The 1898 Field Season of CD Walcott
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
0 Vol 6, No 3 |Ey SPRING 1993 Newslettar of the Llontana Natlve Plant Srclety
--'-'-- Kelseya uniflora cI 0 Vol 6, No 3 |ey SPRING 1993 Newslettar of the llontana Natlve Plant Srclety Type Localities and the Botanical Exploration of Montana - Peter Lesica lf you're a member of the Montana Native Plant Society, you're colfections of blanketflower (Gaillardia aristata), balsamroot probably getting usad to hearing plants referred to by their (Balsamorhiza sagittata), silvery lupine (Lupinus argenteusl and scientific name. Even though the/re often long and hard to mountain death-camas (Zgadenus elegans) - not bad for a da/s pronounce, perhaps you're even becoming convinced that they're work. Two weeks later he found scarlet globe-mallow useful. But where do these names come from, and how do (Sphaeralcea coccinea) near the Marias River in Toole County. taxonomists know what name clrrec.tly applies to which plant? Another early explorer in western Montana was Nathaniel When spotted knapweed first appeared in North America, how did Wyeth. He made a number of type collections from what he said taxonomists know that it was a European weed, Centaurea was the vicinity of the Flathead River. Among these were maculosa, instead of something else - perhaps an undescribed Columbia virgin's-bower (Clematis columbiana), low larkspur species? Taxonomy rests on a system of standards: for each (Delphinium bicololl and Wyeth's lupine (Luprnus wyethiil. He species that is described new to science, there is a type also made the first collections of white-head mule's-ears and specimen. This type specimen represents what the ta,ronomist northern mu le's-ears (Wy eth i a am pl e x i cau I i s artd W. -
Haystack Development
August 2, 2017 HAYSTACK DEVELOPMENT Moonlight Basin Overall Development Plan Wildlife Summary Report HAYSTACK DEVELOPMENT Wildlife Summary Report TABLE OF CONTENTS 1.0 INTRODUCTION ........................................................................................................................... 1 2.0 EXISTING WILDLIFE AND HABITAT ..................................................................................... 4 2.1 HABITAT ........................................................................................................................................ 4 2.2 FEDERALLY LISTED SPECIES ......................................................................................................... 6 2.2.1 Grizzly Bear .......................................................................................................................... 6 2.2.2 Canada Lynx ......................................................................................................................... 7 2.2.3 Wolverine ............................................................................................................................ 10 2.3 OTHER SPECIES OF REGIONAL SIGNIFICANCE ............................................................................ 10 2.3.1 Species of Greatest Conservation Need .............................................................................. 10 2.3.2 Migratory Birds ................................................................................................................... 13 2.3.3 Big Game Species -
Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation Near Chatfield, Minnesota, USA
The Compass: Earth Science Journal of Sigma Gamma Epsilon Volume 84 Issue 1 Article 6 1-6-2012 Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation near Chatfield, Minnesota, USA Sophia L. May College of St. Benedict / St. John's University, [email protected] Larry E. Davis College of St. Benedict / St. John's University, [email protected] David G. Brown College of St. Benedict / St. John's University, [email protected] Follow this and additional works at: https://digitalcommons.csbsju.edu/compass Part of the Paleontology Commons Recommended Citation May, Sophia L.; Davis, Larry E.; and Brown, David G. (2012) "Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation near Chatfield, Minnesota, USA," The Compass: Earth Science Journal of Sigma Gamma Epsilon: Vol. 84: Iss. 1, Article 6. Available at: https://digitalcommons.csbsju.edu/compass/vol84/iss1/6 This Article is brought to you