Phys 4390: General Relativity Lecture 5: Intro. to Tensor Algebra

Total Page:16

File Type:pdf, Size:1020Kb

Phys 4390: General Relativity Lecture 5: Intro. to Tensor Algebra PHYS 4390: GENERAL RELATIVITY LECTURE 5: INTRO. TO TENSOR ALGEBRA Vectors are sufficient to describe Newtonian mechanics, however General Rela- tivity will require more general objects than vectors, namely tensors. To introduce these, we will first discuss the tensor algebra through an abstract approach, and afterwards introduce the conventional approach based on indices. While much of our discussion of tensors will appear to be in Rn, tensors may be defined on any differential manifold. This is due to the fact that a differential manifold is an object that appears locally like Euclidean space but is globally different. 1. Curves and Surfaces on a Manifold 1.1. Parametric Approach. A curve may be described with one single parame- ter, u, and defines coordinates in an n-dimensional manifold, xa = xa(u); a = 1; ::n: A surface has two parameters, and may be written as xa = xa(u; v) and in general a m-dimensional surface has m degrees of freedom, and is defined by xa = xa(u1; u2; :::; um) We may call a surface a subspace, and a surface with m = n − 1 degrees of freedom a hypersurface. 1.2. I. nstead of a parametric approach, we can describe a surface as a set of constraints. To see how, consider a hypersurface, xa = xa(u1; :::; un−1), taking each coordinate xa we could eliminate u1 to un−1 leaving one function that must vanish f(x1; x2; :::; xn) = 0 Thus, the parametric approach for a hypersurface is equivalent to imposing a con- straint. As an example in R2 the constraint x2 + y2 − R2 = 0 describes a circle ( i.e., S1). Adding more constraints reduces the dimension of the subspace. An m-dimensional subspace must have n − m constraints f 1(x1; :::; xn) = 0 . f n−m(x1; :::; xn) = 0: This can be shown to be equivalent to the parametric approach. 1 2 PHYS 4390: GENERAL RELATIVITY LECTURE 5: INTRO. TO TENSOR ALGEBRA 2. Coordinate Transformations The reason we want to work with tensors is due to the principle of covariance, any physical law or quantity must be unchanged in any coordinate system. To describe physics in General Relativity we will use tensor equations, because these will be coordinate invariant. For this reason we must discuss coordinate transformations. A change of coordinates xa ! x~a is described as an invertible mapping from Rn to Rn: x~a = f a(x1; :::; xn); a = 1; :::; n: Differentiating each new coordinate with respect to (w.r.t) to each xa we produce a matrix related to the coordinate transformation 2 @x~1 @x~1 @x~1 3 @x1 @x2 ::: @xn 2 2 2 a @x~ @x~ @x~ @x~ 6 1 2 ::: n 7 = 6 @x @x @x 7 b 6 . 7 @x 4 . ::: . 5 @x~n @x~n @x~n @x1 @x2 ::: @xn Taking the determinant of this matrix we produce the Jacobian of the coordinate transformation @x~a J~ = j j @xb noindent As we have required that the coordinate transformation is invertible, this quantity will be non-zero. The Jacobian of the inverse transformation xa = f~a(~x1; :::; x~n) is @xa 1 J = j j = @x~b J~ @xa @x~a @x @~x In fact, the matrix @x~b is the inverse of @xb . so that @~x @x = In, the identity matrix 1. We may introduce a helpful definition to write the above matrix equation in terms of indexed components. a Definition 2.1. The Kronecker delta δ b is defined as a a δ a = 1; δ b = 0; a 6= b Thus we have @x~a @xc = δa : @xc @x~b b To compute the differentials of the original coordinate system in terms of the differentials of the new coordinates, use the chain rule n X @xa @xa dxa = dx~b = dx~b @x~b @x~b b=1 @xa The matrix @x~b and its inverse play an important role distinguishing between two types of tensors: covariant and contravariant tensors. 