 34, 35 cage, 21, 92, 93 Alexandrov, Aleksandr D., 348 canonical form, 74, 86, 87, 141, 151 Alexandrov’s theorem, 339, 348, 349, 352, 354, Cauchy’s arm lemma, 72, 133, 143, 145, 342, 343, 368, 381, 393, 419 377 existence, 351 Cauchy’s rigidity theorem, 43, 143, 213, 279, 339, uniqueness, 350 341, 342, 345, 348–350, 354, 403 algebraic motion, 107, 111 Cauchy—Steinitz lemma, 72, 342 algebraic set, 39, 44 chain algebraic variety, 27 4D, 92, 93, 437 alpha helix, 151, 157, 158 abstract, 65, 149, 153, 158 Amato, Nancy, 157 convex, 143, 145 amino acid, 158 cutting, xi, 91, 123 amino acid residue, 14, 148, 151 equilateral, see -
Marvelous Modular Origami
www.ATIBOOK.ir Marvelous Modular Origami www.ATIBOOK.ir Mukerji_book.indd 1 8/13/2010 4:44:46 PM Jasmine Dodecahedron 1 (top) and 3 (bottom). (See pages 50 and 54.) www.ATIBOOK.ir Mukerji_book.indd 2 8/13/2010 4:44:49 PM Marvelous Modular Origami Meenakshi Mukerji A K Peters, Ltd. Natick, Massachusetts www.ATIBOOK.ir Mukerji_book.indd 3 8/13/2010 4:44:49 PM Editorial, Sales, and Customer Service Office A K Peters, Ltd. 5 Commonwealth Road, Suite 2C Natick, MA 01760 www.akpeters.com Copyright © 2007 by A K Peters, Ltd. All rights reserved. No part of the material protected by this copyright notice may be reproduced or utilized in any form, electronic or mechanical, including photo- copying, recording, or by any information storage and retrieval system, without written permission from the copyright owner. Library of Congress Cataloging-in-Publication Data Mukerji, Meenakshi, 1962– Marvelous modular origami / Meenakshi Mukerji. p. cm. Includes bibliographical references. ISBN 978-1-56881-316-5 (alk. paper) 1. Origami. I. Title. TT870.M82 2007 736΄.982--dc22 2006052457 ISBN-10 1-56881-316-3 Cover Photographs Front cover: Poinsettia Floral Ball. Back cover: Poinsettia Floral Ball (top) and Cosmos Ball Variation (bottom). Printed in India 14 13 12 11 10 10 9 8 7 6 5 4 3 2 www.ATIBOOK.ir Mukerji_book.indd 4 8/13/2010 4:44:50 PM To all who inspired me and to my parents www.ATIBOOK.ir Mukerji_book.indd 5 8/13/2010 4:44:50 PM www.ATIBOOK.ir Contents Preface ix Acknowledgments x Photo Credits x Platonic & Archimedean Solids xi Origami Basics xii