for free and open access by DigitalCommons@CSB/SJU. It has been accepted for inclusion in The Compass: Earth Science Journal of Sigma Gamma Epsilon by an authorized editor of DigitalCommons@CSB/SJU. For more information, please contact [email protected]. ON THE OUTCROP Algal Stromatolites in the Willow River Member of the Lower Ordovician Shakopee Formation near Chatfield, Minnesota, USA Sophia L. May, Larry E. Davis, and David G. Brown Department of Biology College of Saint Benedict/Saint John’s University Collegeville, Minnesota, 56321 USA [email protected] LOCATION From the intersection of (Olmsted) Co. Hwy 2 and U.S. 52 Rochester I-90 (Main Street) in Chatfield, MN drive N south-southeast on U.S. -
Wheatland Statement of Infrastructure Deficiency
Statement Of Infrastructure Deficiency in the Industrial and Commercial area Of the Wheatland Census Designated Place (CDP) Broadwater County Figure 1. Wheatland Area of Broadwater County Wheatland Targeted Economic Development District Introduction TEDD Draft property Boundary On October 8th of 2018, the Montana Business Assistance Connection, on behalf of Broadwater 22 County entered into a contract with Community 7a Development Services of Montana to assist the 8a County in the proposed creation of a Targeted 9a Economic Development District (TEDD) in the Wheatland industrial and commercial area of the County. The first step in establishing a TEDD is to conduct a review of infrastructure deficiencies within the area proposed for inclusion in a TEDD. 21 6a The documentation of such deficiencies, within a 2a 3a 4a municipality (defined as a county, city or town or 1a consolidated city-county government), in accordance with state law, provides the necessary 8 20 foundation upon which a local government may 7 5a establish a TEDD to foster secondary, value-adding 6 19 5 4 18 economic development. 2 3 9 1 10 12 14 16 11 13 15 The Wheatland industrial and commercial area, 17 13a comprised of nearly 1,000 acres, is generally 12a 10a 11a 15a located along US Highway 287, just north of the 14a Interstate 90 – Highway 287 intersection (Figure 2). It includes the Wheat Montana Bakery and the proposed site of Bridger Brewing, both value- Figure 2 Wheatland Industrial and Commercial Area (draft adding businesses. The creation of a TEDD will map – red lines (does not include orange lines)) enable Broadwater County to encourage the retention, expansion and recruitment of these enterprises, as well as complimentary and compatible value-adding businesses, which will contribute to the overall economic well-being of the County. -
Appendix: Economic Geology: Exploration for Coal, Oil and Minerals
Downloaded from http://mem.lyellcollection.org/ by guest on October 1, 2021 PART 4 Appendix: Economic geology: exploration for coal, oil and Glossary of stratigraphic names, 463 minerals, 449 References, 477 Index of place names, 455 General Index, 515 Alkahornet, a distinctive landmark on the northwest, entrance to Isfjorden, is formed of early Varanger carbonates. The view is from Trygghamna ('Safe Harbour') with CSE motorboats Salterella and Collenia by the shore, with good anchorage and easy access inland. Photo M. J. Hambrey, CSE (SP. 1561). Routine journeys to the fjords of north Spitsbergen and Nordaustlandet pass by the rocky coastline of northwest Spitsbergen. Here is a view of Smeerenburgbreen from Smeerenburgfjordenwhich affords some shelter being protected by outer islands. On one of these was Smeerenburg, the principal base for early whaling, hence the Dutch name for 'blubber town'. Photo N. I. Cox, CSE 1989. Downloaded from http://mem.lyellcollection.org/ by guest on October 1, 2021 The CSE motorboat Salterella in Liefdefjorden looking north towards Erikbreen with largely Devonian rocks in the background unconformably on metamorphic Proterozoic to the left. Photo P. W. Web, CSE 1989. Access to cliffs and a glacier route (up Hannabreen) often necessitates crossing blocky talus (here Devonian in foreground) and then possibly a pleasanter route up the moraine on to hard glacier ice. Moraine generally affords a useful introduction to the rocks to be traversed along the glacial margin. The dots in the sky are geese training their young to fly in V formation for their migration back to the UK at the end of the summer. -
Gallatin Forest Partnership Frequently Asked Questions