1To prove this, consider the composition of the coordinate transformation with its inverse, and use the chain rule. PHYS 4390: GENERAL RELATIVITY LECTURE 5: INTRO. TO TENSOR ALGEBRA 3 3. Contravariant Tensors Suppose we have two points lying a particular coordinate system, such that they are separated by an infinitesimal displacement vector PQ. For two different coordinate systems PQ = dxa = dx~a using the chain-rule we have a a @x b dx~ = b dx @x~ P here the subscript P on the bracket indicates that the components of the matrix are evaluated at the point P As we are considering an arbitrary point P , we will not use this until needed. Generalizing this identity we have the required prototype definition Definition 3.1. A contravariant tensor of rank 1, θa transforms under a coordinate transformation as @x~a θ~a = θb @xb ~ dxa As θ is associated with the point P it is distinct from the tangent vector du on a curve xa(u) since one is a coordinate dependent object at P and the other is a tangent vector along the curve. More generally, we can consider contravariant tensors of higher rank 2. Con- sider the tensor product of two rank 1 contravariant tensors Xa and Y b, we have something that resembles a matrix, XaZb, this is in fact a rank 2 contravariant tensor. Definition 3.2. A contravariant tensor of rank r, θa1;:::;ar transforms under a coordinate transformation as @x~a1 @x~ar θ~a1;:::ar = ::: θb1;:::;br @xb1 @xbr 4. Covariant Tensors Taking a scalar we may express it in the new coordinate system as φ = φ(xb(~xa)) , then taking the derivative w.r.t.x ~a, @φ @φ @xb @xb @φ = = @x~a @xb @x~a @x~a @xb we have found something that looks like our contravariant transformation rule, but involving the inverse coordinate transformation. Yet again, generalizing this definition we have Definition 4.1. A covariant tensor of rank 1 ea transforms under a coordinate transformation as @xb e~ = e a @x~a b more generally we have the rank s covariant tensors define as 2Notice that a rank zero tensor φ is a scalar, such that φ~ = φ. 4 PHYS 4390: GENERAL RELATIVITY LECTURE 5: INTRO. TO TENSOR ALGEBRA Definition 4.2. A covariant tensor of rank s, ea1;:::;as transforms under a coordi- nate transformation as @xb1 @xbs e~a ;:::a = ::: eb ;:::;b 1 s @x~a1 @x~as 1 s A helpful phrase to remember the position of the index is "Co goes below" The a @ differentials dx and derivative operators @xa lie at the core of this distinction between covariant and contravariant tensors, for this reason, we always write coor- dinate components with an upper index. 5. Mixed Tensors We can now consider objects with both contravariant and covariant parts in terms of indices. For example, a type (1,2) tensor would be: @x~a @xe @xf X~ a = Xd bc @xd @x~b @x~c ef from this example we have a general definition Definition 5.1. A tensor of type (r,s), T a1;:::;ar transforms under a coordinate b1;:::;bs transformation as @x~a1 @x~ar @xd1 @xds ~a1;:::;ar c1;:::;cr Tb ;:::;b = ::: ::: Td ;:::;d 1 s @xc1 @xcr @x~b1 @x~bs 1 s At this point, we can demonstrate the coordinate invariance of tensor equations. Suppose we have two tensors rank 2 covariant tensors such that Xab = Yab, then @xa @xb we may transform both sides by multiplying by @x~c @xd to get @xa @xb @xa @xb X = Y ! X~ = Y~ @x~c @xd ab @x~c @xd ab cd cd 6. Tensor Fields So far we have been speaking about tensors defined at a single point, this can be expanded to consider tensor-fields which are defined over a region of the manifold, so that T a1;:::;ar (P ) would define a tensor-field evaluated at the point P. We will b1;:::;bs focus primarily on tensor fields which transform at a given point as we have stated, however they have the added benefit of being smooth (i.e. C1). 7. Operations on Tensors Since we can add vectors and matrices and these are special cases of tensors, we would like tensors in general to have this property, thus if we have two tensors with the same upper and lower indices, we may add them together to create a new tensor, i.e., a a a X bc = Y bc + Z bc is a sensible equation under the transformation rules. Similarly scalar multiplication should hold as well, a a X bc = cY bc: PHYS 4390: GENERAL RELATIVITY LECTURE 5: INTRO. TO TENSOR ALGEBRA 5 We will introduce two new operations on the indices of tensors, however we first must discuss symmetry properties of more familiar tensors: matrices (or, type (0,2) tensors - a similar rule will hold for type (2,0) tensors): Definition 7.1. A type 2 tensor is symmetric if Xab = Xba Definition 7.2. A type 2 tensor is anti-symmetric if Xab = −Xba 1 with a little combinatorics this implies a symmetric tensor has 2 n(n + 1) indepen- 1 dent components and an anti-symmetric tensor has 2 n(n − 1) independent compo- nents. Given a general type (0,2) tensor we can compute the symmetric and anti- symmetric part of the tensor as 1 X(ab) = 2 (Xab + Xba); 1 X[ab] = 2 (Xab − Xba): With a little algebra, it is easy to see that Xab = X(ab) + X[ab]. We may generalize these operations to arbitrary (0; s) tensors Definition 7.3.