Gallatin Forest Partnership Frequently Asked Questions What is the Gallatin Forest Partnership? The Gallatin Forest Partnership is a group of local conservationists, hunters, anglers, mountain bikers, horseback riders, guest ranchers, skiers, paddlers, and citizens who care deeply about the Gallatin and Madison Ranges. We come from different backgrounds and have different perspectives. Still, we work together because we’ve seen for ourselves that it is how we can find real-life solutions. In 2018, after over a year of work, the Partnership reached agreement on a shared vision for the future of the Madison and Gallatin Ranges. We submitted the Gallatin Forest Partnership Agreement to the Custer Gallatin National Forest for consideration as it determines how to manage the Forest for the next 20 to 30 years. What is the Gallatin Forest Partnership Agreement all about? The agreement maps out a future for the Gallatin and Madison Ranges that protects the wildlife, clean water, wilderness, and recreation opportunities that are important to all of us. The agreement calls for a unique package of land management designations. These include recommended wilderness, watershed and recreation protections, and wildlife management areas spanning hundreds of thousands of acres in the Gallatin and Madison Ranges. Who supports the Agreement? Since it was released in 2018, over 800 individuals and 100 organizations and businesses have endorsed the agreement, including the Park, Gallatin, and Madison County Commissions. Mountain bikers, hunters, anglers, equestrians, conservationists, businesses, guest ranchers, and many others have signed on, because we all recognize that the agreement provides a real road map to protect what makes the Gallatin and Madison Ranges special. -
Fullerton Arboretum Friday, April 22, 2016
Department of Geological Sciences California State University, Fullerton Fullerton Arboretum Friday, April 22, 2016 The Department of Geological Sciences at California State University, Fullerton is an interdisciplinary education and research community whose members are active mentors and role-models. Our mission is to provide a student-centered educational and research experience that emphasizes critical thinking, communication, and scientific citizenship. ‘Research Day’ is an extension of this mission, where students are afforded the opportunity to share their research findings and scientific experiences with faculty, student peers, friends, family, and members of the professional geological community in an informal and supportive environment. Thank you for participating in this year’s event! 7th Annual Geology Research Day California State University, Fullerton ~ Department of Geological Sciences Fullerton Arboretum April 22, 2016 Abstract Volume Table of Contents Undergraduate Proposal Category EXAMINING THE GEOCHEMICAL RELATIONSHIPS BETWEEN THE TWENTYNINE PALMS AND QUEEN MOUNTAIN PLUTONS IN JOSHUA TREE NATIONAL PARK Student: Alexander Arita Faculty Advisor: Dr. Vali Memeti EXPLORING THE MOJAVE-SNOW LAKE FAULT HYPOTHESIS USING LASER- INDUCED BREAKDOWN SPECTROSCOPY Student: Eduardo Chavez Faculty Advisor: Dr. Vali Memeti INVESTIGATING SPATIAL AND TEMPORAL VARIATIONS IN SEDIMENTATION ON INTERTIDAL MUDFLATS Student: Dulce Cortez Faculty Advisor: Dr. Joseph Carlin A PALEOECOLOGY OF PLEISTOCENE OYSTER BEDS, SAN PEDRO, CALIFORNIA Student: Ditmar, Kutcher, Rue Faculty Advisor: Dr. Nicole Bonuso USING K-FELDSPAR MEGACRYSTS AS RECORDERS OF MAGMA PROCESSES IN THE TWENTYNINE PALMS PLUTON IN JOSHUA TREE NATIONAL PARK Student: Lizzeth Flores Urita Faculty Advisor: Dr. Vali Memeti ORGANIC AND INORGANIC CARBON ANALYSES OF SHALLOW SEDIMENTS AT OVERFLOW LAKE, SANTA BARBARA, CALIFORNIA. Student: Shayne Fontenot Faculty Advisor: Dr. -
Conservation in Yellowstone National Park Final Report on the COVER Wolverine Tracks in the Greater Yellowstone Ecosystem