Recommended publications
  • Refraction and Reflexion According to the Principle of General Covariance
    REFRACTION AND REFLEXION ACCORDING TO THE PRINCIPLE OF GENERAL COVARIANCE PATRICK IGLESIAS-ZEMMOUR Abstract. We show how the principle of general covariance introduced by Souriau in smoothly uniform contexts, can be extended to singular situ- ations, considering the group of diffeomorphisms preserving the singular locus. As a proof of concept, we shall see how we get again this way, the laws of reflection and refraction in geometric optics, applying an extended general covariance principle to Riemannian metrics, discontinuous along a hypersurface. Introduction In his paper “Modèle de particule à spin dans le champ électromagnétique et gravitationnel” published in 1974 [Sou74], Jean-Marie Souriau suggests a pre- cise mathematical interpretation of the principle of General Relativity. He names it the Principle of General Covariance. Considering only gravitation field1, he claimed that any material presence in the universe is characterized by a covector defined on the quotient of the set of the Pseudo-Riemannian metrics on space-time, by the group of diffeomorphisms. This principle be- ing, according to Souriau, the correct statement of the Einsteins’s principle of invariance with respect to any change of coordinates. Actually, Souriau’s general covariance principle can be regarded as the active version of Einstein invariance statement, where change of coordinates are interpreted from the active point of view as the action of the group of diffeomorphisms. Now, for reasons relative to the behavior at infinity and results requirement, the group of diffeomorphisms of space-time is reduced to the subgroup of compact supported diffeomorphisms. Date: April 6, 2019. 1991 Mathematics Subject Classification. 83C10, 78A05, 37J10.
    [Show full text]
  • Quantum Mechanics from General Relativity : Particle Probability from Interaction Weighting
    Annales de la Fondation Louis de Broglie, Volume 24, 1999 25 Quantum Mechanics From General Relativity : Particle Probability from Interaction Weighting Mendel Sachs Department of Physics State University of New York at Bualo ABSTRACT. Discussion is given to the conceptual and mathemat- ical change from the probability calculus of quantum mechanics to a weighting formalism, when the paradigm change takes place from linear quantum mechanics to the nonlinear, holistic eld theory that accompanies general relativity, as a fundamental theory of matter. This is a change from a nondeterministic, linear theory of an open system of ‘particles’ to a deterministic, nonlinear, holistic eld the- ory of the matter of a closed system. RESUM E. On discute le changement conceptuel et mathematique qui fait passer du calcul des probabilites de la mecanique quantique a un formalisme de ponderation, quand on eectue le changement de paradigme substituantalam ecanique quantique lineairelatheorie de champ holistique non lineaire qui est associee alatheorie de la relativitegenerale, prise comme theorie fondamentale de la matiere. Ce changement mene d’une theorie non deterministe et lineaire decrivant un systeme ouvert de ‘particules’ a une theorie de champ holistique, deterministe et non lineaire, de la matiere constituant un systeme ferme. 1. Introduction. In my view, one of the three most important experimental discov- eries of 20th century physics was the wave nature of matter. [The other two were 1) blackbody radiation and 2) the bending of a beam of s- tarlight as it propagates past the vicinity of the sun]. The wave nature of matter was predicted in the pioneering theoretical studies of L.