Wolverine Conservation in Yellowstone National Park Final Report ON THE COVER Wolverine tracks in the Greater Yellowstone Ecosystem. Photo by Jason Wilmot. Wolverine Conservation in Yellowstone National Park Final Report Authors John Squires Kerry Murphy US Forest Service US Forest Service Rocky Mountain Research Station Jackson Ranger District 800 East Beckwith Avenue PO Box 25 Missoula, Montana 59801 Jackson, Wyoming 83001 [email protected] [email protected] (formerly Yellowstone Center for Resources, With contributions from Yellowstone National Park, Wyoming) Robert M. Inman Wildlife Conservation Society Jason Wilmot Wolverine Program Field Office Northern Rockies Conservation Cooperative 222 East Main Street PO Box 2705 Lone Elk 3B Jackson, Wyoming 83001 Ennis, Montana 59729 [email protected] [email protected] Jeff Copeland Mark L. Packila US Forest Service Wildlife Conservation Society Rocky Mountain Research Station Wolverine Program Field Office 800 East Beckwith Avenue 222 East Main Street Missoula, Montana 59801 Lone Elk 3B [email protected] Ennis, Montana 59729 [email protected] Dan Tyers US Forest Service Doug McWhirter Gardiner Ranger District Wyoming Game and Fish Regional Office PO Box 5 2820 State Highway 120 Gardiner, Montana 59030 Cody, Wyoming 82414 [email protected] National Park Service Yellowstone National Park Yellowstone Center for Resources Yellowstone National Park, Wyoming YCR-2011-02 March 2011 Suggested citation: Murphy, K., J. Wilmot, J. Copeland, D. Tyers, J. Squires, R. M. Inman, M. L. Packila, D. McWhirter. 2011. Wolverine conservation in Yellowstone National Park: Final report. YCR-2011-02. National Park Service, Yellowstone National Park, Yellowstone Center for Resources, Yellowstone National Park, Wyoming. -
Albian Rudist Biostratigraphy (Bivalvia), Comanche Shelf to Shelf Margin, Texas
Carnets Geol. 16 (21) Albian rudist biostratigraphy (Bivalvia), Comanche shelf to shelf margin, Texas Robert W. SCOTT 1, 2 2 Yulin WANG 2 Rachel HOJNACKI Yulin WANG 3 Xin LAI 4 Highlights • Barremian-Albian caprinids biostratigraphic zones are revised and integrated with ammonites and benthic foraminifers. • New caprinid rudist species are the key to revising long-held correlations of Albian strata on the Co- manche shelf, Texas. • On the San Marcos Arch, central Texas, the shallow shelf Person Formation is the upper unit of the Fredericksburg Group. • The Person underlies the basal Washita Group sequence boundary Al Sb Wa1 and the Georgetown Formation. Abstract: Rudists were widespread and locally abundant carbonate producers on the Early Cretaceous Comanche Shelf from Florida to Texas, and on Mexican atolls. As members of the Caribbean Biogeogra- phic Province, their early ancestors emigrated from the Mediterranean Province and subsequently evol- ved independently. Comanchean rudists formed biostromes and bioherms on the shelf interior and at the shelf margin. Carbonate stratigraphic units of the Comanche Shelf record rudist evolution during the Barremian through the Albian ages and an established zonal scheme is expanded. This study documents new Albian rudist occurrences from the Middle-Upper Albian Fredericksburg and Washita groups in Central and West Texas. Rudists in cores at and directly behind the shelf margin southeast of Austin and San Antonio, Texas, complement the rudist zonation that is integrated with ammonites and foraminifers. These new rudist data test long-held correlations of the Edwards Group with both the Fredericksburg and Washita groups based solely on lithologies. Rudist and foraminifer biostratigraphy indicate that the Edwards Group is coeval with the Fredericksburg not the Washita Group. -
The Earliest Bioturbators As Ecosystem Engineers
Downloaded from http://sp.lyellcollection.org/ by guest on September 27, 2021 Engineering the Cambrian explosion: the earliest bioturbators as ecosystem engineers LIAM G. HERRINGSHAW1,2*, RICHARD H. T. CALLOW1,3 & DUNCAN MCILROY1 1Department of Earth Sciences, Memorial University of Newfoundland, Prince Philip Drive, St John’s, NL, A1B 3X5, Canada 2Geology, School of Environmental Sciences, University of Hull, Cottingham Road, Hull HU6 7RX, UK 3Statoil ASA, Stavanger 4035, Norway *Correspondence: [email protected] Abstract: By applying modern biological criteria to trace fossil types and assessing burrow mor- phology, complexity, depth, potential burrow function and the likelihood of bioirrigation, we assign ecosystem engineering impact (EEI) values to the key ichnotaxa in the lowermost Cambrian (Fortunian). Surface traces such as Monomorphichnus have minimal impact on sediment properties and have very low EEI values; quasi-infaunal traces of organisms that were surficial modifiers or biodiffusors, such as Planolites, have moderate EEI values; and deeper