    [Show full text]
  • INTRODUCTION to ALGEBRAIC GEOMETRY 1. Preliminary Of
    INTRODUCTION TO ALGEBRAIC GEOMETRY WEI-PING LI 1. Preliminary of Calculus on Manifolds 1.1. Tangent Vectors. What are tangent vectors we encounter in Calculus? 2 0 (1) Given a parametrised curve α(t) = x(t); y(t) in R , α (t) = x0(t); y0(t) is a tangent vector of the curve. (2) Given a surface given by a parameterisation x(u; v) = x(u; v); y(u; v); z(u; v); @x @x n = × is a normal vector of the surface. Any vector @u @v perpendicular to n is a tangent vector of the surface at the corresponding point. (3) Let v = (a; b; c) be a unit tangent vector of R3 at a point p 2 R3, f(x; y; z) be a differentiable function in an open neighbourhood of p, we can have the directional derivative of f in the direction v: @f @f @f D f = a (p) + b (p) + c (p): (1.1) v @x @y @z In fact, given any tangent vector v = (a; b; c), not necessarily a unit vector, we still can define an operator on the set of functions which are differentiable in open neighbourhood of p as in (1.1) Thus we can take the viewpoint that each tangent vector of R3 at p is an operator on the set of differential functions at p, i.e. @ @ @ v = (a; b; v) ! a + b + c j ; @x @y @z p or simply @ @ @ v = (a; b; c) ! a + b + c (1.2) @x @y @z 3 with the evaluation at p understood.
    [Show full text]
  • Covariance in Physics and Convolutional Neural Networks
    Covariance in Physics and Convolutional Neural Networks Miranda C. N. Cheng 1 2 3 Vassilis Anagiannis 2 Maurice Weiler 4 Pim de Haan 5 4 Taco S. Cohen 5 Max Welling 5 Abstract change of coordinates. In his words, the general principle In this proceeding we give an overview of the of covariance states that “The general laws of nature are idea of covariance (or equivariance) featured in to be expressed by equations which hold good for all sys- the recent development of convolutional neural tems of coordinates, that is, are covariant with respect to networks (CNNs). We study the similarities and any substitutions whatever (generally covariant)” (Einstein, differencesbetween the use of covariance in theo- 1916). The rest is history: the incorporation of the math- retical physics and in the CNN context. Addition- ematics of Riemannian geometry in order to achieve gen- ally, we demonstrate that the simple assumption eral covariance and the formulation of the general relativity of covariance, together with the required proper- (GR) theory of gravity. It is important to note that the seem- ties of locality, linearity and weight sharing, is ingly innocent assumption of general covariance is in fact sufficient to uniquely determine the form of the so powerful that it determines GR as the unique theory of convolution. gravity compatible with this principle, and the equivalence principle in particular, up to short-distance corrections1. In a completely different context, it has become clear 1. Covariance and Uniqueness in recent years that a coordinate-independent description It is well-known that the principle of covariance, or coordi- is also desirable for convolutional networks.
    [Show full text]
  • Lost in the Tensors: Einstein's Struggles with Covariance Principles 1912-1916"
    JOHN EARMAN and CLARK GL YMOUR LOST IN THE TENSORS: EINSTEIN'S STRUGGLES WITH COVARIANCE PRINCIPLES 1912-1916" Introduction IN 1912 Einstein began to devote a major portion of his time and energy to an attempt to construct a relativistic theory of gravitation. A strong intimation of the struggle that lay ahead is contained in a letter to Arnold Sommerfeld dated October 29, 1912: At the moment I am working solely on the problem of gravitation and believe 1 will be able to overcome all difficulties with the help of a local, friendly mathemat- ician. But one thing is certain, that I have never worked so hard in my life, and that I have been injected with a great awe of mathematics, which in my naivet~ until now I only viewed as a pure luxury in its subtler forms! Compared to this problem the original theory of relativity is mere child's play.' Einstein's letter contained only a perfunctory reply to a query from Sommerfeld about the Debye-Born theory of specific heats. Obviously disappointed, Som- merfeld wrote to Hilbert: 'My letter to Einstein was in vain . Einstein is evidently so deeply mired in gravitation that he is deaf to everything else? Sommerfeld's words were more prophetic than he could possibly have known; the next three years were to see Einstein deeply mired in gravitation, sometimes seemingly hopelessly so. In large measure, Einstein's struggle resulted from his use and his misuse, his understanding and his misunderstanding of the nature and implications of covariance principles. In brief, considerations of general covariance were bound up with Einstein's motive for seeking a 'generalized' theory of relativity; mis- understandings about the meaning and implementation of this motivation threatened to wreck the search; and in the end, the desire for general covariance helped to bring Einstein back onto the track which led to what we now recognize *Present address c/o Department of Philosophy, University of Minnesota, Minneapolis, Minn, U.S.A.
    [Show full text]
  • Introduction
    note1 : August 29, 2012 Introduction Principle of locality The principle of locality states that an object can Quantum Field Theory—in the context of parti- only be influenced by its immediate surroundings. cle physics—is a theory of elementary particles and From this principle follows the finite speed of in- their interactions. The Standard Model of elemen- formation transmission. tary particles is a quantum field theory. By definition, elementary particles are the most Principle of covariance fundamental—structureless—particles (like elec- trons and photons). They exhibit wave-particle du- The principle of covariance emphasizes formulation ality: on the one hand they diffract and interfere as of physical laws using only those physical quanti- waves (fields), on the other hand they appear and ties the measurements of which the observers in disappear as whole entities, called quanta. Hence different frames of reference could unambiguously the name of the theory. correlate. A quantum field theory seeks to explain certain Mathematically speaking, the physical quantities fundamental experimental observations—the exis- must transform covariantly, that is, under a certain tence of antiparticles, the spin-statistics relation, representation of the group of coordinate transfor- the CPT symmetry—as well as predict the results mations between admissible frames of reference of of any given experiment, like the cross-section for the physical theory. This group of coordinate trans- the Compton scattering, or the value of the anoma- formations is referred to as the covariance group of lous magnetic moment of the electron. the theory. There are two popular approaches to deal with The principle of covariance does not require in- quantum fields.
    [Show full text]
  • Fundamentals of Vector and Tensors
    Fundamentals of Vector and Tensors Atul and Jenica August 28, 2018 0.1 Types of Vectors There are two types of vectors we will be working with. These are defined as covariant(1-Form, covector) and contra-variant j (vector). Such as, a covector Wi and a vector V . 0.1.1 Raising and Lowering Indicies j To see this, we raise and lower the indcies of a vector V and a covector Wi and a some tensor gij, but before that here are ij some tips: We want to take a lower index and raise it to a higher index. We will apply a tensor gij or g to achieve this. We want to sum over the second index in the tensor. i ij V = g Vj (1) j Wi = gijW (2) Now the order of gV or V g does not matter. What does matter, however, is which index you are summing over. For i ij ij i0 i3 i example, V = g Vj means you are summing over the second index of the metric tensor, j: g Vj = g V0 + :::g V3 = V . It does not matter if the V comes before or after the g because V0;1;2;3 is just a number. However, if I were to write ji 0i 3i i ji ij g Vj = g V0 + :::g V3 = V (notice it is g and not g ), I would be summing over the first value j. Since we want to sum over only the second index, we discard these types of notations as wrong.