infaunal, gallery biodiffu- sive or upward-conveying/downward-conveying traces, such as Teichichnus and Gyrolithes, have the highest EEI values. The key Cambrian ichnotaxon Treptichnus pedum has a moderate to high EEI value, depending on its functional interpretation. Most of the major functional groups of mod- ern bioturbators are found to have evolved during the earliest Cambrian, including burrow types that are highly likely to have been bioirrigated. In fine-grained (or microbially bound) sedimentary environments, trace-makers of bioirrigated burrows would have had a particularly significant impact, generating advective fluid flow within the sediment for the first time, in marked contrast with the otherwise diffusive porewater systems of the Proterozoic. -
Norwegian Seaway: a Key Area for Understanding Late Jurassic to Early Cretaceous Paleoenvironments
CORE Metadata, citation and similar papers at core.ac.uk Provided by OceanRep PALEOCEANOGRAPHY, VOL. 18, NO. 1, 1010, doi:10.1029/2001PA000625, 2003 The Greenland-Norwegian Seaway: A key area for understanding Late Jurassic to Early Cretaceous paleoenvironments Jo¨rg Mutterlose,1 Hans Brumsack,2 Sascha Flo¨gel,3 William Hay,3 Christian Klein,1 Uwe Langrock,4 Marcus Lipinski,2 Werner Ricken,5 Emanuel So¨ding,3 Ru¨diger Stein,4 and Oliver Swientek5 Received 22 January 2001; revised 24 April 2002; accepted 9 July 2002; published 26 February 2003. [1] The paleoclimatology and paleoceanology of the Late Jurassic and Early Cretaceous are of special interest because this was a time when large amounts of marine organic matter were deposited in sediments that have subsequently become petroleum source rocks. However, because of the lack of outcrops, most studies have concentrated on low latitudes, in particular the Tethys and the ‘‘Boreal Realm,’’ where information has been based largely on material from northwest Germany, the North Sea, and England. These areas were all south of 40°N latitude during the Late Jurassic and Early Cretaceous. We have studied sediment samples of Kimmeridgian (154 Ma) to Barremian (121 Ma) age from cores taken at sites offshore mid-Norway and in the Barents Sea that lay in a narrow seaway connecting the Tethys with the northern polar ocean. During the Late Jurassic-Early Cretaceous these sites had paleolatitudes of 42–67°N. The Late Jurassic-Early Cretaceous sequences at these sites reflect the global sea-level rise during the Volgian-Hauterivian and a climatic shift from warm humid conditions in Volgian times to arid cold climates in the early Hauterivian. -
GEOLOGY THEME STUDY Page 1
NATIONAL HISTORIC LANDMARKS Dr. Harry A. Butowsky GEOLOGY THEME STUDY Page 1 Geology National Historic Landmark Theme Study (Draft 1990) Introduction by Dr. Harry A. Butowsky Historian, History Division National Park Service, Washington, DC The Geology National Historic Landmark Theme Study represents the second phase of the National Park Service's thematic study of the history of American science. Phase one of this study, Astronomy and Astrophysics: A National Historic Landmark Theme Study was completed in l989. Subsequent phases of the science theme study will include the disciplines of biology, chemistry, mathematics, physics and other related sciences. The Science Theme Study is being completed by the National Historic Landmarks Survey of the National Park Service in compliance with the requirements of the Historic Sites Act of l935. The Historic Sites Act established "a national policy to preserve for public use historic sites, buildings and objects of national significance for the inspiration and benefit of the American people." Under the terms of the Act, the service is required to survey, study, protect, preserve, maintain, or operate nationally significant historic buildings, sites & objects. The National Historic Landmarks Survey of the National Park Service is charged with the responsibility of identifying America's nationally significant historic property. The survey meets this obligation through a comprehensive process involving thematic study of the facets of American History. In recent years, the survey has completed National Historic Landmark theme studies on topics as diverse as the American space program, World War II in the Pacific, the US Constitution, recreation in the United States and architecture in the National Parks.