    [Show full text]
  • A Brief Study on Covariance of Newtonian Mechanics
    Dr Dev Raj Mishra. International Journal of Engineering Research and Applications www.ijera.com ISSN: 2248-9622, Vol. 10, Issue 7, (Series-IV) July 2020, pp. 11-15 RESEARCH ARTICLE OPEN ACCESS A Brief Study on Covariance of Newtonian Mechanics Dr Dev Raj Mishra Department of Physics, R.H.Government Post Graduate College, Kashipur, U.S.Nagar, Uttarakhand -244713 INDIA. ABSTRACT The possibility of a covariant formulation of Newton’s second law of motion using Energy-Momentum four- vector was explored. This covariant formulation explains the relationships between the electromagnetic potentials and the electromagnetic fields. It successfully explains the observation of pseudo-forces in nature for example the observed up-thrust in a falling frame of reference or a falling lift and the observed centrifugal force in circular motion. Keywords– Covariance,Electromagnetic Field Tensor,Four- vectors, Minkowski Space time, Relativity ----------------------------------------------------------------------------------------------------------------------------- ---------- Date of Submission: 06-07-2020 Date of Acceptance: 21-07-2020 ----------------------------------------------------------------------------------------------------------------------------- ---------- I. INTRODUCTION the applied force and the momentum. The applied The invariance under Lorentz force is also the gradient of potential energy. transformation expresses the proposition that the Therefore we have two quantities – the momentum laws of physics are same for the observers in and
    [Show full text]
  • The Principle of Relativity
    Eötvös Loránd Tudományegyetem Bölcsészettudományi Kar Doktori Disszertáció Gömöri Márton The Principle of Relativity An Empiricist Analysis (A relativitás elve – empirista elemzés) Filozófiatudományi Doktori Iskola Vezetője: Boros Gábor, DSc, egyetemi tanár Logika és Tudományfilozófia Program Vezetője: E. Szabó László, DSc, egyetemi tanár A bizottság tagjai: A bizottség elnöke: Bodnár István, egyetemi tanár, CSc, egyetemi tanár Felkért bírálók: Andréka Hajnal, DSc, professzor Szabó Gábor, PhD, tudományos főmunkatárs A bizottság titkára: Ambrus Gergely, PhD, egyetemi docens A bizottság további tagjai: Máté András, CSc, egyetemi docens Mekis Péter, PhD, adjunktus Székely Gergely, PhD, tudományos munkatárs Témavezető: E. Szabó László, DSc, egyetemi tanár Budapest, 2015 Contents 1 Introduction5 2 What Exactly Does the Principle of Relativity Say? 11 2.1 Einstein 1905............................... 11 2.2 The Electromagnetic Field of a Static versus Uniformly Moving Charge 30 2.3 Conceptual Components of the Relativity Principle.......... 35 2.4 The Formal Statement of the Relativity Principle........... 41 2.5 Covariance................................. 47 2.6 Initial and Boundary Conditions..................... 52 2.7 An Essential Conceptual Component: “Moving Body”........ 60 3 Operational Understanding of the Covariance of Electrodynamics 68 3.1 A Logical Problem with Postulating Relativity............. 68 3.2 Lorentzian Pedagogy........................... 77 3.3 The Case of Electrodynamics...................... 78 3.4 Operational Definitions of Electrodynamic Quantities in K ...... 80 3.5 Empirical Facts of Electrodynamics................... 86 3.6 Operational Definitions of Electrodynamic Quantities in K0 ...... 89 3.7 Observations of the Moving Observer.................. 93 3.8 Are the Transformation Rules Derived from Covariance True?.... 99 4 Does the Principle of Relativity Hold in Electrodynamics? 101 4.1 The Problem of M ...........................
    [Show full text]
  • Introduction to Vectors and Tensors
    INTRODUCTION TO VECTORS AND TENSORS Vector and Tensor Analysis Volume 2 Ray M. Bowen Mechanical Engineering Texas A&M University College Station, Texas and C.-C. Wang Mathematical Sciences Rice University Houston, Texas Copyright Ray M. Bowen and C.-C. Wang (ISBN 0-306-37509-5 (v. 2)) ____________________________________________________________________________ PREFACE To Volume 2 This is the second volume of a two-volume work on vectors and tensors. Volume 1 is concerned with the algebra of vectors and tensors, while this volume is concerned with the geometrical aspects of vectors and tensors. This volume begins with a discussion of Euclidean manifolds. The principal mathematical entity considered in this volume is a field, which is defined on a domain in a Euclidean manifold. The values of the field may be vectors or tensors. We investigate results due to the distribution of the vector or tensor values of the field on its domain. While we do not discuss general differentiable manifolds, we do include a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. This volume contains frequent references to Volume 1. However, references are limited to basic algebraic concepts, and a student with a modest background in linear algebra should be able to utilize this volume as an independent textbook. As indicated in the preface to Volume 1, this volume is suitable for a one-semester course on vector and tensor analysis. On occasions when we have taught a one –semester course, we covered material from Chapters 9, 10, and 11 of this volume. This course also covered the material in Chapters 0,3,4,5, and 8 from Volume 1.
    [Show full text]
  • Differential Geometry Jay Havaldar 1 Calculus on Euclidean Spaces
    Differential Geometry Jay Havaldar 1 Calculus on Euclidean Spaces From Wikipedia: Differential geometry is a mathematical discipline that uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra to study problems in geometry. The theory of plane and space curves and surfaces in the three-dimensional Euclidean space formed the basis for development of differential geometry during the 18th century and the 19th century. In short, differential geometry tries to approximate smooth objects by linear approxima- tions. These notes assume prior knowledge of multivariable calculus and linear algebra. Definition: A smooth real-valued function f is one where all partial derivatives and are continuous. 1.1 Tangent Vectors The first major concept in differential geometry is that of a tangent space for agivenpoint on a manifold. Loosely, think of manifold as a space which locally looks like Euclidean space; for example, a sphere in R3. The tangent space of a manifold is a generalization of the idea of a tangent plane. Tangent space for a point on a sphere. Image from Wikipedia. Definition: A tangent vector vp consists of a vector v and a point of application p. There is a natural way to add tangent vectors at a point and multiply them by scalars. Definition: If two tangent vectors have the same vector v but different points of applica- tion, they are said to be parallel. The best explanation I’ve seen of tangent vectors is by analogy with the concept of a force in physics. A force applied at different areas of a rod will have different results.
    [Show full text]
  • How Einstein Got His Field Equations Arxiv:1608.05752V1 [Physics.Hist-Ph]
    How Einstein Got His Field Equations S. Walters In commemoration of General Relativity’s centennial ABSTRACT. We study the pages in Albert Einstein’s 1916 landmark paper in the Annalen der Physik where he derived his field equations for gravity. Einstein made two heuristic and physically insightful steps. The first was to obtain the field equations in vacuum in a rather geometric fashion. The second step was obtaining the field equations in the presence of matter from the field equations in vacuum. (This transition is an essential principle in physics, much as the principle of local gauge invariance in quantum field theory.) To this end, we go over some quick differential geometric background related to curvilinear coordinates, vectors, tensors, metric tensor, Christoffel symbols, Riemann curvature tensor, Ricci tensor, and see how Einstein used geometry to model gravity. This paper is a more detailed version of my talk given at the Math-Physics Symposium at UNBC on February 25, 2016. It is in reference to Einstein’s paper: A. Einstein, The Foundation of the General Theory of Relativity, Annalen der Physik, 49, 1916. (For an English translation see: H. A. Lorentz, A. Einstein, H. Minkowski, H. Weyl, The Principle of Relativity.) The paper has two sections. The first section is a smash course on the semi-Riemannian geometry tools needed to understand Einstein’s theory. The second section looks at Einstein’s derivation of his field equations in vac- uum and in the presence of matter and/or electromagnetism as he worked them out in his paper. This paper commemorates the 100th centennial of Einstein’s General The- ory of Relativity, which he finalized near the end of November 1915 and pub- lished in 1916.
    [Show full text]